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Abstract. We study mappings f : Ω → Rn whose distortion functions Kl(x, f) , l =
1, 2, . . . , n− 1 , are in general unbounded but subexponentially integrable. The main result is the
weak compactness principle. It asserts that a family of mappings with prescribed volume integral∫

Ω
J(x, f) dx , and with given subexponential norm ‖ l

√
Kl ‖ExpA of a distortion function, is closed

under weak convergence. The novelty of this result is twofold. Firstly, it requires integral bounds
on the distortions Kl(x, f) which are weaker than those for the usual outer distortion. Secondly,
the category of subexponential bounds is optimal to fully describe the compactness principle for
mappings of unbounded distortion, even when outer distortion is used.

1. Introduction

We consider here an interesting class of Sobolev mappings f ∈W 1,1
loc (Ω,Rn) ,

f = (f1, . . . , fn): Ω → Rn , with unbounded distortion. It is convenient to begin
with the usual two postulates defining such mappings:

(i) The Jacobian determinant J(x, f) = detDf(x) is locally integrable;
(ii) there exists a measurable function KO(x) ≥ 1, finite almost everywhere, such

that

(1) |Df(x)|n ≤ KO(x)J(x, f) a.e.

We call such a mapping f a mapping of finite distortion. Above we used the
operator norm of the differential matrix. There are several distortion functions that
are each of considerable interest in geometric function theory [8]. The principal
feature of those distortions is, roughly speaking, that they provide some control on
the lower order minors of the differential matrix in terms of the determinant. Let
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∧l
f(x) denote the

(
n
l

)
×
(
n
l

)
-matrix of all l×l -minors of Df(x) , l = 1, 2, . . . , n−1.

Inequality (1) yields

(2)
∣∣∧l

f(x)
∣∣n ≤ Kl(x)

[
J(x, f)

]l
a.e.

where 1 ≤ Kl(x) ≤
[
KO(x)

]l
. On the other hand, notice that (i) and (2) with

some l ≥ 2 and Kl(x) ≥ 1, finite a.e., do not guarantee that f be a mapping of
finite distortion; consider e.g. f(x1, . . . , xn) = (x1, 0, . . . , 0). The smallest Kl ≥ 1
for which (2) holds will be denoted by Kl(x, f) and called the l -th distortion
function. Of particular interest is the inner distortion KI(x, f) = Kn−1(x, f) . In
this case we denote by D]f(x) the n × n -matrix of cofactors of Df . Thus (2)
reads as

(3) |D]f(x)|n/(n−1) ≤ n−1
√
KI(x, f) J(x, f).

In order to work effectively with such mappings we must impose certain integra-
bility conditions on the distortion functions. This will equip us, via Postulate (i),
with a sufficient degree of integrability of the lower order subdeterminants. Here
we shall combine these facts with most recent advances in the theory of Jacobians
[3], [9], [14] and [4] to obtain basic regularity results such as higher integrability
and the weak compactness principle of bounded families of such mappings. To
illustrate this, let us assume that the function l

√
Kl(x) lies in the Orlicz space

Exp(Ω), that is:

(4)

∫

Ω

eλ
l
√

Kl(x) dx <∞

for some λ > 0. The same then holds for n−1
√
KI(x) in place of l

√
Kl(x) . Apply-

ing Hölder’s inequality to (3) yields

(5)

∫

Ω′
|D]f(x)|n/(n−1) log−1

(
e+ |D]f(x)|

)
dx <∞

on compact subsets Ω′ ⊂ Ω. Furthermore this implies, via recent results in [3,
Theorem 12.1], that the Jacobian determinant actually belongs to L log logL(Ω′)
on compact subsets Ω′ ⊂ Ω. Precisely, we have

(6)

∫

Ω′
J(x, f) log log

[
e+ J(x, f)

]
dx <∞.

Repeated application of Theorem 12.1 in [3] leads to further improvements on
the integrability of the Jacobian. This seemingly insignificant improvement turns
out to be critical in the study of compactness principles. Is there any better
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motivation? As a matter of fact, we gain more from Theorem 1.3 in [3] than higher
integrability. Namely, the Jacobian determinants obey the rule of integration by
parts, and this is vital in order to conclude with weak monotonicity properties
of mappings of finite distortion [7]. The exponential integrability of l

√
Kl(x) , as

described in (4), is not the weakest possible in the sense that it essentially suffices
only to assume that

(7)

∫

Ω

eA ( l
√

Kl(x) ) dx <∞

where

(8)

∫ ∞

1

A (t) dt

t2
=∞.

In that case, we say that l
√

Kl lies in the subexponential Orlicz class Exp A (Ω).
We wish to warn the reader that conditions (7) and (8) do not require l

√
Kl even

to be integrable and thus additional technical assumptions on A have to be posed.
To fill up this gap we assume that

(9) lim
t→∞

tA ′(t) =∞.

Another minor technical condition on A will be needed in the proofs of Theo-
rem 1.1 and Theorem 1.2 below, namely we will assume that

(10) the function t→ eA ( l
√
t ) is convex for t ≥ 1.

Theorem 1.1. Let n > 2 . Fix l ∈ {1, . . . , n− 1} and p ∈ [n− 1, n) so that
p = n − 1 in the case l ∈ {1, . . . , n − 2} and p > n − 1 in the case l = n − 1 .
Assume that an Orlicz function A satisfies (8) , (9) and (10) , and A,B ≥ 0 . Let
F be the family of mappings f : Ω→ Rn in the Sobolev class W 1,p

loc (Ω,Rn) such
that

(11)

∫

Ω

J(x, f) dx ≤ A,

and

(12)
∣∣∧l

f(x)
∣∣n ≤ Kl(x)

[
J(x, f)

]l
a.e.

with

(13)

∫

Ω

eA ( l
√

Kl(x) ) dx ≤ B.

Then F is closed under weak convergence in W 1,p(Ω,Rn) .
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For mappings of finite distortion we can improve on Theorem 1.1, see Section 8
for further results.

Theorem 1.2. Let n ≥ 2 . Fix l ∈ {1, . . . , n − 1} . Assume that an Orlicz
function A satisfies (8) , (9) and (10) , and A,B ≥ 0 . Let F be the family of
mappings f : Ω→ Rn of finite distortion for which

(14)

∫

Ω

J(x, f) dx ≤ A

and

(15)

∫

Ω

eA ( l
√

Kl(x) ) dx ≤ B,

for some l = 1, 2, . . . , n− 1 . Then for each 1 ≤ p < n we have

(i) ‖Df‖nLp(Ω) ≤ Cp(n,A , B)
∫

Ω
J(x, f) dx

and
(ii) F is closed under weak convergence in W 1,p

loc (Ω,Rn) .

Theorem 1.2 is proven in the case n = 2 in [8].

As practical examples, Theorem 1.1 and Theorem 1.2 allow for

A = λt,
λt

log(e+ t)
,

λt

log(e+ t) log log(ee + t)
, . . .

for any string of iterated logarithms and every λ > l−1. Regarding the sharpness,
we will show, in particular, that

A =
λt

tε
,

λt

log1+ε(e+ t)
,

λt

log(e+ t) log1+ε log(ee + t)
, . . .

are not sufficient, for any ε > 0 and for every λ > 0. This easily follows from our
next result.

Theorem 1.3. Let B be a strictly increasing non-negative function such
that

(16)

∫ ∞

1

B(t)

t2
dt <∞.

Then there exists a sequence of mappings Fj : (−1, 1)n → Rn , j = 1, 2, . . . , of
finite distortion and a continuous mapping F ∈W 1,1

(
(−1, 1)n,Rn

)
such that

(17)

∫

(−1,1)n
J(x, Fj) + eB( l

√
Kl(x) ) ≤ C

for all l = 1, 2, . . . , n− 1 , and each j , for each 1 ≤ p < n

Fj → F weakly in W 1,p
(
(−1, 1)n,Rn

)
,

and there is a set E ⊂ (−1, 1)n with positive measure such that
∣∣∧l F (x)

∣∣ = 1
and J(x, F ) = 0 for all x ∈ E and every l = 1, 2, . . . , n − 1 . In particular, (2)
cannot hold for F with any 1 ≤ Kl(x) finite a.e. and F is not a mapping of finite
distortion.
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The paper is organized as follows. In Section 2 we discuss Orlicz spaces and
introduce an additional Orlicz function based on A that will be needed later on.
Section 3 contains a short discussion on distortion functions and in Section 4 we
introduce a mollifying technique. The crucial tools for the proofs of Theorem 1.1
and 1.2, the isoperimetric inequality and higher integrability of Jacobians, are
dealt with in Section 5 and Section 6. Here we employ recent results from [3], [5].
The proofs of the above theorems are given in Section 7, and we point out a certain
extension of Theorem 1.2 in Section 8.

2. Subexponential Orlicz spaces

In the notation LP (Ω) of an Orlicz space we always assume that P : [0,∞)→
[0,∞) is continuously increasing from P (0) = 0 to P (∞) = limt→∞ P (t) = ∞ ,
and is infinitely differentiable on (0,∞) . The reader will notice that we are not
assuming P to be convex. The relation h ∈ LP (Ω) signifies that Ω is an open
subset of Rn and there is k = k(h) > 0 such that P

(
|h|/k

)
∈ L1(Ω). A definition

of the Luxemburg functional is expressed by the equation

(18) ‖h‖P = ‖h‖LP (Ω) = inf

{
k :

∫

Ω

P

( |h(x)|
k

)
dx ≤ 1

}
.

Thus, in particular

(19)

∫

Ω

P (|h(x)|) dx = 1 if ‖h‖P = 1.

If P is not convex the Luxemburg functional does not comply with the criteria of
a norm (the triangle inequality fails). Nevertheless, it plays an especially basic role
in handling estimates in Orlicz spaces. These are always linear complete metric
spaces.

In this paper need will arise for generating functions P to have nearly linear
growth. There is no genuine definition of such functions but we have in mind
examples of the type

(20) P (t) = t logα1(e+ t)
[
log log(ee + t)

]α2 · · ·
[
log · · · log(ee

··
·

+ t)
]αk

where α1, α2, . . . , αk ∈ R . The characteristic property of nearly linear functions
can be expressed by saying that for every ε > 0

(21) lim
t→∞

t−1−εP (t) = 0 and lim
t→∞

t−1+εP (t) =∞.

When no confusion is likely, we shall often write

(22) L logα1 L log logα2 L · · · log log · · · logαk L
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in place of LP . In certain cases we must prevent P from being too far below the
identity function. This will be done by imposing the so-called divergence condition

(23)

∫ ∞

1

P (s) ds

s2
=∞.

To illustrate, this condition tells us that in (20) all of the exponents α1, α2, . . . , αk
are smaller than or equal to −1. It is convenient when dealing with functions
valued in Rn , or in the space Rn×n of n × n -matrices, to write LP (Ω,Rn) or
LP (Ω,Rn×n) , respectively. As will be seen subsequently in this paper, and as is
illustrated by Proposition 2.2, a somewhat dual category of Orlicz spaces enters
into our study. These spaces are generated by the Orlicz function eA (t)−1, where
A satisfies the divergence condition

(24)

∫ ∞

1

A (s) ds

s2
=∞.

As before, A : [0,∞) → [0,∞) is continuously increasing from A (0) = 0 to
A (∞) = limt→∞A (t) = ∞ and is smooth on (0,∞) . It will be convenient to
make the technical requirement

(25) A (s) ≥ 4 log(s+ 1) for s ≥ 0

as this is not necessarily a consequence of (24).
A subexponential class of functions is an Orlicz space generated by eA (t)− 1.

As a matter of notation h ∈ Exp A (Ω) simply means that

(26)

∫

Ω

[
eA (|h(x)|/k) − 1

]
dx <∞ for some k = k(h) > 0.

We now associate with A (t) an Orlicz function P = PA : [0,∞)→ [0,∞) by the
rule

(27) P
(
teA (t)/4

)
=

∫ t

0

d
[
seA (s)/4

]

s+ 1
=
teA (t)/4

t+ 1
+

∫ t

0

seA (s)/4 ds

(s+ 1)2
, t ≥ 0.

Then

(28) P
(
t eA (t)/4

)
≤ teA (t)/4

t+ 1
+ teA (t)/4

∫ t

0

ds

(s+ 1)2
= teA (t)/4,

and in particular,

(29) P (s) ≤ s for all s ≥ 0.
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Similarly one can show that

(30) lim
s→∞

P (s)

s
= 0.

Next we record the identity

(31) P ′
[
teA (t)/4

]
=

1

t+ 1
for all t > 0,

which yields

∫ ∞

eA (1)/4

P ′(s) ds
s

=

∫ ∞

1

P ′
[
teA (t)/4

]
d
[
t eA (t)/4

]

teA (t)/4

=

∫ ∞

1

dt

t(t+ 1)
+

1

4

∫ ∞

1

A ′(t) dt
t+ 1

≥ 1

8

∫ ∞

1

A ′(t) dt
t

=
1

8

A (t)

t

∣∣∣∣
∞

1

+
1

8

∫ ∞

1

A (t) dt

t2
=∞.

This together with (29) leads us to the divergence condition for P :

(32)

∫ ∞

1

P (s) ds

s2
=∞.

Another preliminary bound for P follows from (28) by applying inequality (25).
This gives seA (s)/4 ≤ eA (t)/2 and

(33) P
(
teA (t)/4

)
≤ teA (t)/4

t+ 1
+ eA (t)/2

∫ t

0

ds

(s+ 1)2
.

Hence

(34) P
(
teA (t)/4

)
≤ t

t+ 1
eA (t)/2 + eA (t)/2 − 1 for all t ≥ 0.

We formulate our next estimate as a lemma.

Lemma 2.1. For J ≥ 0 and K ≥ 0 it holds that

(35) P (JK) ≤ J +
[
eA (K)/2 − 1

]
.

Proof. We consider the function J → P (JK) − JK/(K + 1) defined for
0 ≤ J <∞ . It suffices to show that

(36) P (JK)− JK

K + 1
≤ eA (K)/2 − 1.
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This is certainly true at J = 0 and also for sufficiently large values of J , due
to (30). It remains to check (36) at the critical points, if such points exist at all.
To this end we must solve the equation

(37) P ′(JK) =
1

K + 1

for J > 0. It follows from the identity (31) that P ′ is decreasing. Thus (37)
admits at most one solution. It is not difficult to guess from (31) that the solution
really exists and is given by

(38) J = eA (K)/4.

Substituting it into (36) and using (34) we arrive at

(39) P (JK)− JK

K + 1
= P

(
KeA (K)/4

)
− K

K + 1
eA (K)/4 ≤ eA (K)/2 − 1

as claimed.

By combining Lemma 2.1 with the definition of Luxemburg’s functional we
obtain our principal Hölder-type inequality.

Proposition 2.2. Let assumptions (24) , (25) hold, and let P be defined
by (27) . Then

(40) ‖KJ‖LP (Ω) ≤ 2 ‖J‖L1(Ω) ‖K‖Exp A (Ω)

for all K ∈ Exp A (Ω) and J ∈ L1(Ω) .

Proof. It involves no loss of generality in assuming that ‖J‖L1(Ω) = 1
2 and

‖K‖Exp A (Ω) = 1. Applying (35) we can write

(41)

∫

Ω

P (KJ) ≤
∫

Ω

J +

∫

Ω

[
eA (K)/2 − 1

]
≤ 1

2
+

1

2

∫

Ω

[
eA (K) − 1

]
= 1

which means that ‖KJ‖P ≤ 1, as desired.

In this paper it is important that the function P will be nearly linear in the
sense of equation (21). We wish to warn the reader that this is not necessarily a
consequence of (8) (see [12, Remark 2.2]) and so something should be added to
the condition (8). We will not exclude important examples of Orlicz functions if
we assume that A satisfies (9) i.e.

lim
t→∞

tA ′(t) =∞.

Among power-like functions A (t) = tα , (8) corresponds to α < 1, while (9) is
true for all α > 0. This explains in what sense we regard (9) to be only a minor
technical assumption.
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Lemma 2.3. Assume that A is an Orlicz function satisfying (9) and δ ∈
(0, 1) . Then there exists s0 ∈ (0,∞) such that the function

h: s→ P (s)

sδ

is increasing on (s0,∞) .

Proof. Because the function g(t) = teA /4 is increasing, it suffices to show
that [

P
(
g(t)

)

g(t)δ

]′
≥ 0

for large values of t . For this we need only to check that

(42) P ′
(
g(t)

)
g(t) ≥ δP

(
g(t)

)
.

Choosing a1 ∈ (0,∞) such that sA ′(s) ≥ (1− δ)/δ for all s ∈ (a1,∞) we have

(43) P
(
g(t)

)
=

∫ t

0

d
[
seA (s)/4

]

s+ 1
ds ≤ 1 + δ

δ
eA (t)/4.

Next we choose a ≥ a1 such that a/(1 + a) ≥ 1
2 (1 + δ) and so by (31) we conclude

that

(44) P ′
(
g(t)

)
g(t) =

t

t+ 1
eA (t)/4 ≥ 1 + δ

2
eA (t)/4

for every t > a . Inequality (42) follows from (43) and (44) for all t ∈ (a,∞) and
so the function h: s→ P (s)/sδ is increasing on (s0,∞) , where s0 = g(a) .

Next we show that, under the assumption limt→∞ tA ′(t) =∞ , the property
(25) is satisfied (for large s): Choose s0 ≥ 2 such that A ′(t)·t ≥ 16 and A (t) ≥ 1
for all t ≥ s0 . Then ∫ s

√
s

A ′(t) dt ≥ 16

∫ s

√
s

dt

t

for all s ≥ s2
0 and

A (s) ≥ A (s)−A
(√
s
)
≥ 8 log s ≥ 4 log(s+ 1)

for every s ≥ s2
0 . Replacing the function A by the function

Ã (t) =

{
A (t), t ≥ s2

0,

A (s2
0)t, 0 ≤ t ≤ s2

0,

we can assume that the condition (25) holds under the assumption (9).

Later in this paper we will use the following lemma.
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Lemma 2.4. Assume that A is an Orlicz function satisfying (9) and let
ε > 0 . Then there exists s0 ∈ (0,∞) such that the function

h: t→ P (t1+ε)

is convex on (s0,∞) .

Proof. Because the function g(t) = teA (t)/4 is increasing and

P ′(t1+ε) = (1 + ε)
tε

g−1(t1+ε) + 1
,

we only need to check that the function
(
gε/(1+ε)(t)

)
/(t+ 1) is increasing for large

values of t . This follows for all t ∈ (a,∞) , where a is chosen so that the inequality

ε

1 + ε

(
1 +

t

4
A ′(t)

)
≥ 1

is true for every t ∈ (a,∞) and so the function h: t → P (t1+ε) is convex on
(s0,∞) , where s0 = g(a) .

3. Distortion functions

Distortion functions are designed to control almost everywhere the minors
of the differential matrix of the mapping f : Ω → Rn by means of the Jacobian
determinant. We begin with the distortion functions of linear mappings, also
regarded as matrices. The space of all n× n -matrices will be denoted by Rn×n ,
and those with positive determinant by Rn×n

+ . It will be convenient to include
the zero matrix and denote such extended class of matrices by Rn×n

+ ∪ {0} . The
commonly used distortion functions on matrices A ∈ Rn×n

+ are:

The outer distortion: KO(A) = |A|n/detA ;

the inner distortion: KI(A) = KO(A−1) = |A]|n/(detA)n−1 ;

the linear distortion: H(A) = n
√
KO(A)KI(A) = |A||A−1| .

Note that the operator norm |A| = max
{
|Ah| : |h| = 1

}
is being used here, and

A] is the adjoint matrix, made of cofactors of A . In what follows all distortion
functions of the zero matrix are assumed to be equal to 1. There are in fact many
more distortion functions which are readily defined in terms of the lower order
subdeterminants of the matrix A . For each integer 1 ≤ l ≤ n we denote by

∧l
A

the
(
n
l

)
×
(
n
l

)
-matrix of all l× l -minors of A . This, of course, includes A as

∧1
A ,

A] as
∧n−1

A , and detA as
∧n

A .
The following distortion functions will interest us most as they have the very

important property of being polyconvex

(45) Kl(A) =
|∧lA|n
(detA)l

= Kn−l(A
−1) for l = 1, . . . , n− 1.
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Polyconvexity simply means that Kl: Rn×n
+ → R+ can be expressed as a convex

function of all possible minors of A . Precisely, we have

(46) Kl(A) = P
(∧l

A,detA
)

where P: R(nl)×(nl)×R→ [1,∞) is convex, see [8, Section 6] for a fuller discussion.
Having examined these distortion functions for matrices we set for orientation

preserving mappings (i.e. J(x, f) ≥ 0 a.e.) f ∈W 1,1
loc (Ω,Rn) :

(47)
∧l

f(x) =
∧l[

Df(x)
]
.

We define the pointwise distortion functions by setting

(48) Kl(x, f) = Kl

[
Df(x)

]
=





|∧lf(x)|n
J(x, f)l

, J(x, f) > 0,

1,
∣∣∧lf(x)

∣∣ = 0,

∞, J(x, f) = 0 and
∣∣∧lf(x)

∣∣ 6= 0.

All these functions are coupled by the inequalities

(49)
n−1
√
KI(x, f) = n−1

√
Kn−1(x, f) ≤ · · ·

≤ l
√

Kl(x, f) ≤ K1(x, f) = KO(x, f).

Let us also note for later use the reverse estimate

(50) KO(x, f) ≤ Kn−1
I (x, f) =

(
n−1
√
KI(x, f)

)(n−1)2

which holds when J(x, f) > 0.

4. Mollifying the distributional Jacobian

We shall consider a mapping f ∈ W 1,n−1
loc (Ω,Rn) , n > 2, whose cofactor

matrix lies in Lqloc(Ω,Rn) with

q =
n2 − n

n2 − n− 1
<

n

n− 1
.

By Sobolev’s embedding we know that |f | ∈ Lploc(Ω), p = n2 − n . Hence
|f | |D]f | ∈ L1

loc(Ω). The distributional Jacobian, denoted by Jf , is a Schwartz
distribution acting on test functions ϕ ∈ C∞0 (Ω) according to the rule

(51) Jf [ϕ] = −
∫

Ω

f i df1 ∧ · · · ∧ df i−1 ∧ dϕ ∧ df i+1 ∧ · · · ∧ dfn.
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We recall that this integral does not depend on the choice of the index i =
1, 2, . . . , n , see [3, Section 2].

Let Φt(x) = t−nΦ(t−1x) , t > 0, be a standard approximation of unity; that
is, Φ ∈ C∞0 (B) , is non-negative and has integral 1. The convolution

(52) (Jf ∗Φt)(a) = −
∫

Ω

f i(x) df1 ∧ · · · ∧ df i−1 ∧ dΦt(a− x) ∧ df i+1 ∧ · · · ∧ dfn

is a smooth function defined on the set Ωt = {a ∈ Ω : dist (a, ∂Ω) > t} . Now the
following lemma provides us with a beneficial link between the distribution Jf

and the point-wise Jacobian J(a, f) .

Lemma 4.1. For almost every a ∈ Ω we have

(53) J(a, f) = lim
t→0

(Jf ∗ Φt)(a).

Proof. The main idea of this proof cames from [16], although it differs in a
number of details.

Let us disclose in advance that the points a ∈ Ω for which we achieve equation
(53) are determined by the properties

(54) lim
t→0

(∫
−
B(a,t)

|D]f(a)−D]f(x)|q dx
)1/q

= 0

and

(55) lim
t→0

1

t

(∫
−
B(a,t)

|f(x)− f(a)−Df(a)(x− a)|p dx
)1/p

= 0.

The first requirement is fulfilled at the Lebesgue points of D]f . The second
requirement is guaranteed at almost every point a ∈ Ω since f ∈W 1,n−1

loc (Ω) and
p = n2 − n , see [1]. We now split the integral at (52) as

(Jf ∗ Φt)(a) = I1 + I2,

where

I1 = −
∫

Ω

[
f1(x)− f1(a)− 〈∇f1(a), x− a〉

]
dΦt(a− x) ∧ df2 ∧ · · · ∧ dfn

and

I2 = −
∫

Ω

[
f1(a) + 〈∇f1(a), x− a〉

]
dΦt(a− x) ∧ df2 ∧ · · · ∧ dfn.
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The first integral, I1 , can be estimated by Hölder’s inequality and the fact that
|dΦt(a− x)| ≤ C(n)t−n−1χB(a,t)(x) :

(56)

|I1| ≤
C(n)

t

(∫
−
B(a,t)

|f1(x)− f1(a)− 〈∇f1(a), x− a〉|p dx
)1/p

×
(∫
−
B(x,t)

|D]f(x)|q dx
)1/q

→ 0

by the requirements (55) and (54), where p = n2 − n and

q =
n2 − n

n2 − n− 1
<

n

n− 1
.

Concerning the second term, we are allowed to integrate by parts to obtain

|I2| =
∫

Ω

Φt(a− x) df1(a) ∧ df2(x) ∧ · · · ∧ dfn(x)

= J(a, f) +

∫

Ω

Φt(a− x) df1(a)
[
df2 ∧ . . . ∧ dfn − df2(a) ∧ . . . ∧ dfn(a)

]

where the latter integral converges to zero, as it is bounded by

(57)

∫

Ω

|Φt(a− x)| |df1(a)| |D]f(x)−D]f(a)| dx

≤ C(n)|df1(a)|
∫
−
B(a,t)

|D]f(x)−D]f(a)| dx

≤ C(n)|df1(a)|
(∫
−
B(a,t)

|D]f(x)−D]f(a)|q dx
)1/q

→ 0.

The proof is complete.

5. Isoperimetric inequality

In this section we formulate perhaps the most general isoperimetric inequality
based on our result in [3]. We shall not give all details but only confine ourselves
to verifying the rather involved hypotheses (6.1) in [15].

Proposition 5.1. Let f ∈ W 1,n−1
loc (Ω,Rn) , n > 2 , be an orientation pre-

serving mapping, i.e. J(x, f) ≥ 0 almost everywhere in Ω , whose cofactors satisfy

(58) |D]f |n/(n−1) ∈ LP (Ω).
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Here the Orlicz function P satisfies the divergence condition

(59)

∫ ∞

1

P (s) ds

s2
=∞

and the technical condition

(60)
[
t−1P (t)

]′ ≤ 0 ≤
[
t−sP (t)

]′
, s =

n2 − 2n+ 1

n2 − n− 1
.

Then for x ∈ Ω , we have

(61)

∫

B(x,r)

J(x, f) dx ≤ C(n)

(∫

∂B(x,r)

|D]f(x)| dx
)n/(n−1)

for almost every 0 < r < dist (x, ∂Ω) .

Proof. As we are going to appeal to Lemma 6.1 in [15], we first observe
that f ∈ W 1,1

loc (Ω,Rn) , its cofactor matrix D]f ∈ L1
loc(Ω,Rn×n) and by [3,

Theorem 1.3] the Jacobian detDf ∈ L1
loc(Ω). Inequality (61) is immediate from

Lemma 6.1 in [15] once we verify the equation (6.1) in [15]. The reader will easily
recognize that equation (6.1) is a result of integration by parts, which we have
proven in [3, Theorem 1.3]. Specifically, let v = (v1, . . . , vn) be a vector field of
class C1

0 (Rn,Rn) . We consider the mapping

Fi =
(
f1, . . . , f i−1, λf i + vi(f), f i+1, . . . , fn

)
∈W 1,n−1

loc (Ω,Rn)

where λ is a sufficiently large positive parameter to be selected later. The point
is that Fi is still orientation preserving and |D]Fi|n/(n−1) ∈ LPloc(Ω). To see this,
we compute

(62)

J(x, Fi) dx = df1 ∧ · · · ∧ df i−1 ∧
(
λdf i +

n∑

ν=1

∂vi

∂yν
dfν
)
∧ df i+1 ∧ · · · ∧ dfn

=

(
λ+

∂vi

∂yi

)
J(x, f) dx

showing that J(x, Fi) ≥ 0. Concerning cofactors of Fi , we only need to observe
that

(63) |D]Fi| ≤ C(λ+ ‖Dv‖∞)|D]f |.

Thus |D]Fi|n/(n−1) ∈ LPloc(Ω). With this condition in hand we can now apply
Theorem 1.3 in [3] to conclude that

(64)

∫

Ω

ψ(x)J(x, Fi) dx = −
∫

Ω

df1∧· · ·∧df i−1∧
[
λf i+vi(f)

]
dψ∧df i+1∧· · · dfn
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for every ψ ∈ C1
0 (Ω). This yields

λ

∫

Ω

ψ(x)J(x, f) dx+

∫

Ω

ψ(x)
∂vi

∂yi
(f)J(x, f) dx

= −λ
∫

Ω

df1 ∧ · · · ∧ df i−1 ∧ dψ ∧ df i+1 ∧ · · · ∧ dfn

= −
∫

Ω

vi(f) df1 ∧ · · · ∧ df i−1 ∧ dψ ∧ df i+1 ∧ · · · ∧ dfn.

The integrals with factor λ in front cancel out, again by Theorem 1.3 in [3]. What
remains upon cancellation is the identity

∫

Ω

vi(f) df1 ∧ · · · ∧ df i−1 ∧ dψ ∧ df i+1 ∧ · · · ∧ dfn + ψ(x)
∂vi

∂yi
(f)J(x, f) dx = 0.

Finally, we sum it up with respect to all indices i = 1, 2, . . . , n and arrive at
the identity (6.1) in [15]. All the hypotheses of Lemma 6.1 in [15] are therefore
fulfilled, completing the proof of inequality (61).

6. Higher integrability

We combine the isoperimetric inequality and maximal theorem in [5] to prove
the following higher integrability result.

Theorem 6.1. Under the hypothesis of Proposition 5.1, the Jacobian deter-
minant belongs to the Orlicz space LΨ

loc(Ω) , where

(65) Ψ(t) = P (t) + t

∫ t

0

P (s)

s2
ds.

Precisely, for each pair of concentric cubes Q ⊂ nQ ⊂ Ω we have

(66) ‖detDf‖LΨ(Q) ≤ CP (n)
∥∥|D]f |n/(n−1)

∥∥
LP (nQ)

.

Here, as usual, we assume that the integral converges near zero. The estimate
at (66) gives us an advantage over the higher integrability result in [3] because is
explicit and depends exclusively on the cofactors of Df .

Proof. We recall that for u ∈ L1
loc(Ω) the maximal function Mu is defined

by

(67) Mu(x) = MΩu(x) = sup

{∫
−
Q

|u(z)| dz : x ∈ Q ⊂ Ω

}
.
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Fix concentric cubes Q ⊂ nQ ⊂ Ω. Let Q′ = Q′(a, r) be an arbitrary cube in Q .
Certainly nQ′ ⊂ nQ . By the isoperimetric inequality (61) we have

(∫

B(a,s)

J(x, f) dx

)(n−1)/n

≤ C(n)

∫

∂B(a,s)

|D]f(x)| dx

for almost every 0 < s < dist (x, ∂Ω). Next, we integrate this estimate from
√
n r

to nr :

(68)

∫ nr

√
n r

(∫

B(a,s)

J(x, f) dx

)(n−1)/n

ds ≤ C(n)

∫

nQ′
|D]f(x)| dx.

Since the Jacobian is non-negative almost everywhere this yields

(69)
(
n−√n

)
r

(∫

Q′
J(x, f) dx

)(n−1)/n

≤ C(n)

∫

nQ′
|D]f(x)| dx.

Divide both sides by rn−1 , to obtain

(70)

∫
−
Q′
J(x, f) dx ≤ C(n)

(∫
−
nQ′
|D]f(x)| dx

)n/(n−1)

.

Finally, we take the supremum over all cubes Q′ ⊂ Q containing a given point
x ∈ Q and arrive at the point-wise estimate

(71) MQ(detDf) ≤ C(n)
(
MnQ|D]f |

)n/(n−1)

of the maximal functions. In order to make use of the maximal inequality we
introduce P̃ (t) = P

(
tn/(n−1)

)
and notice that t−pP̃ (t) is increasing for p =

(n2 − n)/(n2 − n− 1) > 1, by condition (60). We conclude from [5, Lemma 5.2]
that

(72)
‖detDf‖LΨ(Q) ≤ C(n)‖MQ(detDf)‖LP (Q)

≤ C(n)‖MnQ(D]f)‖n/(n−1)

LP̃ (nQ)
.

As the maximal operator MnQ: LP̃ (nQ)→ LP̃ (nQ) is bounded, by [5, Lemma 5.1],
we see that

(73) ‖MnQ(D]f)‖LP̃ (nQ) ≤ C(n)‖D]f‖LP̃ (nQ)

which together with previous estimate yields

(74) ‖detDf‖LΨ(Q) ≤ C(n)‖|D]f |n/(n−1)‖LP (nQ)

as desired.
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Theorem 6.2. Suppose that f ∈ W 1,n−1
loc (Ω,Rn) , n > 2 , J( · , f) ∈ L1(Ω) ,

and f satisfies the inequality

(75)
∣∣∧l

f(x)
∣∣n ≤ Kl(x)

[
J(x, f)

]l
a.e.

with

(76) l
√

Kl(x, f) ∈ Exp A (Ω)

for some l = 1, . . . , n− 1 , where A is an Orlicz function satisfying the divergence
condition (8) and the technical condition (9) . Let L (t) =

∫ t
0
s−2A (s) ds . Then

for each compact set Ω′ ⊂ Ω

(77)

∫

Ω′
J(x, f)L

[
J(x, f)

]
dx ≤ C(n,A ,Ω′)

∥∥ l
√

Kl(x, f)
∥∥

Exp A (Ω)

∫

Ω

J(x, f) dx.

Proof. The point of special note is that (75) implies the same condition for

(78) n−1
√
KI(x, f) ∈ Exp A (Ω)

and hence

(79) |D]f |n/(n−1) ≤ n−1
√
KI(x, f) J(x, f).

By Hölder’s inequality at (40) and (49) we find that

(80) ‖ |D]f |n/(n−1)‖LP (Ω) ≤ C(A )
∥∥ l
√

Kl

∥∥
Exp A (Ω)

∫

Ω

J(x, f) dx.

Using (32) we see that the Orlicz function P satisfies (59). By (29) and Lemma 2.3
we have that also the technical condition (60) is fulfilled and so by Theorem 6.1
we conclude

(81)

∫

Ω′
J(x, f)L

[
J(x, f)

]
dx ≤ C(n,A ,Ω′)

∥∥ l
√

Kl(x, f)
∥∥

Exp A (Ω)

∫

Ω

J(x, f) dx

where

(82) L(t) =
P (t)

t
+

∫ t

0

P (s)

s2
ds.

This estimate is stronger than our higher integrability statement in this theorem,
since

L (t) =

∫ t

0

s−2A (s) ds ≤ C · L(t), t ≥ 1,

by the analysis throughout (27)–(34).
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7. Weak compactness

Let f ∈W 1,n−1(Ω,Rn) . In Theorem 1.1 we have assumed that

(83)
∣∣∧l

f(x)
∣∣n/l ≤ l

√
Kl(x) J(x, f)

with

(84)

∫

Ω

eA ( l
√

Kl ) dx ≤ B <∞

where as always

(85)

∫ ∞

1

A (s) ds

s2
=∞.

We also recall the assumptions (10) and (9):

(86) the function t→ eA ( l
√
t )is convex for t ≥ 1

and

(87) lim
t→∞

tA ′(t) =∞.

These additional assumptions on A cause practically very little loss of generality.
Note that (86) holds for the function A (s) = λs , whenever λ > 0 and λ ≥ l− 1.

Proof of Theorem 1.1. We notice that the inequality (83) implies

(88) |D]f(x)|n/(n−1) ≤ l
√

Kl(x) J(x, f);

see our estimates at (49). Fix s ∈ [1, n/(n − 1)). Hölder’s inequality and the
assumption (87) yield

(89) ‖D]f‖n/(n−1)
s ≤

∥∥ l
√

Kl J
∥∥

(n−1)s/n
≤ Cs(n,A , B)

∫

Ω

J(x, f) dx.

Because of the uniform bound at (89) we see that the set of cofactor matrices is
bounded in Lq(Ω,Rn) for q ∈ (n2 − n/(n2 − n − 1), n/(n − 1)). Using this for
a weakly in W 1,n−1(Ω,Rn) (and so strongly for a subsequence in Ls(Ω,Rn) for
all s ∈ [1, n2 − n)) converging sequence {fν} of mappings in F we have that the
distributional Jacobians Jfν converge to Jf in D ′(Ω) i.e.

(90) Jf [ϕ] = lim
ν→∞

Jfν [ϕ] = lim
ν→∞

∫

Ω

ϕ(x)J(x, fν) dx,
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for ϕ ∈ C∞0 (Ω). Here we have passed to a subsequence. Each mapping in the
sequence {fν} obeys the rule of integration by parts i.e.

∫

Ω

η(x)J(x, f) dx = Jf [η]

for every η ∈ C∞0 (Ω) and i = 1, 2, . . . , n . Integration by parts follows from
Theorem 1.3 in [3]. Here we used equations (32), (29) and Lemma 2.3. Therefore,
if we take a non-negative test function ϕ , say ϕ(x) = Φt(a − x) from Section 5,
Jf [ϕ] ≥ 0. We see that |D]f | ∈ Lq(Ω), where q ∈ (n2−n/(n2−n−1), n/(n−1)),
by (89), and so the assumptions of Lemma 4.1 are fulfilled and thus we have

J(a, f) = lim
t→0

Jf [ϕ] ≥ 0

for almost every a ∈ Ω. Therefore, f is an orientation preserving map i.e.
J(x, f) ≥ 0 almost everywhere in Ω.

Next we want to show that (90) remains valid for any bounded function
ϕ ∈ L∞(Ω) with compact support (see [8, Theorem 8.4.2]). Of course we need
only consider test functions ϕ satisfying the bound

(91) |ϕ(x)| ≤ χQ(x)

where χQ is the characteristic function of a cube Q and 2nQ ⊂ Ω. Using (32) we
see that the Orlicz function P satisfies (59). By (29) and Lemma 2.3 we have that
also the technical condition (60) is fulfilled and so by Theorem 6.1 we conclude

(92) ‖detDfν‖LΨ(2Q) ≤ CP (n)
∥∥ |D]fν |n/(n−1)

∥∥
LP (2nQ)

≤M

with M independent of ν and Ψ given by (65), by Proposition 2.2. This translates
into the integral estimate

(93)

∫

2Q

Ψ

(
J(x, fν)

M

)
dx ≤ 1

by definition (18). By (65), we have

(94) t ≤ Ψ(t)

(∫ t

0

P (s)

s2
ds

)−1

.

We mollify ϕ by convolution with Φt , where t is chosen to be so small that
ϕt ∈ C∞0 (2Q) . For given k ≥ 1 we have by (94) that

(95)

∫

2Q

|ϕt(x)− ϕ(x)|J(x, fν) ≤
∫

{x∈2Q:J(x,fν)≤Mk}
|ϕt(x)− ϕ(x)|J(x, fν) dx

+ 2

∫

{x∈2Q:J(x,fν)≥Mk}
J(x, fν) dx

≤Mk‖ϕt − ϕ‖L1(2Q) + 2M

(∫ k

1

P (s)

s2

)−1

.
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Combining (95) and (90) we conclude with

(96) lim
ν→∞

∫

Ω

J(x, fν)χQ(x) dx =

∫

Ω

J(x, f)χQ(x) dx

as desired.
Next we will prove the critical lower semicontinuity property

(97)

∫

Ω

η(x)eA ( l
√

Kl(x,f) ) dx ≤ lim
ν→∞

inf

∫

Ω

η(x)eA ( l
√

Kl(x,fν) ) dx

for each non-negative test function η ∈ L∞(Ω) with compact support (see [8,
Theorem 8.10.1]). Fix ε > 0 and write

K ε
l (x, f) =

∣∣∧l f(x)
∣∣n

(
ε+ J(x, f)

)l .

Since the function g(x, y) = xny−l is convex on (0,∞) × (0,∞) whenever n ≥
l + 1 ≥ 1 [8, Lemma 8.8.2] and t→ eA ( l

√
t) is increasing and convex, for all t ≥ 1

we have

eA ( l
√

K ε
l

(x,fν) ) − eA ( l
√

K ε
l

(x,f) ) ≥ 1

l

l
√

K ε
l (x, f)

K ε
l (x, f)

eA ( l
√

K ε
l

(x,f))A ′
(
l

√
K ε
l (x, f)

)

×
[
−l
( ∣∣∧l f

∣∣n
(
ε+ J(x, f)

)l+1

)(
J(x, fν)− J(x, f)

)

+ n

( ∣∣∧l f
∣∣n−1

(ε+ J(x, f))l

)
×
(∣∣∧l

fν
∣∣−
∣∣∧l

f
∣∣
)]
.(98)

Set

Ek =

{∣∣∣∣
l
√

K ε
l (x, f)

K ε
l (x, f)

eA ( l
√

K ε
l

(x,f) )A ′
(
l

√
K ε
l (x, f)

)( ∣∣∧l f
∣∣n

(ε+ J(x, f))l+1

)∣∣∣∣ ≤ k

and
∣∣∣∣
l
√

K ε
l (x, f)

K ε
l (x, f)

eA ( l
√

K ε
l

(x,f))A ′
(
l

√
K ε
l (x, f)

)( ∣∣∧l f
∣∣n−1

(ε+ J(x, f))l

)∣∣∣∣ ≤ k
}

for all k ∈ N . Fix k ∈ N .
We now consider what happens in (98) when we first multiply (98) by a non-

negative η ∈ L∞loc(Ω) and χEk , then integrate over Ω and let ν → ∞ . The first
term in the right-hand side converges to 0, because J( · , fν) converges to J( · , f)
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weakly in L1
loc(Ω), by (96). We fix unit matrix fields ξ = ξ(x) and ζ = ζ(x) , each

valued in the space
(
n
l

)
×
(
n
l

)
-matrices such that

∣∣∧l
f(x)

∣∣ =
〈∧l

f(x)ξ, ζ
〉
.

Thus

(99)
∣∣∧l

fν(x)
∣∣−
∣∣∧l

f(x)
∣∣ ≥

〈∧l
fν(x)−

∧l
f(x), ξ ⊗ ζ

〉
.

Using the assumption that {fν} converges weakly in W 1,s(Ω,Rn) where s > l

we have that
∧l
fν converges to

∧l
f weakly in L1

loc(Ω,Rn×n) and |η(x)|ξ ⊗ ζ
belongs to the space L∞loc(Ω) we have
∫

Ω

η(x)χEk(x)eA ( l
√

K ε
l

(x,f) ) dx ≤ lim
ν→∞

inf

∫

Ω

η(x)χEk(x)eA ( l
√

K ε
l

(x,fν) ) dx

≤ lim
ν→∞

inf

∫

Ω

η(x)eA ( l
√

Kl(x,fν) ) dx.(100)

Letting ε → 0 and k → ∞ we have (97). Combining this and (96) we complete
the proof of Theorem 1.1.

Proof of Theorem 1.2. Theorem 1.2 is proven in the case n = 2 in [8] and so
we will assume that n ≥ 3. The uniform bound at (i) is rather simple. To see this
we notice that

(101) KO(x) ≤
[
l
√

Kl(x)
](n−1)2

see our estimates at (49) and (50); notice that Df(x) = 0 a.e. in the set {x ∈ Ω :
J(x, f) = 0} . Hölder’s inequality yields

(102)

‖Df‖nLp(Ω) ≤ ‖KOJ‖p/n ≤ ‖KO‖p/(n−p)‖J‖1

≤
∥∥ l
√

Kl

∥∥(n−1)2

p(n−1)2/(n−p)

∫

Ω

J(x, f) dx ≤ Cp(n,B)

∫

Ω

J(x, f) dx,

the factor in front of the volume integral being finite due to much stronger as-
sumption at (15). This follows directly from the assumption (9). We now proceed
to Assertion (ii). Let fν : Ω → Rn be a sequence of mappings in the family F ,
converging weakly in W 1,p(Ω,Rn) to a mapping f . We want to show that f ∈ F .
The conditions (14) and (15) for the limit map f follow from Theorem 1.1 and
so it suffices to show that f has a finite outer distortion. The proof is very sim-
ilar to that for inequality (15): Since the function g(x, y) = xny−1 is convex on
(0,∞)× (0,∞) [8, Lemma 8.8.2] we have for each ε > 0

|Dfν(x)|n
ε+ J(x, fν)

− |Df(x)|n
ε+ J(x, f)

≥ −
( |Df |n
(
ε+ J(x, f)

)2
)(
J(x, fν)− J(x, f)

)

+ n

( |Df |n−1

ε+ J(x, f)

)
(|Dfν | − |Df |).
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Because of the uniform bound at (102) the sequence {fν} actually converges
weakly in W 1,s(Ω,Rn) for every 1 ≤ s < n and by the analysis as in (91)–
(96) we have that J( · , fν) converges to J( · , f) weakly in L1

loc(Ω). Furthermore
observing that Dfν converges weakly to Df in L1

loc(Ω,Rn×n) , we have (see (100))

∫

Ω

η(x)
|Df(x)|n
ε+ J(x, f)

dx ≤ lim
ν→∞

inf

∫

Ω

η(x)
|Dfν(x)|n
ε+ J(x, fν)

dx

for every η ∈ L∞loc(Ω). It then follows that

|Df(x)|n ≤M(x)J(x, f) a.e.

for some measurable function 1 ≤ M(x) < ∞ and this completes the proof of
Theorem 1.2.

Proof of Theorem 1.3. We begin the construction of the example of Theo-
rem 1.3 by recalling the existence of suitable Lipschitz functions.

Lemma 7.1. Let ε > 0 . Then there exists a Lipschitz function u: Q1 =
[−1, 1]n → [−1, 1] , smooth outside a closed set of measure zero, such that u = 0
on the boundary of the unit cube Q1 , the alternative

(103) |∇u(x)− e1| < ε or |∇u(x) + e1| < ε

holds for a.e. x ∈ Q1 , where e1 = (1, 0, . . . , 0) as usually.

Proof. See the work of Fonseca, Müller and Šverak [17, Lemma 5.1] and
references therein.

The idea of the following lemma comes from [13].

Lemma 7.2. Suppose that B is a strictly increasing non-negative function
and ∫ ∞

1

B(s)

s2
<∞.

Given 0 ≤ t ≤ t , let Qt = [−t, t] × [−1, 1]n−1 . There is a continuous mapping
ft: Qt → Rn such that ft(x) = (0, x2, . . . , xn) on the boundary of the set Qt ,

(1) f ∈W 1,p(Qt,R
n) and

∫
Qt
|Df |p ≤ Ct , for all p ∈ [1, n) ,

(2)
∫
Qt
J(x, ft) ≤ Ct ,

(3) ft has finite distortion in int(Qt) , with
∫
Qt
eB
(
KO(x,ft)

)
dx ≤ Ct ,

and
(4) |ft(x)− ft(y)| ≤ Ct if |x− y| ≤ t .
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Proof. Given ε > 0, using Lemma 7.1 we construct a mapping

g(x1, . . . , xn) =
(
u(x1, . . . , xn), x2, . . . , xn

)

for all x = (x1, . . . , xn) ∈ Qt so that

(104) g(Qt) ⊂ Qt

g(x) = (0, x2, . . . , xn) on ∂Qt

and for a.e. x ∈ Qt we have

|∇u(x)− e1| < ε or |∇u(x) + e1| < ε.

Set
Q+

t = {x ∈ Qt : J(x, g) > 0}, Q−t = {x ∈ Qt : J(x, g) < 0}.
By choosing a suitably small ε > 0 we may assume that a.e.

(105) |Dg(x)| ≤ 2

and either

(106) 1
2 ≤ J(x, g) ≤ 3

2

or

(107) − 3
2 ≤ J(x, g) ≤ − 1

2 .

We define
ft(x) = g(x), x /∈ Q−t .

On Q−t , which we may assume to be open, we will precompose g with suitable map-
pings with negative Jacobians so as to obtain a mapping with a positive Jacobian.
For this we recall the mapping constructed in [12, Theorem 1.2(b)]: Under the as-
sumptions of Lemma 7.2 there is a continuous mapping h ∈W 1,p(Q1, [−M,M ]n)
for some M > 1 and all p ∈ [1, n) so that there does not exist a set A ⊂ Q1 of
measure zero such that |h(A)| > 0,

h(x) = x on ∂Q1,

J(x, h) < 0 a.e in Q1,∫

Q1

|J(x, h)| dx <∞
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and h satisfies

|Dh(x)|n ≤ K(x)|J(x, h)| a.e.

with ∫

Q1

eB(K(x)) dx <∞.

Here we used the following fact: If B is an increasing non-negative function such
that ∫ ∞

1

B(s)

s2
ds <∞, then

∫ ∞

1

B′(s)
s

ds <∞.

This follows from integration by parts and from a minor estimate.

Now we decompose Q−t into pairwise disjoint cubes Q so that MQ ⊂ Q−t
for each cube in this decomposition W . Using the above mapping h we find, for
each Q , a mapping

(108) hQ: Q →MQ

such that hQ(x) = x on ∂Q , J(x, hQ) < 0 a.e., there does not exist a set A ⊂ Q
of measure zero such that |hQ(A)| > 0,

∫

Q

|J(x, hQ)| dx ≤
∫

Q1

|J(x, h)| dx · |Q|,
∫

Q

|DhQ(x)|p dx ≤
∫

Q1

|Dh(x)|p dx · |Q|

for all p ∈ [1, n) and hQ satisfies |DhQ(x)|n ≤ KQ(x)|J(x, hQ)| a.e. in Q with

(109)

∫

Q

eB(KQ(x)) dx ≤
∫

Q1

eB(K(x)) dx · |Q|.

We define

ft(x) = u
(
hQ(x)

)
, x ∈ Q

when Q ∈ W . To see that ft has the desired properties, notice that the outer
distortion of ft on Q is, by (105) and (107), no more that 2n+1 times the “outer
distortion” of hQ on Q . The desired integrability condition on the outer distortion
of ft then follows using the fact that there does not exist a set A ⊂ Q of measure
zero such that |hQ(A)| > 0 and applying (109) in Q−t and (105), (106) in Qt \Q−t .
The construction shows that ft is continuous. Finally condition (4) follows from
(104) and (108).
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Proof of Theorem 1.3. Consider a fixed Cantor-set construction on [−1, 1] .
At stage j of the construction, [−1, 1] is divided into a finite number of intervals,
some of which are being removed at this stage and some of which were removed in
a previous step. Let [a, b] be an interval in the subdivision of [−1, 1] . We define

Fj(x) = f(b−a)/2

(
x1 − 1

2 (a+ b), x2, . . . , xn
)

for x ∈ [a, b]× [−1, 1]n−1 , where f(b−a)/2 is the map from Lemma 7.2. Because of
the boundary values of the maps ft in Lemma 7.2, this procedure gives a consistent
definition of Fj in all of Q1 and it follows (using (1)) that

Fj ∈W 1,p(Q1,R
n)

for all p ∈ [1, n) . From (1)–(3) we further conclude that Fj has finite distortion
and that ∫

Q1

|DFj |p + J(x, Fj) + eB(KO(x,FJ )) ≤ C.

Notice also that Fk coincides with Fj for k ≥ j on each of the intervals that was
removed either earlier or at stage j . Select now the Cantor-construction so that the
resulting Cantor-set E1 has positive length. As mentioned above, Fk(x) = Fj(x)
for all sufficiently large j and k when x is not in E1 × [−1, 1]n−1 . Using (4) and
the boundary values of the maps ft on Qt , it follows that the limit

lim
j→∞

Fj(x) = (0, x2, . . . , xn)

exists for x ∈ E1 × [−1, 1]n−1 . We conclude that Fj(x) → F (x) for all x ∈ Q1 ,
where F ∈W 1,p(Q1,R

n) , for all p ∈ [1, n) , is continuous and satisfies

F (x) = (0, x2, . . . , xn)

for all x ∈ E1 × [−1, 1]n−1 . Set E = E1 × (−1, 1)n . It is a straightforward

computation to find that
∣∣∧lF (x)

∣∣ = 1 and |J(x, f)| = 0 for a.e. x ∈ E .

8. Uniform convergence

Theorems 1.1 and 1.2 deal with weak convergence. Our final result shows
that, for mappings of finite distortion, also locally uniform convergence can be
used. For related results in the homeomorphic case see [2], [18], and [19].

Theorem 8.1. Assume that an Orlicz function A satisfies (8) , (9) and (10)
( l = 1), n ≥ 2 , and let A,B > 0 . Let F be the family of mappings f : Ω→ Rn

of finite distortion such that

(110)

∫

Ω

J(x, f) dx ≤ A
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and

(111)

∫

Ω

eA
(
KO(x)

)
dx ≤ B.

Fix some x0 ∈ Ω and define F̃ = {g : g(x) = f(x)−f(x0) and f ∈ F} . Then each

sequence of mappings in F̃ contains a locally uniformly converging subsequence,
and the limit of any such a sequence belongs to F̃ .

Proof. Notice first that, by Theorem 1.2, F is bounded in each W 1,p(Ω′,Rn) ,
1 ≤ p < n , when Ω′ is compactly contained in Ω. Moreover, by Hölder’s inequality
at (40) we find that

(112)
∥∥ |Df |n

∥∥
LP (Ω)

≤ C(A )‖KO‖Exp A (Ω)

∫

Ω

J(x, f) dx.

Define Φ(t) = P (tn) , for all t ≥ 0. Then it follows from (32) and Lemma 2.4 that∫∞
1

Φ(t)/tn+1 = ∞ and the function τ → Φ
(
p
√
τ
)

is convex for some p > n − 1.
From [7, Theorem 1.6] we can conclude that each f ∈ F is continuous (the
continuity means the existence of a continuous representative) with the uniform
bound

|f(x)− f(y)| ≤ C(n,R)‖Df‖LΦ(B)ωΦ

( |x− y|
R

)
,

where x, y ∈ B(a,R) ⊂ B(a, 2R) ⊂ Ω and ω = ωΦ(t) , 0 < t ≤ 1, is determined

uniquely from the equation 1 =
∫ 1

t
Φ(Φ/s) ds , provided that f is weakly mono-

tone, see [7]. This additional assumption is automatically guaranteed because we
can integrate by parts against the Jacobian (see [3, Theorem 1.3]), and thus the ar-
gument used in [7, Section 4] based on Stokes’ theorem applies also in our setting.
Combining Theorem 1.2 with Ascoli’s theorem and the equicontinuity property of
the family F the claim follows.

References

[1] Calderon, A.P., and A. Zygmund: Local properties of solutions of elliptic partial
differential equations. - Studia Math. 20, 1961, 171–225.

[2] David, G.: Solutions de l’équation de Beltrami avec ‖µ‖∞ = 1. - Ann. Acad. Sci. Fenn.
Ser. A I Math. 13, 1988, 25–70.

[3] Giannetti, F., T. Iwaniec, J. Onninen, and A. Verde: L1 -estimates of Jacobians
by subdeterminants. - J. Geom. Anal. 12, 2002, 223–254.

[4] Greco, L.: Sharp integrability of nonnegative Jacobians. - Rend. Mat. Appl. (7) 18, 1998,
585–600.

[5] Greco, L., T. Iwaniec, and G. Moscariello: Limits of the improved integrability of
the volume forms. - Indiana Univ. Math. J. 44, 1995, 305–339.

[6] Iwaniec, T., P. Koskela, and G.J. Martin: Mappings of BMO-distortion and Beltrami
type operators. - Preprint.



Mappings of finite distortion: Compactness 417

[7] Iwaniec, T., P. Koskela, and J. Onninen: Mappings of finite distortion: Monotonicity
and continuity. - Invent. Math. 144, 2001, 507–531.

[8] Iwaniec, T., and G.J. Martin: Geometric Function Theory and Non-linear Analysis. -
Oxford Math. Monogr., Oxford Univ. Press, 2001.

[9] Iwaniec, T., and J. Onninen: H 1 -estimates of Jacobians by subdeterminants. - Math.
Ann. (to appear).
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