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Abstract. We prove a sharp lower bound of the form

capE ≥ ( 1
2 ) diamE ·Ψ(areaE/( 1

4π diam2 E))

for the logarithmic capacity of a compact connected planar set E in terms of its area and diameter.
Our lower bound includes as special cases G. Faber’s inequality capE ≥ diam 1

4E and G. Pólya’s

inequality capE ≥ (areaE/π)1/2 . We give explicit formulations, functions of 1
2 diamE , for the

extremal domains which we identify.

1. Introduction

The logarithmic capacity, capE , of a continuum (= compact connected set)
E in the complex plane C is defined by

(1.1) − log capE = lim
z→∞

(g(z)− log |z|),

where g(z) denotes Green’s function of the unbounded component Ω(E) of C \E
having singularity at z =∞ .

The measure of a set described by the logarithmic capacity is very important
in potential theory, analysis, and PDE’s. It combines several characteristics of a
compact set, among which are the geometric concept of transfinite diameter due to
M. Fekete, the concept of Chebyshev’s constant from polynomial approximation,
and the concept of the outer radius from conformal mapping, see [D], [Du], [G], [H].
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In general, computation of capE is a difficult problem but there are several
estimates of capE in terms of geometric characteristics of E that are very useful
in applications, see [PSz]. For instance,

1
4 diamE ≤ capE ≤ 1

2 diamE,(1.2)
(

1

π
areaE

)1/2

≤ capE <∞.(1.3)

The first inequality in (1.2) was found by G. Faber [F] in a different form. The
inequalities in (1.3) and the second inequality in (1.2), which is valid for any
(not necessary connected) compact set, were proved by G. Pólya [Po]. Equality
occurs only for rectilinear segments in Faber’s inequality and for disks in Pólya’s
inequalities. The case of equality in the right inequality in (1.2) was studied by
J. Jenkins [J] and A. Pfluger [Pf].

We will employ the following notation throughout this paper: let U = {z :
|z| < 1} and Ur(c) = {z : |z − c| < r} , so that U = U1(0). Finally, let
U∗ = C \U .

In this paper, we prove the following theorem that contains the left inequalities
in (1.2) and (1.3) as special cases.

Theorem 1. Let E be a continuum in C . Then

(1.4) capE ≥ 1
2 diamE ·Ψ

(
areaE/

(
1
4π diam2E

))
,

where 1/Ψ(s) is a decreasing function from [0, 1] onto [1, 2] that is the inverse
function to s = p−2

[
β2(p)− 2p(β(p)− 1)

]
, with 1 ≤ β(p) ≤ 2 defined by equation

(1.7) , with d replaced by p .
Equality occurs in (1.4) if and only if E = a

(
C\fd(U∗)

)
+b for some a, b ∈ C ,

a 6= 0 and 1 ≤ d ≤ 2 , where the function fd(z) is defined for |z| > 1 by (1.8) .

The graph of Ψ is plotted in Figure 1. Figure 2 displays the shape of the
extremal continua for a = 1, b = 0 and some typical values of d .

Let s = areaE/( 1
4π diam2E) . In the case s = 0, (1.4) gives Faber’s in-

equality and in the case s = 1, it gives Pólya’s inequality. Combined with
the right-hand side inequality in (1.2) and the classical area-diameter inequality
0 ≤ areaE/( 1

4π diam2E) ≤ 1, (1.4) describes the range of one of the quantities
capE , diamE , or areaE if the other two are fixed. Several similar sharp inequal-
ities linking three characteristics of a set are known in geometry. But to prove such
a sharp inequality is a difficult task even for purely geometric quantities, see [JBo].
From this perspective, (1.4) might be the first known sharp inequality for these
three quantities that includes a functional characteristic.

Since capE , diamE , and (areaE)1/2 all change linearly with respect to
scaling we can fix one of them, say capE , and then study the region of variability
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Figure 1. Graph of Ψ(s) .

of the other two. In this way, we can reformulate the problem as finding the
maximal omitted area for the class Σ of univalent functions

(1.5) f(z) = z + a0(f) + a1(f)z−1 + · · ·

which are analytic in U∗ , except for a simple pole at z = ∞ . For f ∈ Σ, let
Ef = C \ f(U∗) . It is well known, as a consequence of the normalization in (1.5),
that for f ∈ Σ that 1 ≤ 1

2 diamEf ≤ 2. Therefore, for 1 ≤ d ≤ 2, we will
consider Σd = {f ∈ Σ : diamEf = 2d} . For f ∈ Σd , define Af = areaEf and
A(d) = supf∈Σd

Af . It is well known that

Af = π

(
1−

∞∑

n=1

n|an(f)|2
)

—this relation will be often used in what follows. Theorem 1 is equivalent to

Theorem 2. Let f ∈ Σd , 1 ≤ d ≤ 2 . Then,

(1.6) A(f) ≤ π
[
β2 − 2d(β − 1)

]
,

where 1 ≤ β ≤ 2 is the unique solution to the equation

(1.7) d = β − (β − 1) log(β − 1).

Equality occurs in (1.6) if and only if f(z) = eiτfd(e
−iτz) + b with τ ∈ R ,

b ∈ C , and

(1.8) fd(z) = d+

∫ z

1

z−1ϕ(z; d) dz,
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Figure 2. Extremal continua.

where the function ϕ(z; d) = zf ′d(z) is defined by the equation

(1.9) ϕ(z; d) = A
z2 − 1

z

√
1 +Bz2 +

√
r(z)

√
B + z2 +

√
r(z)

c(1 + z2) +
√
r(z)

with principal branches of the radicals and

c = β − 1, A =
1 + c

2c
, B = 2c2 − 1, r(z) = 1 + 2Bz2 + z4.

The function ϕ maps U∗ conformally onto the complement of the “double anchor”

F (β, ψ) = [−iβ, iβ] ∪
{
βeit : 1

2π − ψ ≤ t ≤ 1
2π + ψ

}

∪
{
βeit : 3

2π − ψ ≤ t ≤ 3
2π + ψ

}
,

where β is defined by (1.7) and ψ = 1
2 cos−1(8β−1 − 8β−2 − 1) .

The graph of the maximal omitted area A(d) = π
[
β2(d) − 2d(β(d) − 1)

]
is

shown in Figure 3.

To prove Theorem 2, we apply techniques developed in [BS], which were
based on symmetrization transformations and some elementary local variations.
Section 2 contains preliminary results and necessary definitions. In Section 3, we
identify the extremal function by solving a specific boundary value problem for
analytic functions. Section 4 completes the proofs of Theorems 1 and 2.

Note that some similar sharp estimates for the area of f(U) for problems
with analytic side conditions instead of geometric constraints, as imposed in the
present paper, were found in [ASS1], [ASS2] using a different method.
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Figure 3. Graph of A(d) .

2. Preliminaries

First we show the existence of an extremal function and describe some simple
properties of the maximal omitted area.

Lemma 1. For every 1 ≤ d ≤ 2 there is a function f ∈ Σd such that
Af = A(d) .

The maximal area A(d) is continuous and strictly decreases from π to 0 as
d increases from 1 to 2 .

Proof. For a fixed d , Σd is compact in the topology of uniform convergence
on compact subsets of U∗ . Since Af is upper semi-continuous, the existence of
an extremal function follows.

Let 1 < d1 < d2 ≤ 2 and let f ∈ Σd be extremal for A(d2) . Note that f has
at least one non-zero coefficient ak(f) for some k ≥ 1. The function

(2.1) ft(z) = t−1f(tz) = z + a0(t)t−1 + a1(t)t−2z−1 + · · · ,
as well as the area Aft and diameter d(ft) = diamEft depend continuously on t ,
1 ≤ t < ∞ . Since ft(z) → z as t → ∞ , one can easily show that d(ft) → 2 as
t→∞ . Hence, there is t1 > 1 such that d(ft1) = 2d1 . Therefore

(2.2)

A(d1) ≥ Aft1 = π

(
1−

∞∑

n=1

nt
−2(n+1)
1 |an(f)|2

)

> π

(
1−

∞∑

n=1

n|an(f)|2
)

= A(d2),

with strict inequality since ak(f) 6= 0. Equation (2.2) proves the strict monotonic-
ity of A(d) .

Finally, the compactness of Σd and continuity of Aft imply the continuity
of A(d) .
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Since the class Σd is invariant under the rigid motions of C , i.e., e−iθf(eiθz)+
b ∈ Σd if f ∈ Σd and θ ∈ R , b ∈ C , we may restrict ourselves to functions
f ∈ Σd such that the points w1 = d , w2 = −d belong to Ef . Thus, the condition
diamEf = |w1 − w2| = 2d will be assumed if a different condition is not imposed
explicitly.

To prove symmetry properties of an extremal continuum Ef we shall apply
Steiner symmetrization defined as follows:

The Steiner symmetrization of a compact set E w.r.t. the real axis R is a
compact set E∗ such that for every u ∈ R , E∗ ∩ l(u) = ∅ if E ∩ l(u) = ∅ and
E∗∩l(u) = {w = u+it : − 1

2m ≤ t ≤ 1
2m} if E∩l(u) 6= ∅ . Here l(u) = {w = u+it :

−∞ < t < ∞} and m = meas
(
E ∩ l(u)

)
denotes the linear Lebesgue measure.

Steiner symmetrization w.r.t. the imaginary or other axis is defined similarly.
It is well known that Steiner symmetrization preserves area and diminishes

diameter and logarithmic capacity [H], [D].

Lemma 2. For 1 < d < 2 , let f ∈ Σd be an extremal function normalized as
above. Then, Ef possesses Steiner symmetry w.r.t. the real and imaginary axes.
Moreover, the boundary of Ef , ∂Ef , consists of a Jordan rectifiable curve Lf plus,
possibly, some added segments I+ = [d0, d] , I− = [−d,−d0] , 0 < d0 = d0(d) ≤ d ,
of the real axis.

Proof. Suppose that Ef does not possess Steiner symmetry w.r.t. R . Let
E∗ be the Steiner symmetrization of Ef w.r.t. R . Note that

(2.3) 2d = diamEf = diamE∗ and capEf > capE∗

since the points ±d ∈ Ef and since E∗ is not a rigid motion of Ef (see [D]). Let

(2.4) F (z) = αz + α0 + α1z
−1 + · · · , α > 0,

map U∗ conformally onto Ω(E∗) . The inequality in (2.3) shows that α < 1. Let
Fα = α−1F . Then, Fα ∈ Σd/α . Therefore, we have

A(d/α) ≥ AFα = πα−2

(
1−

∞∑

n=1

nα−2|αn|2
)
≥ π

(
1−

∞∑

n=1

n|an(f)|2
)

= A(d).

Since d/α > d , the latter contradicts the strict monotonicity of A(d) in Lemma 1.
The same arguments show that Ef possesses Steiner symmetry w.r.t. the

imaginary axis.
Let L+

f = {w ∈ ∂Ef : Imw > 0} and L−f = {w ∈ ∂Ef : Imw < 0} .
The Steiner symmetries of Ef w.r.t. the real and imaginary axes can be used
to show that L+

f and L−f are rectifiable Jordan arcs; a similar argument was
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used in [ASS2, Lemma 4]. Indeed, let L+ = {w ∈ L+

f : Rew > 0} and let
d0 = sup{Rew : w ∈ L+} , m0 = sup{Imw : w ∈ L+} . The function

τ(w) = u+m0 − v, where w = u+ iv,

is continuous on L+ and maps the closure L̄+ one-to-one onto the segment {τ :
0 ≤ τ ≤ d0 + m0} . Therefore, L̄+ is Jordan. Since Rew and Imw are both
monotonic on L+ , it follows that L̄+ is rectifiable. This implies that ∂Ef consists
of a rectifiable Jordan curve Lf plus, possibly, some added horizontal segments
[−d,−d0] , [d0, d] and vertical segments [−im,−im0] , [im0, im] with 0 ≤ m0 ≤
m <∞ .

The presence of vertical segments, i.e., the segments [−im,−im0] , [im0, im]
with m > m0 easily leads to a contradiction: shortening the vertical slits and
expanding the horizontal ones we can find a continuum Ẽ such that area Ẽ =
areaEf , cap Ẽ = capEf = 1, and diam Ẽ > diamEf that contradicts the strict
monotonicity property of A(d) in Lemma 1.

Let f ∈ Σd be an extremal function for A(d) . By Lemma 2, ∂f(U∗) =
L+

f ∪L−f ∪ [−d,−d0]∪ [d0, d] with 0 < d0 ≤ d . If d0 < d then there is 0 < θ0 <
1
2π

such that L+

f = {f(z) : z ∈ l+f } , [d0, d] = {f(z) : z ∈ l++
n } , [−d,−d0] = {f(z) :

z ∈ l+−n } , where l+f = {eiθ : θ0 < θ < π − θ0} , l++
n = {eiθ : 0 ≤ θ ≤ θ0} ,

l+−n = {eiθ : π − θ0 ≤ θ ≤ π} . The corresponding arcs in the lower half-plane
will be denoted by l−f , l−+

n , and l−−n . The image curves L+

f and L−f are called
the free boundary, the preimages l+f and l−f are called the free arcs. Respectively,

[d0, d] , [−d,−d0] and l++
n , l+−n , l−+

n , l−−n are called the non-free boundary and
the non-free arcs.

To study the behavior of f ′ on the non-free arcs we shall use two lemmas
from [BS], which are limiting cases of Theorem 1 in [S2].

Let H+
τ and H−τ be the left and right half-planes w.r.t. the vertical line

l(τ) = {w = u + iv : u = τ} . For D ⊂ C , let D+
τ = D ∩ H+

τ , D−τ = D ∩ H−τ
and let D∗τ denote the set symmetric to D w.r.t. l(τ) , i.e., D∗τ = {w = u + iv :
2τ − u+ iv ∈ D} .

We say that D possesses the polarization property in the interval τ1 < τ < τ2
if (D−τ )∗τ ⊂ D+

τ for all τ1 < τ < τ2 . Extremal configurations shown in Figure 2 give
an example of domains possessing the polarization property in the corresponding
intervals 0 < τ < d .

Lemma 3 ([BS, Lemma 4]). Let f ∈ Σ , D = f(U∗) , and let f map a
boundary arc {eiθ : θ1 < θ < θ2} onto a horizontal interval {w : Imw = v0, τ1 <
Rew < τ2} . Let D possess the polarization property in τ1 < τ < τ2 . Then,
|f ′(eiθ)| strictly increases in θ1 < θ < θ2 if f(eiθ1) = τ2+iv0 and strictly decreases
if f(eiθ1) = τ1 + iv0 .
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If f is extremal for A(d) , the joint symmetry of Ef assures that the po-
larization property of D = f(U∗) holds in d0 < τ < d . Thus, we obtain from
Lemma 3,

Corollary 1. Let f ∈ Σd be extremal for A(d) , 1 < d < 2 and suppose
that the non-free arc l++

n is not degenerate, i.e., 0 < θ0 <
1
2π . Then, |f ′(eiθ)|

strictly increases in 0 < θ < θ0 and π < θ < π + θ0 and strictly decreases in
π − θ0 < θ < π and 2π − θ0 < θ < 2π .

We need a similar result concerning angular polarization. Let γϕ = {w =
teiϕ, t ≥ 0} and let H+

ϕ denote the right half-plane w.r.t. the line determined
by γϕ and H−ϕ denote the left half-plane w.r.t. the line determined by γϕ . For

D ⊂ C , let D+
ϕ = D ∩H+

ϕ , D−ϕ = D ∩H−ϕ and let D∗ϕ denote the set symmetric
to D w.r.t. the line determined by γϕ .

We say that a domain D possesses the angular polarization property in ϕ1 <
ϕ < ϕ2 if (D−ϕ)∗ϕ ⊂ D+

ϕ for all ϕ1 < ϕ < ϕ2 . For example, domain G depicted in

Figure 4 possesses the angular polarization property in 0 < ϕ < 1
2π .

Lemma 4 ([BS, Lemma 5]). Let g map U∗ conformally onto D and map a
boundary arc {eiθ : θ1 < θ < θ2} onto a circular arc L = {w = ρeiϕ : ϕ1 < ϕ <
ϕ2} . Let g(∞) ∈ H+

ϕ1
∩H+

ϕ2
and let D possess the angular polarization property

in ϕ1 < ϕ < ϕ2 . Then, |g′(eiθ)| strictly increases in θ1 < θ < θ2 if g(eiθ1) = ρeiϕ1

and strictly decreases in θ1 < θ < θ2 if g(eiθ1) = ρeiϕ2 .

Remark. The domains D in Lemmas 3 and 4 possess the polarization prop-
erty for a horizontal interval and the angular polarization property w.r.t. rays
issuing from the origin, respectively. One can easily reformulate these lemmas
for arbitrary intervals and for rays issuing from arbitrary centers. For instance,
Lemma 4 in [BS] is formulated for vertical intervals.

The term “polarization property” comes from the proofs of Theorem 1 in [S2]
and Lemmas 4 and 5 in [BS] that use the polarization transformation.

To find a boundary condition for an extremal function f ∈ Σd on the free
arcs, we apply, in a suitable form, the local variation used in [BS]. First, we recall
the relations linking the logarithmic capacity of a continuum E with the outer
radius and reduced module of Ω(E) . Let

g(w) = w + b0 + b1w
−1 + · · ·

map Ω(E) conformally onto U∗R = C \ U
R

, where UR = {ζ : |ζ| < R} . The
radius R = R(E) of the omitted disk is uniquely determined and is called the
outer radius of Ω(E) ; it is well known that capE = R(E) , see [Du, Section 10.2],
[G, Chapter 7]. The quantity

(2.5) m
(
Ω(E),∞

)
= − 1

2π
logR(E) = − 1

2π
log capE
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is called the reduced module of Ω(E) at w =∞ .
The variation used in [BS] and in the present paper is rather complicated. Let

Ω ⊂ C be a simply connected domain which contains ∞ such that its boundary
arcs lying in the vicinities of two of its boundary points, w1 and w2 , are Jordan
and rectifiable. Let ∂Ω have a tangent l at w1 and let n1 be a unit inward
normal at w1 . For ε1 > 0 small enough, let c0ε1 and cε1 be open and closed
crosscuts of D at the boundary point w1 , i.e., c0ε1 and cε1 are respectively the
biggest open and closed arcs of Cε1(w1) , where Cr(w0) = {w : |w − w0| = r} ,
such that w1 + ε1n1 ∈ c0ε1 ⊂ Ω and w1 + ε1n1 ∈ cε1 ⊂ Ω , respectively. Let
U+
ε1(w1) denote the connected component (half-disk) of Uε1(w1) \ l that contains

the point w1+ε1n1 on its boundary. Let c′ε1 denote the maximal open circular arc

contained in the intersection c0
ε1 ∩ ∂U+

ε1(w1) . Let Ω̂ε1 be a connected component

of Ω \Uε1(w1) containing ∞ and let

(2.6) Ωε1 = Ω̂ε1 ∪U+

ε1(w1) ∪ c′ε1 .
Let I(ε1) = {w = w1 − itn1 : −ε1 < t < ε1} . For 0 < ϕ1 ≤ 1

2 , let M(ε1, ϕ1)
denote the open lune in Uε1(w1) \U+

ε1(w1) bounded by I(ε1) and a circular arc
γ(ε1, ϕ1) that forms angles of opening πϕ1 with the interval I(ε1) at its end
points. Let

(2.7) Ω(ε1, ϕ1) = Ωε1 ∪M(ε1, ϕ1) ∪ I(ε1).

Let g(w) = g(w; ε1, ϕ1) map Ω(ε1, ϕ1) conformally onto U∗ such that g(∞)
=∞ , g(w2) = 1. Let 0 < ϕ2 ≤ 1

2 and ε2 > 0 be small enough. Let U ε2,ϕ2 ⊂ U∗

be the simply connected domain which contains ∞ and which is bounded by the
arc L(ε2) = {eiθ : ε2 ≤ |θ| ≤ π} and by the circular arc L(ε2, ϕ2) with ends at
the points eiε2 and e−iε2 that forms an angle of opening π(1− ϕ2) with the arc
L(ε2) at the points eiε2 and e−iε2 .

The domain

(2.8) Ω̃ = g−1(Uε2,ϕ2 , ε1, ϕ1)

will be called the two point variation of Ω centered at w1 and w2 with radii ε1

and ε2 and inclinations ϕ1 and ϕ2 .

The following lemma is a reformulation of Lemma 10 in [BS] for conformal
mappings f of U∗ normalized by condition f(∞) = ∞ ; in [BS] this result is
formulated for conformal mappings f of the unit disk U with normalization
f(0) = 0.

Lemma 5 ([BS, Lemma 10]). Let w = f(z) map U∗ conformally onto Ω
defined above such that f(∞) = ∞ , f(eiθ1) = w1 , f(eiθ2) = w2 and let there
exist the limits

(2.9) f ′(eiθk) = lim
z→eiθk , z∈U

∗

f(z)− wk
z − eiθk 6= 0,∞ for k = 1, 2.



428 R.W. Barnard, K. Pearce, and A.Yu. Solynin

Let |f ′(eiθk)| = αk , k = 1, 2 . Let Ω̃(ε1, ε2, ϕ1, ϕ2) be the two-point variation of
Ω defined by (2.8) with ε2 replaced by ε2/α2 . Then, for fixed 0 < ϕ1 ≤ 1

2 and
0 < ϕ2 ≤ 1

2 ,

m
(
Ω̃(ε1, ε2, ϕ1, ϕ2),∞

)
−m(Ω,∞) =

ϕ1(2 + ϕ1)

12πα2
1(1 + ϕ1)2

ε2
1

− ϕ2(2− ϕ2)

12πα2
2(1− ϕ2)2

ε2
2 + o(ε2

1) + o(ε2
2)(2.10)

and

area
(
C \ Ω̃(ε1, ε2, ϕ1, ϕ2)

)
− area(C \ Ω) = −2πϕ1 − sin 2πϕ1

2 sin2 πϕ1

ε2
1

+
2πϕ2 − sin 2πϕ2

2 sin2 πϕ2

ε2
2 + o(ε2

1) + o(ε2
2)(2.11)

as ε1 → 0 and ε2 → 0 .

To prove uniqueness of the extremal function in Σd , we need the following
modification of Lemma 1 in [S1] where a similar result is proved for domains with
one axis of symmetry.

Lemma 6 (cf. [S1, Lemma 1]). For k = 1, 2 , let Ωk ⊂ C be simply connected
domains which contain ∞ and which have double symmetry w.r.t. the coordinate
axes. Let there be a point ζ ∈ ∂Ω1 , Re ζ ≥ 0 , Im ζ > 0 such that the points
ζ , ζ̄ , −ζ , and −ζ̄ split ∂Ω1 into four boundary arcs l+r , l−r , l+i , and l−i , where
l+r lies in the closed right half-plane and connects ζ and ζ̄ , l+i lies in the closed
upper half-plane and connects ζ and −ζ̄ . Let

gk(z) = z + a1(gk)z−1 + · · ·

map U∗ conformally onto Ωk .

If l+r ⊂ Ω
2
, l+i ⊂ C \ Ω2 , then

(2.12) g1(r) ≤ g2(r), |g2(ir)| ≤ |g1(ir)|

for all r > 1 . Equality can occur in (2.12) if and only if Ω1 = Ω2 .

3. Boundary value problem for extremal functions

In this section f will denote the extremal function in Σd with 1 < d < 2 and
D = f(U∗) .
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Lemma 7. There is β > 0 such that

(3.1) |f ′(eiθ)| = β for a.e. eiθ ∈ lf := l+f ∪ l−f

and

(3.2) |f ′(eiθ)| < β for all eiθ ∈ ln := T \ l̄f .

Proof. Since ∂D = Lf ∪ I+ ∪ I− by Lemma 2, where Lf is Jordan and
rectifiable, the non-zero finite limit

(3.3) f ′(ζ) = lim
z→ζ, z∈U

∗

f(z)− f(ζ)

z − ζ 6= 0,∞

exists for almost all ζ ∈ T . This easily follows from Theorem 6.8 in [P] applied
to the univalent function 1/f(1/z) . Assume that

(3.4) 0 < β1 = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 <∞

for some eiθ1 , eiθ2 ∈ lf . Note that (3.3) and (3.4) allow us to apply the two point
variation of Lemma 5.

For positive k1 , k2 such that

(3.5) 0 < k1 < 1 < k2 and k1β
−1
1 > k2β

−1
2

and for fixed ϕ > 0 small enough consider the two point variation D̃ of D centered
at w1 = f(eiθ1) and w2 = f(eiθ2) with inclinations ϕ and radii ε1 = k1ε , ε2 =
k2ε , respectively. Computing the change in the omitted area by formula (2.11),
we find

area(C \ D̃)− area(C \D) =
2πϕ− sin 2πϕ

2 sin2 πϕ
ε2(k2

2 − k2
1) + o(ε2).

Therefore,

(3.6) area(C \ D̃) > area(C \D)

for all ε > 0 small enough. Applying the variation (2.10) of Lemma 6, we get

(3.7)

m(D̃,∞)−m(D,∞) =
1

12π

[
ϕ(2 + ϕ)

(1 + ϕ)2

k2
1

β2
1

− ϕ(2− ϕ)

(1− ϕ)2

k2
2

β2
2

]
ε2 + o(ε2)

=

[
ϕ

6π

(
k2

1

β2
1

− k2
2

β2
2

)
+ o(ϕ)

]
ε2 + o(ε2),
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which together with (3.5) implies that

(3.8) m(D̃,∞) > m(D,∞)

for all ε > 0 small enough if ϕ is chosen such that the expression in the brackets
in (3.7) is positive. Let E = C \D , Ẽ = C \ D̃ . Equations (3.8) and (2.5) show
that

(3.9) cap Ẽ < capE.

Since area Ẽ > areaE and diam Ẽ ≥ diamE , (3.9) contradicts the monotonicity
property of the function A(d) in Lemma 1.

Assume that ln 6= ∅ . Then f ′(1) = f ′(−1) = 0. To prove that |f ′(eiθ)| < β
for all eiθ ∈ ln \ {±1} , we assume that β = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 with
eiθ1 ∈ lf and some eiθ2 ∈ ln \ {±1} . Then applying the two point variation
as above we get (3.6) and (3.9), again contradicting the monotonicity property
of A(d) . Hence, |f ′(eiθ)| ≤ β for all eiθ ∈ ln , which combined with the strict
monotonicity property of Corollary 1 leads to the strict inequality in (3.2).

Lemma 8. If 1 < d < 2 , then ln = {eiθ : −θ0 < θ < θ0} ∪ {eiθ : π − θ0 <

θ < π + θ0} with some 0 < θ0 = θ0(d) < 1
2π ; f ′ is continuous on U

∗
and for all

z ∈ U
∗

(3.10) |f ′(z)| ≤ |f ′(eiθ)| = β,

where eiθ ∈ l̄f and β > 1 .

Proof. Consider the function g(z) = 1/f(1/z) . By Lemma 2, g maps U onto
a Jordan rectifiable domain possibly slit along two symmetric radial segments lying
on the real axis. The double symmetry of D = f(U∗) implies that G = g(U) is
starlike w.r.t. w = 0. Since G is rectifiable and starlike, it follows from classical
results of Lavrent′ev, see [P, p. 163], that G is a Smirnov domain (non-Jordan in
general). This shows that log |g′(z)| = log |f ′(1/z)|−2 log |zf(1/z)| , and therefore
log |f ′(1/z)| , can be represented by the Poisson integral

(3.11) log |f ′(1/z)| = 1

2π

∫ 2π

0

P (r, θ − t) log |f ′(e−it)| dt

with boundary values defined a.e. on T , see [P, p. 155]. Equation (3.11) along with
(3.1) and (3.2) shows that 1 = |f ′(∞)| ≤ β with equality only for the function
f(z) ≡ z .

If ln = ∅ , then (3.11) and (3.1) show that |f ′| = β identically on U∗ .
Therefore, f(z) ≡ z contradicting the condition d = 1

2 diam f(U∗) > 1. Hence,
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Figure 4. Domain G for β = 1.7 .

ln 6= ∅ . The latter implies that f is analytic in vicinities of the points z = 1 and
z = −1 and f ′(z) has a simple zero at z = 1, z = −1. Consider the function
h(z) = log |f ′(1/z)/(z2 − 1)| , which can be represented by the Poisson integral

(3.12) h(z) =
1

2π

∫ 2π

0

P (r, θ − t) log |f ′(eit)/(e2it − 1)| dt.

Equation (3.12) and the previous analysis show that h is a bounded harmonic
function on U . Let h1 be a bounded harmonic function on U with boundary
values log(β/|z2− 1|) on lf and h(z) on ln . Then h1−h has nontangential limit
0 a.e. on T . Therefore, h1 − h ≡ 0 in U . Hence, |f ′| = β everywhere on lf .

Since D possesses the double symmetry we need to show only that f ′ is
continuous at eiθ0 . By the symmetry principle, f can be continued analytically
through ln and f ′ can be continued analytically through lf . This implies that
f can be considered as a function analytic in a slit disk ∆0 = Uε(e

iθ0) \
[
(1 −

ε)eiθ0 , eiθ0
]

with ε > 0 small enough.
Using the Julia–Wolff lemma, see [P, Proposition 4.13], boundedness of f ′ ,

and well-known properties of the angular derivatives, see [P, Propositions 4.7, 4.9],
one can prove that f ′ has a finite limit f ′(eiθ0) , |f ′(eiθ0)| = β , along any path

in U
∗

ending at eiθ0 . The details of this proof are similar to the arguments in
Lemma 13 in [BS].

Lemma 9. Let f be extremal in Σd for 1 < d < 2 and let ϕ(z) = zf ′(z) .
Then ϕ maps U∗ univalently onto the complement Ω(β, ψ) = C \ F (β, ψ) of
the double anchor F (β, ψ) defined in Theorem 2 where β is defined by (1.7) and
ψ = 1

2 cos−1(8β−1 − 8β−2 − 1) .

Proof. (1) Let g(z) = f ′
(√
z
)

. Since g(z̄) = g(z), the symmetry principle
implies that g is analytic in U∗ . We will show that g is univalent there.

By Corollary 1, |g(eiθ)| = |f ′(eiθ/2)| strictly increases from 0 to β as θ runs
from 0 to 2θ0 . Since arg g(eiθ) = arg f ′(eiθ/2) = 1

2 (π − θ) strictly decreases from
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1
2π to ϕ0 = 1

2π − θ0 as θ runs from 0 to 2θ0 , it follows that g maps the arc
{eiθ : 0 ≤ θ ≤ 2θ0} one-to-one onto an analytic Jordan arc δ1 lying in the domain
U+

β = {w ∈ Uβ : Rew > 0, Imw > 0} and connecting the points w = 0 and

w = βeiϕ0 = f ′(eiθ0) .
Since f(U∗) is starlike w.r.t. w = 0,

Re
eiθf ′(eiθ)
f(eiθ)

≥ 0

for 0 ≤ θ ≤ 2π . Since f(U∗) is symmetric w.r.t. the coordinate axes, the latter
inequality shows that −π ≤ arg f ′(eiθ) ≤ π − θ0 for 0 ≤ θ ≤ θ0 . This combined
with (3.10) implies that g maps the arc {eiθ : 2θ0 ≤ θ ≤ π} one-to-one onto the
circular arc δ2 = {βeiϕ : 0 ≤ ϕ ≤ ϕ0} such that g(e2iθ0) = βeiϕ0 , g(−1) = β . By
symmetry, g maps the arc {eiθ : −2θ0 ≤ θ ≤ 0} onto δ̄1 = {w : w ∈ δ1} and the
arc {eiθ : π ≤ θ ≤ 2π−2θ0} onto δ̄2 = {w : w ∈ δ2} . Thus, g maps the unit circle
T one-to-one onto a closed Jordan arc δ composed by δ1 , δ2 , δ̄2 , and δ̄1 . Since
g(∞) = f ′(∞) = 1 the argument principle implies that g maps U∗ conformally
and one-to-one onto a simply connected domain G which contains 1 and which is
bounded by δ . The domain G for β = 1.7 is plotted in Figure 4.

The above-mentioned properties of δ1 show that G is circularly symmetric
w.r.t. the positive real axis. Therefore by Lemma 4, |g′(eiθ)| = |f ′′(eiθ/2)| strictly
decreases in 2θ0 < θ < π .

(2) Considering boundary values of ϕ we have

Reϕ(eiθ) = Re eiθf ′(eiθ) = 0 for 0 ≤ θ ≤ θ0

since Im f(eiθ) = 0 for such θ . Since Imϕ(eiθ) = |f ′(eiθ)| strictly increases in
0 ≤ θ ≤ θ0 , ϕ maps l++

n continuously and one-to-one onto the vertical segment
{w : Rew = 0, 0 ≤ Imw ≤ β} .

For θ0 ≤ θ ≤ 1
2π , |ϕ(eiθ)| = β and

∂

∂θ
argϕ(eiθ) =

∂

∂θ
Im log

(
eiθf ′(eiθ)

)
= 1 +

eiθf ′′(eiθ)
f ′(eiθ)

= 1− β−1|f ′′(eiθ)|,

since eiθf ′′(eiθ)/f ′(eiθ) is real non-positive for θ0 ≤ θ ≤ 1
2π .

(∂/∂θ) argϕ(eiθ) changes its sign at most once in the interval θ0 < θ < 1
2π

since |f ′′(eiθ)| strictly decreases in θ0 ≤ θ ≤ 1
2π .

We have shown in (1) that arg f ′(eiθ) decreases from 1
2π − θ0 to 0 when θ

runs from θ0 to 1
2π . Since argϕ(eiθ0) = 1

2π , the latter implies that

(3.13) 0 < θ0 < argϕ(eiθ) = θ + arg f ′(eiθ) < π − θ0

for θ0 < θ < 1
2π .
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We claim that there is θ1 , θ0 < θ1 <
1
2π such that

(3.14)

∂

∂θ
argϕ(eiθ) < 0 if θ0 < θ < θ1,

∂

∂θ
argϕ(eiθ) > 0 if θ1 < θ < 1

2π.

Suppose to the contrary that (∂/∂θ) argϕ(eiθ) ≤ 0 for all θ0 < θ < 1
2π . Then,

we would have that argϕ(eiθ) monotonically decreases over θ0 < θ < 1
2π . Since

ϕ(eiθ0) = ϕ(i) = iβ , we would have

∆ argϕ(eiθ)
∣∣π/2
θ0

= −2πk for some k ∈ N

contradicting (3.13). The assumption (∂/∂θ) argϕ(eiθ) ≥ 0 for all θ0 < θ < 1
2π

leads to the same contradiction. Since |f ′′(eiθ)| strictly decreases in θ0 ≤ θ ≤ 1
2π ,

the claim follows.

Let ψ = argϕ(eiθ1) . The previous analysis shows that θ0 < ψ < 1
2π and ϕ

maps each of the arcs {eiθ : θ0 ≤ θ ≤ θ1} and {eiθ : θ1 ≤ θ ≤ 1
2π} continuously

and one-to-one onto the arc {βeit : ψ ≤ t ≤ 1
2π} such that ϕ(eiθ1) = βeiψ .

The symmetry principle now yields that ϕ maps the unit circle T continuously
and one-to-one in the sense of boundary correspondence onto the boundary of the
domain Ω(β, ψ) . Hence by the argument principle, ϕ maps U∗ conformally and
univalently onto Ω(β, ψ) .

The normalization f ′(∞) = 1 leads after some work left to the interested
readers to the relation ψ = 1

2 cos−1(8β−1 − 8β−2 − 1).

4. Proofs of Theorems 1 and 2

To prove uniqueness of the extremal function in Σd , we assume that for some
fixed d , 1 < d < 2, there are distinct extremals f1 and f2 . By Lemma 9, zf ′k(z) =
gβk(z) for some 1 < β1 < 2, 1 < β2 < 2, where gβk maps U∗ conformally onto
the domain Ω(βk) = C \F

(
βk, ψ(βk)

)
. To be explicit, assume that β1 < β2 . The

domains Ω(β1) and Ω(β2) satisfy the conditions of Lemma 6. Therefore,

(4.1) gβ1(r) > gβ2(r)

for all r > 1.
Since fk(U∗) is doubly symmetric w.r.t. the real and imaginary axes, it follows

that a0(fk) = 0 for k = 1, 2. Hence, it follows from the normalization in (1.5)
that

(4.2) lim
R→∞

(
f1(R)− f2(R)

)
= 0.
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On the other hand, since f1(1) = f2(1) = d , we have

f1(R)− f2(R) =

∫ R

1

t−1
(
gβ1(t)− gβ1(t)

)
dt

and (4.1) implies that the integrand is positive and hence, that f1(R)− f2(R) is
a (positive) increasing function of R , which contradicts (4.2).

Let fd denote the unique extremal function in Σd . To find fd explicitly, we
represent ϕ(z; d) = zf ′d(z) as

ϕ(z; d) =
(
Fd−2(z−2)

)−1/2
,

where Fp(ζ) = ζ + a2(Fp)ζ
2 + · · · , 1

4 ≤ p ≤ 1, is the univalent function in the

standard class S that maps the unit disk U onto the domain C \
(
(−∞,−p] ∪

{peiτ : |τ − π| ≤ α}
)

with α = cos−1
(
8
√
p − 8p − 1

)
. It is well known that Fp

is extremal in a number of problems, for instance in the problem on max |a2(f)|
studied by E. Netanyahu [N] and T. Suffridge [S], on the subclass of functions f ∈ S
that cover the disk Up . Using an explicit expression for Fp , see for example, [S],
we get (1.9) and after an integration (1.8).

The integral in (1.8) can be evaluated in terms of elementary functions. We
leave to the interested readers to check (one can use “Mathematica” or “Maple”)
that fd(1) coincides with the right-hand side in (1.7), which in this case is equiv-
alent to the equality fd(1) = d . Since for each 1 ≤ d ≤ 2 the extremal function
is unique in Σd , (1.7) has a unique solution β = β(d) on the interval 1 ≤ β ≤ 2;
this also follows easily from the monotonicity of the right-hand side of (1.7).

To evaluate the maximal omitted area A(d) = Area (Efd) , we apply a stan-
dard line integral formula and the fact that Im(w dw) = 0 on the non-free bound-
ary. We have

A(d) = 1
2 Im

∫

∂Efd

w dw = 1
2 Im

∫

Lfd

w dw = 1
2 Re

∫

lfd

fd(eiθ)e
iθf ′d(e

iθ) dθ.

Since |f ′d|2 = β2 on lfd , we obtain

A(d) =
β2

2
Re lim

ε→+0

{∫ π−ε

ε

fd(e
iθ)

eiθf ′d(e
iθ)

dθ +

∫ 2π−ε

π+ε

fd(e
iθ)

eiθf ′d(e
iθ)

dθ

}

=
β2

2
Im

{∫

T

fd(z)

z2f ′d(z)
dz − πiRes

[
fd(z)

z2f ′d(z)
, 1

]
− πiRes

[
fd(z)

z2f ′d(z)
,−1

]}
,

where
∫
T
fd/(z

2f ′d) dz is understood as the Cauchy principal value. The function
fd/(z

2f ′d) has simple poles at z = 1 and z = −1. Computing the integral and
residues, we obtain

A(d) = π
[
β2 − 2d(β − 1)

]
,

which implies (1.6). This finishes the proof of Theorem 2.
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To deduce (1.4), we write (1.6) in an invariant form:

(4.3)
areaE

1
4π diam2E

≤ p−2
[
β2(p)− 2p

(
β(p)− 1

)]

with p = diamE/(2 capE) , where 1 ≤ β(p) ≤ 2 is defined by (1.7) with d replaced
by p . Since the maximal omitted area A(d) strictly decreases, the expression in
the brackets in (4.3) decreases and therefore the right-hand side of (4.3) itself
decreases from 1 to 0 when p runs from 1 to 2. Therefore there is a function
p = Ψ1(s) inverse to s = p−2

[
β(p)2 − 2p

(
β(p)− 1

)]
. Let Ψ(s) = 1/Ψ1(s) . Since

the inverse Ψ1 is decreasing, (4.3) leads to the inequality

p ≤ Ψ1

(
areaE/( 1

4π diam2E)
)
,

which is equivalent to (1.4) with equality only for the continua described in The-
orem 1.
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