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Abstract. Wall theorems give local lower bounds for the p-measure of the boundary of a
domain in the euclidean n-space. We improve earlier results by replacing the euclidean metric by
the inner metric of the domain and also the Hausdorff p-content by the projectional p-measure.

1. Introduction

Wall properties of domains in the euclidean n-space R™ were first considered
by J. Heinonen [He] in 1996 in connection with quasiconformal maps. Suppose that
G C R" is a domain, K -quasiconformally equivalent to a ball. Let a € G and set
r = d(a,0G). Heinonen made the following quasiconformal wall conjecture:

(1.1) mp—1(0G N B(a,2r)) > "/,

where m,,_1 is the (n — 1)-dimensional Hausdorff measure, and the constant ¢
depends only on K and n. The case n = 2 is trivial, and the case n = 3 was
proved in [He, Section 5].

The author [V&| proved a result that implied the wall conjecture in all di-
mensions. Instead of quasiconformality, the result was formulated in terms of
homological [V&, 1.3] or homotopical [V&, 6.2] connectivity properties of the do-
main G. Moreover, the result gave a lower bound for the Hausdorff p-measure
mp, 1 <p <n-—1, and in fact, for the Hausdorff p-content m;°. We recall the
homotopical version.

1.2. Theorem ([V4i, 6.2]). Let n > 2 and 1 <p <n —1 be integers and let
¢ > 1. Suppose that G & R" is a domain with the following properties:

(1) Every map f: S"~! — G is null-homotopic.

(2) Ifz€R", t>0, n—p<k<n-—2, then every map f: S* — GNB(x,t)
is null-homotopic in G N B(z,ct).

Let a € G and set r = d(a,0G). Then

me® (0G N B(a,2r)) > 1P /¢y

with ¢; = c1(¢,n,p).
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A K -quasiconformal ball satisfies these conditions for 1 < p < n — 2 with
¢ =c(K,n), and (1.1) follows. In the homological version, (1) and (2) are replaced
by

(1) H, 1(G) =0,

(2) the natural homomorphisms Hy(GNB(z,t)) — H,(GNB(xz,ct)) are zero
forn—p<k<n-2.

In a recent paper [BK, 6.5], M. Bonk and P. Koskela proved an inner version
of (1.1), where the euclidean ball B(a,2r) was replaced by a ball in the inner
length metric of G (and m,_1 by m{ ;).

The purpose of this paper is to prove inner versions of the results in [V4].
We find it convenient to replace the Hausdorff content my° by the projectional
measure (i, , defined in 2.3. Since p, < mgo < my, the new results are somewhat
stronger than those in [V&] also in the euclidean metric.

I thank M. Bonk for calling my attention to this problem.

2. Preliminaries

2.1. Notation. Open balls in R" are written as B(z,r) where z is the center
and r is the radius. For a,b € R", we let [a, b] denote the closed line segment with
endpoints a, b, and we set [a,b) = [a,b] \ {b}. For 1 < p < n, the family of all p-
dimensional linear subspaces of R" is written as G,(R™). For E € G,(R"™), we let
mg: R" — E denote the orthogonal projection. The distance between nonempty
subsets A, B of R™ is d(A, B), and the diameter of a set A C R" is d(A). The
volume of the unit ball in R" is a(n).

2.2. Hausdorff measure and content. For A C R" we let m,(A) denote
the Hausdorff (outer) p-measure of A, defined and normalized as in [Fe, 2.10.2],
and the Hausdorff p-content m;°(A) is defined similarly but without any restric-
tions on the diameters of the covering sets. Then m;°(A) < my(A). We consider
only the case where p is an integer, 0 < p < n, and the normalization means that
my(A) = mp°(A) is the Lebesgue (outer) p-measure of A whenever A lies in a

p-dimensional affine subspace of R".
2.3. Projectional measure. Let n > p > 1 be integers. The projectional
p-measure of a set A C R" is the number
pp(A) = sup{m,(rgA): E € G,(R")}.
Since the diameter of a set is decreased in each 7, we have always
pp(A) < my(A) < mp(A),
but there are, for example, sets A C R* with u;(A) = 0 < m$°(A); see [Ma, 9.2].

It is easy to see that the set function p, is monotone and countably subadditive,
hence a measure in the sense of [Fe, 2.1.2].
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3. Projectional versions of the wall theorems

We show that one can replace the Hausdorff content my® by the projectional
measure /i, in the wall theorems of [V4].

3.1. Wall theorem. The homological [V&, 1.3], homotopical (1.2 and [V4,
6.2]) and the quasiconformal [V&, 1.11] wall theorems are true with m;° replaced

by pp.

Proof. Inspection of the proofs of [V4| shows that it suffices to prove a pro-
jectional version of the Grid lemma [V4, 2.3]. This is done in 3.2 below. We recall
the notation of [V&, 2.2].

For s > 0 let #; be the natural decomposition of R" into closed cubes of
side s. For 0 < k <n welet K f denote the union of all k-dimensional faces of
the members of ;.

3.2. Grid lemma. Suppose that 1 < p < n, that s > 0, and that A C R"
is a set with p,(A) < sP/N, where N is the binomial coefficient (;) . Then there

is a € R™ such that AN (K P+a)=2.

Proof. We may assume that s = 1. Let F' be one of the N linear subspaces
of R" spanned by p vectors of the standard basis (eq,...,e,). Set J = [0,1)",
Jr =7mrJ and

Dp=U{JrN(rpA—w): weZ"NF}.

Since the p-cubes Jp + w are disjoint and m, measurable, we obtain (see [HS,
10.9])

mp(Dp) < Zmp(JF N(rpd—w)) = Zmp((JF +w)NrpA)

= mp(mpA) < pp(A) <1/N.

Set D% = JNrz'Dp and D = |J, D% . By Fubini’s theorem we obtain m,, (D%) <
1/N, and hence m, (D) < 1. Since K; " is the union of the sets 7'[Z" N F],
the lemma holds with any a € J\ D. o

3.3. Remarks. 1. Lemma 3.2 has three advantages compared with [V4,
2.3]: (1) Since p, < mp°, it is stronger, (2) the constant N is smaller than the
corresponding constant [(n,p) of [V&, 2.3], (3) the proof is simpler.

2. In [VA, 2.3] there is a misprint: s/ should be sP/j3.
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4. Wall properties and inner wall properties

4.1. Wall properties. Let ¢ > 0, andlet n > 2 and 1 < p <n—1 be
integers. We say that a domain G & R" has the (¢, p)-wall property if

1y (0G N B(a,2r)) > 17 /c

whenever a € G and r = d(a,0G). Observe that since p,(B(a,2r)) = a(p)(2r)?,
we always have ¢ > 277 /a(p).

4.2. Inner wall properties. Let G C R" be a domain. We let A = \g
denote the inner length metric of G, defined by

Aa,b) = igfl(v),

where [(7) is the length of + and the infimum is taken over all rectifiable arcs
~ joining a and b in G. The distance A(a,b) is also defined if a € G and b is
a boundary point of G, accessible from G by a rectifiable arc. For a € G and
r >0, we let By(a,r) denote the set of all z € G such that A(a, ) is defined and
Aa,z) < r. Since A(a,b) < |a — b|, we always have By(a,r) C B(a,r).

We say that a domain G & R" has the inner (¢, p)-wall property if

1y (0G N Bx(a,2r)) > 1P /c

whenever a € G and r = d(a,0G). Again ¢ > 277 /a(p).

Trivially, the (c,p)-wall property implies the inner (¢, p)-wall property. The
purpose of this section is to prove the converse where, however, ¢ must be re-
placed by a larger constant ¢/(¢,p). This implies the inner version of the Wall
Theorem 3.1, given in 4.9.

4.3. Lemma. Let G & R" be a domain, let p € [1,n — 1] be an integer and
let s > 2. Suppose that

1y (0G N Bx(a, st)) > 17 /c

whenever a € G and r = d(a,0G). Then G has the inner (c’,p)-wall property
with ¢/ = (s — 1)Pc.

Proof. Let a € G and r = d(a,0G). Choose a point b € G with |[a —b| =,
and set
e=(0b—-a)/r, t=r/(s—1), y=0b—te.

Then d(y,0G) =t. It is easy to see that B (y, st) C Bx(a,2r). Hence
1y (0G N Bx(a,2r)) > pp (G N Ba(y, st)) > P /e =1P /. o

4.4. Theorem. If a domain G &G R™ has the (¢, p)-wall property, it has the
inner (c’,p)-wall property with ¢’ = ¢'(c,p).
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Proof. Let a € G and r = d(a,dG). It suffices to find an estimate
(4.5) 1y (0G N By(a, sr)) > 1P /cq,

where ¢; and s > 2 depend only on ¢ and p, since the theorem then follows from

4.3 with ¢ = (s — 1)Pc;. We shall prove (4.5) with the universal constant s = §

and with ¢; = 4 - 8P¢, which yield ¢/ =4 - 10Pc.
We shall several times make use of the elementary inequality

(4.6) Impx| + |z — 7| < |2|V2,

valid for all € R" and for all linear subspaces E C R".
We may assume that a = 0. Choose a point b € G with |b| = r, and set

e=>b/bl, t=r/8, y=b—te=Tte, A=0GNB(y,2t).

Since pp,(A) > t7/c, there is a subspace F' € G,(R™) such that m,(mpA) > tP/2c.
Set m = mp, © = 7pL. By (4.6) we have either |my| < |y|/v2 or |7'y| < |y|/V2.

Case 1: |my| < |y|/v/2 . For each x € A we have
Imz| < |my| + 2t <TH/V2 + 2t < Tt <7,

and hence [0,7z] C G. Since x € JG, there is a point z, € G N [rx, x| with
[rx,2,) C G. By (4.6) we obtain

MO, zz) < U([0,72) U [r2, 25]) < |m| + |72 — ] < |z[V/2
< (Jy| +2t)V2 = 9tV2 < 2r.
Setting A1 = {z, : * € A} we thus have A7 C B)(0,2r) and mA; = mA. Hence
1y (0G N Bx(0,2r)) > my(1A;) = my(mA) > t7/2¢,
which implies (4.5) with s =2, ¢; =2 8Pc.
Case 2: |yl < |y|/v2. Set ¢ =n —p and
B=DB(y,2t), Z=rmB+7'B, D,=nx+7'B

for x € A. Then x € D, , and D, is a ¢-disk of radius 2t with «’D, = n'B. For
z € Z we have

(4.7) 2| < |m'y| + 2t < |y|/V2 +2t = (T/V2 +2)t <Tt <.
Furthermore, by (4.6) we get

(4.8) \m2| 4 |7 2| < |my| + |7'y| + 4t < |y|V2 + 4t < 14t < 2r
for all z € Z.

We consider two subcases, each of which contains two subsubcases.
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Subcase 2a: p < q.

Subsubcase 2al. There is a point x € A such that 0G meets [w,n'w] for
each w € D,. Let w € D,. Then |7’w| < r by (4.7). Now there is a point
zw € 0G N [m'w,w] with [7'w, z,,) C G. By (4.8) we obtain

A0, zy) < |7'w| + |7'w — 2| < |7'w] + |7'w — w| < 2r.
Setting D = {z,, : w € D, } we have D C 0GN B)(0,2r), and 7'D = 7' D, is the
q-disk F+ N B(n'y,2t).

Since p < g, we can choose a subspace FE € G,(R") with E C F+. Then
mpD is a p-disk of radius 2¢, and thus

1y (0G N Bx(0,2r)) > my(mpD) = a(p)2PtP.
Since 2Pa(p) > 1/c by 4.1, this gives (4.5) with s = 2, ¢; = 8Pc.

Subsubcase 2a2. For each x € A there is a point w, € D, such that 0G N
(W, 7'w,] = @. Then [w,,7’'w,] C G. Since x € IG, there is a point z, €
0G N [z, w,]| with [wy,z,) C G. Since |w, — 2z;| < |w, — x| < d(Dy) = 4t, we get
by (4.8)

A0, zz) < |m'wy| + |7 we — wy| + |we — 22| < 14t + 4t = 18t.

Hence the set Ay = {z, : x € A} lies in 0G N Bx(0,9r/4). Since 7A; = 1A, we
obtain
(A1) = my(mAr) = my(wA) = 17/2c,
and (4.5) follows with s = 2, ¢; =2 8Pc.
Subcase 2b: p > q. Since
dim(F-U{y})" =p-12p—q,

we can choose Fy € G,_,(R™) with Fy C (FXU{y})t. Setting E = F+ + F; we
have dim F = p and gy = 7'y.

Recall the notation D, = mz + n'B for x € A. Let C be the union of those
D, for which 0G N [w, mpw] # @ for all w € D,. Then C C Z C B(y,Qtﬂ).

Subsubcase 2bl: m,(mpC) > tP /4c. For each x € C we have
Impx| < |mpy| + 26v2 < TH/V2 +2tV2 < 8t =7

hence [0,7gx] C G. Choose a point z, € G N [rgz,z] such that [rpz,z,) C G.
By (4.6) we obtain

A0, z) < ||+ |mpr — 20| < ||+ TR — ) < |z|V2
< (Tt+2tv2)V2 < 14t < 2r.
Hence the set C1 = {z, : © € C'} lies in 0G N B»(0,2r). Since
pp(C1) = mp(rpCi) = mp(TpC) > 7 /4c,
we get (4.5) with s =2, ¢ =4 - 8P.
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Subsubcase 2b2: m,(1pC) < tP/4c. For v € npC set Q(v) = 75 {v} N Z.
Since E+ C F, we have for each z € Q(v)

|Tpix — gyl < |rx —my| < 2t

Thus Q(v) is contained in a ¢-disk of radius 2¢. By Fubini’s theorem we obtain
ma(C) < [ my(@)) dmy(v) < al@)(20)my(mEC) < ala) 2077 /4e
meC

On the other hand, Fubini’s theorem also gives
M (C) = mg(Dy)my(wC) = a(q)(2t)my(rC),

and hence m,(7C) < t?/4c. Since my,(mA) > t*/2c, we obtain m,(w[A\ C]) >
tP /4c.

Let x € A\ C. There is a point w, € D, such that 0G N [w,, Tpw,| = .
Since |mpw,| < |Try| + 3t = |7'y| + 3t < r, we have [w,,Tpw,] C G. Since
x € 0G, there is a point z, € G N [z, w,] with [w,,2,) C G. Then |w, — z;| <
lw, — x| < d(D;) < 4t. By (4.6) we get

A0, zz) < |[rpws| + |Tpwe — we| + Wy — 24|

< Jwe|V2 +4t < (T+2V2)1V2 + 4t < 18t
Hence the set A; = {2, : x € A\ C} lies in B)(0,97/4). Since
p(A1) 2 my (i Ay) = my(me[A\ C)) = /e,

we get (4.5) with s =9r/4, ¢y =4-8Pc. o

4.9. Inner wall theorem. Suppose that a domain G & R" satisfies the
hypotheses of one of the wall theorems [V&, 1.3], [V, 6.2] (see 1.2) with a constant
¢ > 0 and an integer p € [1,n — 1]. Then G has the inner (¢’,p)-wall property
with ¢ = ' (¢,n,p). If G is K-quasiconformally equivalent to a ball, then G has
the inner (¢’,n — 1)-wall property with ¢’ = ¢ (K,n).

Proof. The theorem follows from Theorems 3.1 and 4.4. o



444 Jussi Vaisala

References

[BK] BonNk, M., and P. KoskeLA: Conformal metrics and size of the boundary. - Amer. J.
Math. (to appear).

[Fe] FEDERER, H.: Geometric measure theory. - Springer, 1969.

[He] HEINONEN, J.: The boundary absolute continuity of quasiconformal mappings II. - Rev.
Mat. Iberoamericana 12, 1996, 697-725.

[HS] HewiITT, E., and K. STROMBERG: Real and abstract analysis. - Springer, 1969.

[Ma] MATTILA, P.: Geometry of sets and measures in euclidean spaces. - Cambridge University
Press, 1995.
[V] VAISALA, J.: The wall conjecture on domains in euclidean spaces. - Manuscripta Math.

93, 1997, 515-534.

Received 13 November 2001



