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Abstract. Wall theorems give local lower bounds for the p -measure of the boundary of a
domain in the euclidean n -space. We improve earlier results by replacing the euclidean metric by
the inner metric of the domain and also the Hausdorff p -content by the projectional p -measure.

1. Introduction

Wall properties of domains in the euclidean n -space Rn were first considered
by J. Heinonen [He] in 1996 in connection with quasiconformal maps. Suppose that
G ⊂ Rn is a domain, K -quasiconformally equivalent to a ball. Let a ∈ G and set
r = d(a, ∂G) . Heinonen made the following quasiconformal wall conjecture:

(1.1) mn−1

(
∂G ∩B(a, 2r)

)
≥ rn−1/c,

where mn−1 is the (n − 1)-dimensional Hausdorff measure, and the constant c
depends only on K and n . The case n = 2 is trivial, and the case n = 3 was
proved in [He, Section 5].

The author [Vä] proved a result that implied the wall conjecture in all di-
mensions. Instead of quasiconformality, the result was formulated in terms of
homological [Vä, 1.3] or homotopical [Vä, 6.2] connectivity properties of the do-
main G . Moreover, the result gave a lower bound for the Hausdorff p -measure
mp , 1 ≤ p ≤ n − 1, and in fact, for the Hausdorff p -content m∞p . We recall the
homotopical version.

1.2. Theorem ([Vä, 6.2]). Let n ≥ 2 and 1 ≤ p ≤ n− 1 be integers and let
c ≥ 1 . Suppose that G Ã Rn is a domain with the following properties:

(1) Every map f : Sn−1 → G is null-homotopic.
(2) If x ∈ Rn , t > 0 , n−p ≤ k ≤ n−2 , then every map f : Sk → G∩B(x, t)

is null-homotopic in G ∩B(x, ct) .
Let a ∈ G and set r = d(a, ∂G) . Then

m∞p
(
∂G ∩B(a, 2r)

)
≥ rp/c1

with c1 = c1(c, n, p) .
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A K -quasiconformal ball satisfies these conditions for 1 ≤ p ≤ n − 2 with
c = c(K,n) , and (1.1) follows. In the homological version, (1) and (2) are replaced
by

(1) Hn−1(G) = 0,
(2) the natural homomorphisms Hk

(
G∩B(x, t)

)
→ Hk

(
G∩B(x, ct)

)
are zero

for n− p ≤ k ≤ n− 2.
In a recent paper [BK, 6.5], M. Bonk and P. Koskela proved an inner version

of (1.1), where the euclidean ball B(a, 2r) was replaced by a ball in the inner
length metric of G (and mn−1 by m∞n−1 ).

The purpose of this paper is to prove inner versions of the results in [Vä].
We find it convenient to replace the Hausdorff content m∞p by the projectional
measure µp , defined in 2.3. Since µp ≤ m∞p ≤ mp , the new results are somewhat
stronger than those in [Vä] also in the euclidean metric.

I thank M. Bonk for calling my attention to this problem.

2. Preliminaries

2.1. Notation. Open balls in Rn are written as B(x, r) where x is the center
and r is the radius. For a, b ∈ Rn , we let [a, b] denote the closed line segment with
endpoints a, b , and we set [a, b) = [a, b] \ {b} . For 1 ≤ p ≤ n , the family of all p -
dimensional linear subspaces of Rn is written as Gp(Rn) . For E ∈ Gp(Rn) , we let
πE : Rn → E denote the orthogonal projection. The distance between nonempty
subsets A,B of Rn is d(A,B) , and the diameter of a set A ⊂ Rn is d(A) . The
volume of the unit ball in Rn is α(n) .

2.2. Hausdorff measure and content. For A ⊂ Rn we let mp(A) denote
the Hausdorff (outer) p -measure of A , defined and normalized as in [Fe, 2.10.2],
and the Hausdorff p -content m∞p (A) is defined similarly but without any restric-
tions on the diameters of the covering sets. Then m∞p (A) ≤ mp(A) . We consider
only the case where p is an integer, 0 ≤ p ≤ n , and the normalization means that
mp(A) = m∞p (A) is the Lebesgue (outer) p -measure of A whenever A lies in a
p -dimensional affine subspace of Rn .

2.3. Projectional measure. Let n ≥ p ≥ 1 be integers. The projectional
p-measure of a set A ⊂ Rn is the number

µp(A) = sup{mp(πEA): E ∈ Gp(Rn)}.
Since the diameter of a set is decreased in each πE , we have always

µp(A) ≤ m∞p (A) ≤ mp(A),

but there are, for example, sets A ⊂ R2 with µ1(A) = 0 < m∞1 (A) ; see [Ma, 9.2].
It is easy to see that the set function µp is monotone and countably subadditive,
hence a measure in the sense of [Fe, 2.1.2].
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3. Projectional versions of the wall theorems

We show that one can replace the Hausdorff content m∞p by the projectional
measure µp in the wall theorems of [Vä].

3.1. Wall theorem. The homological [Vä, 1.3], homotopical (1.2 and [Vä,
6.2]) and the quasiconformal [Vä, 1.11] wall theorems are true with m∞p replaced
by µp .

Proof. Inspection of the proofs of [Vä] shows that it suffices to prove a pro-
jectional version of the Grid lemma [Vä, 2.3]. This is done in 3.2 below. We recall
the notation of [Vä, 2.2].

For s > 0 let Ks be the natural decomposition of Rn into closed cubes of
side s . For 0 ≤ k ≤ n we let Kk

s denote the union of all k -dimensional faces of
the members of Ks .

3.2. Grid lemma. Suppose that 1 ≤ p ≤ n , that s > 0 , and that A ⊂ Rn

is a set with µp(A) < sp/N , where N is the binomial coefficient
(
n
p

)
. Then there

is a ∈ Rn such that A ∩ (Kn−p
s + a) = ∅ .

Proof. We may assume that s = 1. Let F be one of the N linear subspaces
of Rn spanned by p vectors of the standard basis (e1, . . . , en) . Set J = [0, 1)n ,
JF = πFJ and

DF =
⋃{

JF ∩ (πFA− w): w ∈ Zn ∩ F
}
.

Since the p -cubes JF + w are disjoint and mp measurable, we obtain (see [HS,
10.9])

mp(DF ) ≤
∑

w

mp

(
JF ∩ (πFA− w)

)
=
∑

w

mp

(
(JF + w) ∩ πFA

)

= mp(πFA) ≤ µp(A) < 1/N.

Set D∗F = J∩π−1
F DF and D =

⋃
F D

∗
F . By Fubini’s theorem we obtain mn(D∗F ) <

1/N , and hence mn(D) < 1. Since Kn−p
1 is the union of the sets π−1

F [Zn ∩ F ] ,
the lemma holds with any a ∈ J \D .

3.3. Remarks. 1. Lemma 3.2 has three advantages compared with [Vä,
2.3]: (1) Since µp ≤ m∞p , it is stronger, (2) the constant N is smaller than the
corresponding constant β(n, p) of [Vä, 2.3], (3) the proof is simpler.

2. In [Vä, 2.3] there is a misprint: s/β should be sp/β .
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4. Wall properties and inner wall properties

4.1. Wall properties. Let c > 0, and let n ≥ 2 and 1 ≤ p ≤ n − 1 be
integers. We say that a domain G Ã Rn has the (c, p)-wall property if

µp
(
∂G ∩B(a, 2r)

)
≥ rp/c

whenever a ∈ G and r = d(a, ∂G) . Observe that since µp
(
B(a, 2r)

)
= α(p)(2r)p ,

we always have c ≥ 2−p/α(p) .

4.2. Inner wall properties. Let G ⊂ Rn be a domain. We let λ = λG
denote the inner length metric of G , defined by

λ(a, b) = inf
γ
l(γ),

where l(γ) is the length of γ and the infimum is taken over all rectifiable arcs
γ joining a and b in G . The distance λ(a, b) is also defined if a ∈ G and b is
a boundary point of G , accessible from G by a rectifiable arc. For a ∈ G and
r > 0, we let Bλ(a, r) denote the set of all x ∈ G such that λ(a, x) is defined and
λ(a, x) < r . Since λ(a, b) ≤ |a− b| , we always have Bλ(a, r) ⊂ B(a, r) .

We say that a domain G Ã Rn has the inner (c, p)-wall property if

µp
(
∂G ∩Bλ(a, 2r)

)
≥ rp/c

whenever a ∈ G and r = d(a, ∂G) . Again c ≥ 2−p/α(p) .
Trivially, the (c, p)-wall property implies the inner (c, p)-wall property. The

purpose of this section is to prove the converse where, however, c must be re-
placed by a larger constant c′(c, p) . This implies the inner version of the Wall
Theorem 3.1, given in 4.9.

4.3. Lemma. Let G Ã Rn be a domain, let p ∈ [1, n− 1] be an integer and
let s ≥ 2 . Suppose that

µp
(
∂G ∩Bλ(a, sr)

)
≥ rp/c

whenever a ∈ G and r = d(a, ∂G) . Then G has the inner (c′, p) -wall property
with c′ = (s− 1)pc .

Proof. Let a ∈ G and r = d(a, ∂G) . Choose a point b ∈ ∂G with |a− b| = r ,
and set

e = (b− a)/r, t = r/(s− 1), y = b− te.
Then d(y, ∂G) = t . It is easy to see that Bλ(y, st) ⊂ Bλ(a, 2r) . Hence

µp
(
∂G ∩Bλ(a, 2r)

)
≥ µp

(
∂G ∩Bλ(y, st)

)
≥ tp/c = rp/c′.

4.4. Theorem. If a domain G Ã Rn has the (c, p) -wall property, it has the
inner (c′, p) -wall property with c′ = c′(c, p) .
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Proof. Let a ∈ G and r = d(a, ∂G) . It suffices to find an estimate

(4.5) µp
(
∂G ∩Bλ(a, sr)

)
≥ rp/c1,

where c1 and s ≥ 2 depend only on c and p , since the theorem then follows from
4.3 with c′ = (s − 1)pc1 . We shall prove (4.5) with the universal constant s = 9

4
and with c1 = 4 · 8pc , which yield c′ = 4 · 10pc .

We shall several times make use of the elementary inequality

(4.6) |πEx|+ |x− πEx| ≤ |x|
√

2 ,

valid for all x ∈ Rn and for all linear subspaces E ⊂ Rn .
We may assume that a = 0. Choose a point b ∈ ∂G with |b| = r , and set

e = b/|b|, t = r/8, y = b− te = 7te, A = ∂G ∩B(y, 2t).

Since µp(A) ≥ tp/c , there is a subspace F ∈ Gp(Rn) such that mp(πFA) ≥ tp/2c .
Set π = πF , π′ = πF⊥ . By (4.6) we have either |πy| ≤ |y|/

√
2 or |π′y| ≤ |y|/

√
2 .

Case 1: |πy| ≤ |y|/
√

2 . For each x ∈ A we have

|πx| ≤ |πy|+ 2t ≤ 7t/
√

2 + 2t < 7t < r,

and hence [0, πx] ⊂ G . Since x ∈ ∂G , there is a point zx ∈ ∂G ∩ [πx, x] with
[πx, zx) ⊂ G . By (4.6) we obtain

λ(0, zx) ≤ l
(
[0, πx] ∪ [πx, zx]

)
≤ |πx|+ |πx− x| ≤ |x|

√
2

≤ (|y|+ 2t)
√

2 = 9t
√

2 < 2r.

Setting A1 = {zx : x ∈ A} we thus have A1 ⊂ Bλ(0, 2r) and πA1 = πA . Hence

µp
(
∂G ∩Bλ(0, 2r)

)
≥ mp(πA1) = mp(πA) ≥ tp/2c,

which implies (4.5) with s = 2, c1 = 2 · 8pc .

Case 2: |π′y| ≤ |y|/
√

2 . Set q = n− p and

B = B(y, 2t), Z = πB + π′B, Dx = πx+ π′B

for x ∈ A . Then x ∈ Dx , and Dx is a q -disk of radius 2t with π′Dx = π′B . For
z ∈ Z we have

(4.7) |π′z| ≤ |π′y|+ 2t ≤ |y|/
√

2 + 2t =
(
7/
√

2 + 2
)
t < 7t < r.

Furthermore, by (4.6) we get

(4.8) |πz|+ |π′z| ≤ |πy|+ |π′y|+ 4t ≤ |y|
√

2 + 4t < 14t < 2r

for all z ∈ Z .
We consider two subcases, each of which contains two subsubcases.
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Subcase 2a: p ≤ q .
Subsubcase 2a1. There is a point x ∈ A such that ∂G meets [w, π′w] for

each w ∈ Dx . Let w ∈ Dx . Then |π′w| < r by (4.7). Now there is a point
zw ∈ ∂G ∩ [π′w,w] with [π′w, zw) ⊂ G . By (4.8) we obtain

λ(0, zw) ≤ |π′w|+ |π′w − zw| ≤ |π′w|+ |π′w − w| < 2r.

Setting D = {zw : w ∈ Dx} we have D ⊂ ∂G∩Bλ(0, 2r) , and π′D = π′Dx is the
q -disk F⊥ ∩B(π′y, 2t) .

Since p ≤ q , we can choose a subspace E ∈ Gp(Rn) with E ⊂ F⊥ . Then
πED is a p -disk of radius 2t , and thus

µp
(
∂G ∩Bλ(0, 2r)

)
≥ mp(πED) = α(p)2ptp.

Since 2pα(p) ≥ 1/c by 4.1, this gives (4.5) with s = 2, c1 = 8pc .

Subsubcase 2a2. For each x ∈ A there is a point wx ∈ Dx such that ∂G ∩
[wx, π

′wx] = ∅ . Then [wx, π
′wx] ⊂ G . Since x ∈ ∂G , there is a point zx ∈

∂G ∩ [x,wx] with [wx, zx) ⊂ G . Since |wx − zx| ≤ |wx − x| ≤ d(Dx) = 4t , we get
by (4.8)

λ(0, zx) ≤ |π′wx|+ |π′wx − wx|+ |wx − zx| < 14t+ 4t = 18t.

Hence the set A1 = {zx : x ∈ A} lies in ∂G ∩ Bλ(0, 9r/4). Since πA1 = πA , we
obtain

µp(A1) ≥ mp(πA1) = mp(πA) ≥ tp/2c,
and (4.5) follows with s = 9

4 , c1 = 2 · 8pc .

Subcase 2b: p > q . Since

dim(F⊥ ∪ {y})⊥ = p− 1 ≥ p− q,
we can choose F1 ∈ Gp−q(Rn) with F1 ⊂ (F⊥ ∪ {y})⊥ . Setting E = F⊥ + F1 we
have dimE = p and πEy = π′y .

Recall the notation Dx = πx+ π′B for x ∈ A . Let C be the union of those
Dx for which ∂G ∩ [w, πEw] 6= ∅ for all w ∈ Dx . Then C ⊂ Z ⊂ B

(
y, 2t
√

2
)

.

Subsubcase 2b1: mp(πEC) ≥ tp/4c . For each x ∈ C we have

|πEx| ≤ |πEy|+ 2t
√

2 ≤ 7t/
√

2 + 2t
√

2 < 8t = r;

hence [0, πEx] ⊂ G . Choose a point zx ∈ ∂G ∩ [πEx, x] such that [πEx, zx) ⊂ G .
By (4.6) we obtain

λ(0, zx) ≤ |πEx|+ |πEx− zx| ≤ |πEx|+ |πEx− x| ≤ |x|
√

2

≤
(
7t+ 2t

√
2
)√

2 < 14t < 2r.

Hence the set C1 = {zx : x ∈ C} lies in ∂G ∩Bλ(0, 2r) . Since

µp(C1) ≥ mp(πEC1) = mp(πEC) ≥ tp/4c,
we get (4.5) with s = 2, c1 = 4 · 8p .
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Subsubcase 2b2: mp(πEC) ≤ tp/4c . For v ∈ πEC set Q(v) = π−1
E {v} ∩ Z .

Since E⊥ ⊂ F , we have for each x ∈ Q(v)

|πE⊥x− πE⊥y| ≤ |πx− πy| < 2t.

Thus Q(v) is contained in a q -disk of radius 2t . By Fubini’s theorem we obtain

mn(C) ≤
∫

πEC

mq

(
Q(v)

)
dmp(v) ≤ α(q)(2t)qmp(πEC) ≤ α(q)(2t)qtp/4c.

On the other hand, Fubini’s theorem also gives

mn(C) = mq(Dx)mp(πC) = α(q)(2t)qmp(πC),

and hence mp(πC) ≤ tp/4c . Since mp(πA) ≥ tp/2c , we obtain mp(π[A \ C]) ≥
tp/4c .

Let x ∈ A \ C . There is a point wx ∈ Dx such that ∂G ∩ [wx, πEwx] = ∅ .
Since |πEwx| ≤ |πEy| + 3t = |π′y| + 3t < r , we have [wx, πEwx] ⊂ G . Since
x ∈ ∂G , there is a point zx ∈ ∂G ∩ [x,wx] with [wx, zx) ⊂ G . Then |wx − zx| ≤
|wx − x| ≤ d(Dx) ≤ 4t . By (4.6) we get

λ(0, zx) ≤ |πEwx|+ |πEwx − wx|+ |wx − zx|
≤ |wx|

√
2 + 4t ≤

(
7 + 2

√
2
)
t
√

2 + 4t < 18t.

Hence the set A1 = {zx : x ∈ A \ C} lies in Bλ(0, 9r/4). Since

µp(A1) ≥ mp(πFA1) = mp(πF [A \ C]) ≥ tp/4c,

we get (4.5) with s = 9r/4, c1 = 4 · 8pc .

4.9. Inner wall theorem. Suppose that a domain G Ã Rn satisfies the
hypotheses of one of the wall theorems [Vä, 1.3], [Vä, 6.2] (see 1.2) with a constant
c > 0 and an integer p ∈ [1, n − 1] . Then G has the inner (c′, p) -wall property
with c′ = c′(c, n, p) . If G is K -quasiconformally equivalent to a ball, then G has
the inner (c′, n− 1) -wall property with c′ = c′(K,n) .

Proof. The theorem follows from Theorems 3.1 and 4.4.
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