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Abstract. Let a, b, c ∈ R , a 6= 0 with ac ≤ 0 . We prove that there exists a sequence of
positive real numbers µk →∞ such that for each k , the equation f ′′(z)+(az3+bz2+cz−µk)f(z) =
0 admits a solution with infinitely many real zeros and at most finitely many non-real zeros. This
gives a new class of cubic polynomials P for which f ′′ +P (z)f = 0 has a solution with almost all
real zeros.

We also find new quartic examples: for each a > 0 and b ∈ R , there exists a sequence of
real numbers µk →∞ such that for each k , f ′′(z) + (az4 + bz2−µk)f(z) = 0 has a solution with
almost all real zeros. The case a > 0 and b > 0 was discovered earlier by Gundersen.

1. Introduction

Consider the following ordinary differential equation

(1) f ′′(z) + P (z)f(z) = 0,

where P is a non-constant polynomial. It is well known that any solution f(z) of
(1) is an entire function. Hellerstein and Rossi posed the question of characterizing
the polynomials P for which the equation (1) admits a solution having only real
zeros and infinitely many of them [1, Problem 2.71]. (Steven Bank posed the same
question in 1983, but not in print.)

Examples of such polynomials are known when P is linear and real, the Airy
differential equation (see [7, pp. 413–415]), and when P (z) = z4 − λ for certain
λ > 0, a result of Titchmarsh, see [10, pp. 172–173].

Gundersen [4] weakened the condition “only real zeros” in the question to
“at most finitely many non-real zeros”. He introduced a quadratic term to the
potential, proving that for each a > 0 and b ≥ 0, there exists a sequence of
real numbers µk → ∞ such that for each k , the equation (1) with the quartic
P (z) = az4 + bz2 − µk admits a solution with almost all real zeros. When b = 0,
the polynomial reduces to that of Titchmarsh.

In Section 2, we will prove a similar result, Theorem 1, for cubic P . Through-
out this paper, “almost all real zeros” means “infinitely many real zeros and at
most finitely many non-real zeros”.
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Theorem 1. Suppose that a, b, c ∈ R , a 6= 0 with ac ≤ 0 . Then there
exists a sequence of positive real numbers µk → ∞ such that for each k , the
equation (1) with P (z) = az3 + bz2 + cz − µk admits a solution with almost all
real zeros.

Then in Section 3 we extend Gundersen’s examples P (z) = az4 + bz2 − µk
for a > 0 and b < 0. More precisely, we will prove the following theorem.

Theorem 2. Suppose that a > 0 , b ∈ R . Then there exists a sequence of real
numbers µk →∞ such that for each k , the equation (1) with P (z) = az4+bz2−µk
admits a solution with almost all real zeros.

Recently, Eremenko and Merenkov [2] showed that for each non-negative in-
teger m , there exists a polynomial P of degree m for which (1) has a solution
with real zeros only. Moreover, if m is odd, then the solution has infinitely many
real zeros. And if m ≡ 0 mod 4, then there exists a polynomial P of degree m for
which (1) has a solution with real zeros only and infinitely many of them.

Now we provide some context regarding the problem. First, we recall the
necessity of P being real. That is, if the equation (1) has a solution with infinitely
many real zeros, then P is a real polynomial by [3, Theorem 3]. Second, Hellerstein
and Rossi [5], and Gundersen [3], showed that if linearly independent solutions f1

and f2 have only finitely many non-real zeros, then P must be a constant. See
also the paper by Gundersen [4] for a brief survey of other known facts.

2. Background

It is also known that the solutions f of (1) have rather simple asymptotic
behavior near infinity. To describe this behavior, which we will use in various
places, we need to establish some terminology.

Definition. Consider the equation (1) with P (z) = amz
m + am−1z

m−1 +
· · ·+ a1z + a0 , where ak ∈ C for 0 ≤ k ≤ m with am 6= 0. Let

θj =
2jπ − arg am

m+ 2
for j ∈ Z .

For j ∈ Z we call the open sectors

Sj = {z ∈ C : θj < arg z < θj+1}

the Stokes sectors of (1). Also we call the rays {arg z = θj} the critical rays.
In particular, when am > 0 the Stokes sectors of (1) are

Sj =

{
z ∈ C :

2jπ

m+ 2
< arg z <

2(j + 1)π

m+ 2

}
for j ∈ Z .

We are now ready to introduce the asymptotic results of Hille [6].
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Figure 1. The Stokes sectors for P (z) = z3 + bz2 + cz + d . The dashed rays are the critical rays;

arg z = 0, ± 2
5π, ± 4

5π.

Proposition 1 ([6, Section 7.4]). Let f be a non-constant solution of (1)
with P (z) = amz

m + am−1z
m−1 + · · · + a1z + a0 , where ak ∈ C for 0 ≤ k ≤ m

with am 6= 0 . Then the following hold.

(i) In each Stokes sector Sj , f either blows up or decays to zero exponentially
in Sj (or more precisely, as z tends to infinity in any closed subsector within
Sj ), and f has at most finitely many zeros in any closed subsector of Sj .

(ii) If f decays to zero in Sj , for some j , then it must blow up in Sj−1 and Sj+1 .
(However, it is possible for f to blow up in many adjacent Stokes sectors.)

(iii) If f decays to zero in Sj , then f has at most finitely many zeros in any
closed subsector within Sj−1 ∪ Sj ∪ Sj+1 .

(iv) If f blows up in Sj−1 and Sj , then for each ε > 0 , f has infinitely many
zeros in each sector θj − ε ≤ arg z ≤ θj + ε .

The following proposition on existence of solutions is also known.

Proposition 2 ([6, Section 7.4]). Consider the equation (1) with P (z) =
amz

m + am−1z
m−1 + · · ·+ a1z + a0 , where ak ∈ C for 0 ≤ k ≤ m with am 6= 0 .

For each j ∈ Z , this equation

(I) has a solution that decays in Sj , and
(II) has a solution that blows up in Sj .

3. Necessary and sufficient conditions

In this section, we will provide necessary and sufficient conditions on the
polynomial P and on asymptotic behavior of a solution f of (1), for the solution
f to have almost all real zeros. And we will use this sufficient condition in proving
Theorems 1 and 2.

3.1. Necessary conditions. Suppose that a solution f of (1) has almost
all real zeros. (That is, f has infinitely many real zeros and at most finitely many
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non-real zeros.) Then as we mentioned in the introduction, the polynomial P
must be real on the real line [3, Theorem 3]. Moreover, when the degree m of
the real polynomial P (z) = amz

m + · · ·+ a0 is even, we see that am > 0 because
otherwise, every critical ray is away from the real axis, and hence f would not
have infinitely many real zeros (see Proposition 2(i)). When the degree of the real
polynomial P is odd, then exactly one critical ray is on the real axis. If am > 0
then the positive real axis is a critical ray, and if am < 0 then the negative real
axis is a critical ray.

Also since f has at most finitely many non-real zeros, by Proposition 2(iv),
for each critical ray that is away from the real axis, the solution f is decaying
in one of two adjacent Stokes sectors, and the solution f blows up in the other
Stokes sector. Otherwise, the solution f had to blow up in these two adjacent
Stokes sectors since a non-constant solution f cannot decays to zero in any two
adjacent Stokes sectors (see Proposition 1(ii)). Then Proposition 1(iv) implies
that f would have infinitely many non-real zeros.

Finally, it is clear that f must have infinitely many zeros.

3.2. Sufficient conditions. In the following theorem, we provide a sufficient
condition for having a solution of (1) with almost all real zeros. We will use this
theorem in proving Theorems 1 and 2.

Theorem 3. Let P (z) = zm + am−1z
m−1 + · · · + a1z + a0 with m ≥ 1 ,

aj ∈ R for 0 ≤ j ≤ m− 1 . Suppose that f is a solution of

(2) f ′′(z) + P (z)f(z) = 0

such that

(i) for each critical ray, away from real axis, the solution f is decaying in one
of the two adjacent Stokes sectors, and the solution f blows up in the other
Stokes sector, and

(ii) the solution f has infinitely many zeros.
Then f has almost all real zeros.

Remarks. (1) Earlier we explained that the conditions (i) and (ii) are nec-
essary. And we know that for some polynomial P , if (1) has a solution f with
infinitely many real zeros, then P must be real on the real line [3, Theorem 3].
In order to apply Theorem 3 for real polynomials of the form P (z) = amz

m +
am−1z

m−1+· · ·+a1z+a0 , one can use the change of variables z 7→ |am|−1/(m+2)z ,
and z 7→ −z if necessary.

(2) By the work of Eremenko and Merenkov [2], one can see that for each
m ∈ N , if m 6≡ 2 mod 4 then there exists a real polynomial P of degree m , with
which (2) has a solution f satisfying the hypotheses in Theorem 3.

(3) Gundersen [3, Theorem 2], and Hellerstein and Rossi [5, Theorem 3]
showed that if m ≡ 2 mod 4, then there exists no real polynomial P of degree
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m for which a solution of f ′′ + P (z)f = 0 satisfies the conditions (i) and (ii) in
Theorem 3.

Proof of Theorem 3. First note that the positive real axis is a critical ray for
equation (2). The condition (i) along with Proposition 1(iii) implies that f has at
most finitely many zeros in π/3m < | arg z| < π−π/3m . So f has infinitely many
zeros either in the sector | arg z| ≤ π/3m , or in the sector | arg z − π| ≤ π/3m .
We will first prove that if f has infinitely many zeros in | arg z| ≤ π/3m , then the
zeros of f in this sector must be all real except finitely many. To this end we will
show that f has only finitely many zeros in the sector 0 < | arg z| ≤ π/3m .

Suppose that f has infinitely many zeros in | arg z| ≤ π/3m . Then by Propo-
sition 1(ii) and (iii), we see that f(z) blows up in 0 < | arg z| < 2π/(m+ 2).
Since the critical rays arg z = ±2π/(m+ 2) are not on the real axis, we know,
by the condition (i), that f(z) must decay to zero in 2π/(m+ 2) < | arg z| <
4π/(m+ 2). Since P is real on the real line, we know that f(z) and f(z) solve
the same equation (2). Moreover, f(z) and f(z) both decay in the Stokes sector
S1 = {2π/(m+ 2) < arg z < 4π/(m+ 2)} . Thus we know one is a constant mul-
tiple of the other. Otherwise, any solution of (2) would be a linear combination of
these two. And hence there would be no solution of (2) that blows up in S1 . This
contradicts Proposition 2(II). So one is a constant multiple of the other. Since
|f(z)| = |f(z)| on the real axis, we see that f(z) = eiθ0f(z) for some θ0 ∈ R , and
hence |f(x+ iy)| is an even function of y . Thus

(3) 0 =
∂

∂y
|f(x+ iy)|2

∣∣∣
y=0

= −2 Im
(
f ′(x)f(x)

)
for all x ∈ R .

Fix x ∈ R and y > 0, and let g(t) := f(x + it) . Then we have g′(t) =
if ′(x+ it) and g′′(t) = −f ′′(x+ it) . We then substitute f in (2) by g , multiply
this by g(t), and integrate the resulting equation over 0 ≤ t ≤ y to have

−
∫ y

0

g′′(t)g(t) dt+

∫ y

0

[
(x+ it)m + am−1(x+ it)m−1 + · · ·+ a0

]
|g(t)|2 dt = 0.

This equation is called the Green’s transform [6, Section 11.3].
Next we integrate the first term by parts and take the real part of the resulting

equation. Then using (3) in the form of Re
(
g′(0)g(0)

)
= 0, we have

(4)

Re g′(y)g(y) =

∫ y

0

|g′(t)|2 dt

+

∫ y

0

Re
[
(x+ it)m + am−1(x+ it)m−1 + · · ·+ a0

]
|g(t)|2 dt.

Suppose that 0 < arg(x + iy) ≤ π/3m , and let x + it = reiθ for 0 < t ≤ y .
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Then 0 < θ ≤ π/3m and hence cos(mθ) ≥ 1
2 . Thus

(5)

Re
[
(x+ it)m + am−1(x+ it)m−1 + · · ·+ a0

]

= rm cos(mθ) + am−1r
m−1 cos((m− 1)θ) + · · ·+ a0

≥ 1
2r
m
(
1 +O(r−1)

)
as r →∞

> 0 for all large r > 0, say r ≥ r0.

Then the formula (4) with (5) says that if x ≥ r0 and 0 < arg(x+iy) ≤ π/3m ,
then

− Im f ′(x+ iy)f(x+ iy) = Re g′(y)g(y) > 0,

and so f(x+ iy) 6= 0. And hence the entire function f has at most finitely many
zeros in 0 < arg z ≤ π/3m . Then evenness of y 7→ |f(x + iy)| shows that f has
at most finitely many non-real zeros in the sector 0 < | arg z| ≤ π/3m . Thus f
has infinitely many real zeros.

When m = degP is odd, f cannot have infinitely many zeros near the
negative real axis since the negative real axis is the center of a Stokes sector.
However, when m is even, we need to consider the case that f has infinitely many
zeros in | arg z − π| ≤ π/3m since the negative real axis is a critical ray. In fact,
if f(z) has infinitely many zeros in | arg z| ≤ π/3m , then since f(z) = eiθ0f(z)
for some θ0 ∈ R , f(z) must blow up in the two adjacent Stokes sectors of the
negative real axis because f(z) cannot decay to zero in these two adjacent Stokes
sectors.

In order to show that f has at most finitely many non-real zeros near the
negative real axis, we use the change of the variable z 7→ −z , and follow the
argument that we used for proving that f has at most finitely many non-real
zeros near the positive real axis.

So far we have proved the theorem when f has infinitely many zeros in
| arg z| ≤ π/3m . Now we suppose that f has infinitely many zeros in | arg z−π| ≤
π/3m . (So m must be even.) Then we use the change of the variable z 7→ −z
and follow the above argument to complete the proof.

4. The cubic case: Proof of Theorem 1

In proving Theorem 1, we will further use the following proposition on exis-
tence of certain polynomials for which the equation (1) has solutions decaying in
both ends of the real axis.

Proposition 3. We consider the following Schrödinger eigenvalue problem
with non-real potential:

(6) −u′′(z)−
[
(iz)3 + β(iz)2 + γ(iz)

]
u(z) = λu(z), u(±∞+ 0i) = 0,

where β, γ ∈ C . Then:

(i) There are infinitely many eigenvalues λk ∈ C ; moreover, |λk| ∼ Ck6/5 as
k →∞ .

(ii) If β ∈ R and γ ≤ 0 , then all eigenvalues λk are positive real.
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Proof. The statement (i) is due to Sibuya [9, Theorem 29.1] while (ii) is
due to the author [8, Corollary 3]. In fact, both Sibuya and the author proved
more general results for higher degree potentials, but these are enough for proving
Theorem 1.

Proof of Theorem 1. By a simple rescaling, we can reduce to the cases a = ±1.
And then by changing z 7→ −z if necessary, we can take a = 1.

Let a = 1, b, c ∈ R with c ≤ 0. Then Proposition 3 says that there exists a
sequence of positive real numbers λk →∞ such that the equation

−u′′(z)−
[
(iz)3 − b(iz)2 + c(iz) + λk

]
u(z) = 0

has a non-constant solution u that decays to zero as z tends to infinity along both
ends of the real axis. This is where we use c ≤ 0 (or, ac ≤ 0 in the general case).

We then let f(z) = u(iz) and see that f is a solution of

(7) f ′′(z) +
[
z3 + bz2 + cz − λk

]
f(z) = 0,

which is the case a = 1 that we want to prove. Clearly, f decays to zero as z
tends to infinity along both ends of the imaginary axis. This implies that f decays
in the Stokes sectors S1 and S3 , and hence blows up in S0 , S2 and S4 = S−1 , by
Proposition 1(iii). Since f blows up in the two adjacent Stokes sectors S−1 and
S0 , f must have infinitely many zeros, by Proposition 1(iv). Thus the conditions
(i) and (ii) in Theorem 3 are satisfied, and hence Theorem 3 completes the proof.

5. The quartic case: Proof of Theorem 2

Gundersen [4] showed that for each b ≥ 0, there exists a sequence of real
constants λk →∞ such that the equation

(8) f ′′(z) + (z4 + bz2 − λk)f(z) = 0

has a solution f with almost all real zeros. Below we will prove Theorem 2 that
extends Gundersen’s examples for b < 0.

Proof of Theorem 2. By rescaling, it suffices to show for a = 1 and b ∈ R .
Let us consider the differential equation

(9) −g′′(z) + (z4 − bz2)g(z) = λg(z),

where b, λ ∈ R . According to Gundersen [4], one can deduce from Chapters 2
and 5 in [10] that for each b ∈ R , there exists a sequence of real numbers λk →∞
such that equation (9) with these λk has a solution g in L2(R) . (Also, one can
deduce from Sibuya’s book [9] that these λk are zeros of some entire function of
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order 3
4 . And hence by the Hadamard factorization theorem we know that there

are infinitely many such λk .)
Next we set f(z) = g(iz) . Then f solves (8) and decays to zero as z → ∞

along both ends of the imaginary axis. In this case, there are six Stokes sectors.
And one can see that f decays to zero in S1 ∪ S4 that contains the imaginary
axis. So we know, by Proposition 1(ii), that f blows up in S0∪S2∪S3∪S5 . Since
f blows up in S2 ∪ S3 , we know by Proposition 1(iv) that f has infinitely many
zeros. So all hypotheses in Theorem 3 are satisfied. Therefore, for each b ∈ R
there exists a sequence of real numbers λk such that a solution of (8) has infinitely
many real zeros and at most finitely many non-real zeros.

Remark. Proposition 3 has a natural extension to higher degree polynomi-
als P . However, the number of Stokes sectors is 2+degP [6, Section 7.4]. And an
extension [8, Theorem 2] of Proposition 3(ii) ensures existence of real polynomials
for which the equation (1) has a solution decaying in at least two Stokes sectors.
But this still leaves more than one critical ray, away from the real axis, along which
the zeros might cluster if the degree of P is greater than 4.
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