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Abstract. We analyze the relations of the geometry of a regulated complex domain Ω with
the existence of Bergman type projections from Lpω(Ω) onto the Bergman space A p

ω (Ω) . The
main technical device is a Muckenhoupt type weight condition. In particular we find bounded
Bergman type projections on A p(Ω) even in the case Ω has arbitrary inward or outward cusps.
As a consequence, A p

ω (Ω) is isomorphic as a Banach space to lp .

1. Introduction

Let Ω ⊂ C be a complex domain bounded by a Jordan curve. We want
to find Bergman type projections from Lpω(Ω) onto the corresponding Bergman
space. Moreover, we want to analyze the relations of the geometry of Ω with
the boundedness of various Bergman projections. Here, the space Lpω(Ω) is with
respect to a weighted 2-dimensional Lebesgue measure, where the weight ω is of
the simplest possible type: it is a power of the boundary distance,

(1.1) ω(z) =
(
dist (z, ∂Ω)

)α

for some α > −1. By the Bergman space A p
ω (Ω) we mean the space of analytic

mappings f : Ω→ C endowed with the norm

(1.2) ‖f‖ := ‖f‖p,ω :=

(∫

Ω

|f |pω dm
)1/p

<∞.

We only deal with the case 1 < p <∞ .
As a consequence of the Koebe distortion theorem (see [5, Corollary 1.4]), the

weights (1.1) correspond on the open unit disc D to the weights where the weight

(1.3) ν(z) = |ψ′(z)|2+α(1− |z|)α,

where ψ: D→ Ω is a Riemann conformal map. Clearly, ν is in general a nonradial
weight on D , although it emerges in a canonical way from a most natural class of
weights on Ω.
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It turns out that certain Muckenhoupt-type conditions will play a central
role. Our predecessor is the paper [2, p. 143], where it was shown that the weight
|ψ′|2−p on D satisfies the Békollé–Bonami condition Bp(0), i.e.,

(1.4) sup
S

∫

S

|ψ′|2−p dm
(∫

S

|ψ′|(2−p)(−p∗/p) dm
)p/p∗

≤ Cm(S)p

where p and p∗ are the usual dual indices of each other, if and only if certain
geometric conditions for the boundary of Ω are satisfied. In (1.4) the sup is taken
over all sets

(1.5) S := S(θ, %) :=
{
z = reit ∈ D : 1− % < r < 1 and |θ − t| < 2π%

}
,

where 0 ≤ θ ≤ 2π and 0 < % < 1.
Moreover, in [2] it was shown that the condition (1.4) is equivalent to the

boundedness of the Bergman projection on the space Lp(Ω).
The conditions of [2] for Ω require more than being just a regulated domain

in the sense of [5].
In our paper we generalize the above mentioned result of [2] both qualitatively

and quantitatively, see Theorem 3.1. On the technical, quantitative side we show
that (1.4) still holds if |ψ′| is raised to more arbitrary powers and dm is replaced
by a weighted measure

(1.6) dmα := (1− |z|)α dm.

On the qualitative side, our results hold for arbitrary regulated domains. In par-
ticular we do not need the assumption that the domain should be of bounded
boundary rotation type, cf. [2, assumption H2, (ii) on p. 138]. We do not put any
restriction for the number of cusps as in H2, (i), on p. 155. On the other hand,
we are not able to handle the limiting case (i.e. equality in the condition (3.3))
in this generality. It seems that some additional assumptions on Ω are needed
in that case. A version of that result is contained in a different paper [6]; it is
not presented here since the proof is technical and based on a completely different
method.

Theorem 3.1 implies boundedness results for a large family of Bergman type
projections from Lpω(Ω) onto A p

ω (Ω). These are presented in Section 4. It follows
from [2] that for example the existence of cusps in Ω may make the standard
Bergman projection unbounded on Lp(Ω). However, we are able to show that for
an arbitrary (regulated) Ω there are more general, but still of the Bergman type,
bounded projections, see Corollary 4.6.

It also follows from these results that A p
ω (Ω) is linearly homeomorphic to the

Banach space lp ; see Corollary 4.7.
Concerning notation, dm denotes the two-dimensional Lebesgue measure and

dµ is the one-dimensional Lebesgue measure on the boundary of the unit disc. The
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notation “dist” and “diam” denotes the euclidean distance of two given points,
respectively, the euclidean diameter of a set. We denote by C , C ′ or c strictly
positive constants which may vary from place to place but not in the same sequence
of inequalities. By writing “∼=” between two quantities A and B (which may
depend on some variables z , θ , . . .) we mean that there exists a constant C > 0
(independent of z , θ , . . .) such that C−1B ≤ A ≤ CB . Otherwise we recommend
the references [3], [5] and [8].

2. Regulated domains

Before formulating our main result, Theorem 3.1, we recall the properties
of regulated domains. Let us start with a simply connected, bounded domain
Ω ⊂ C with a locally connected boundary. In this case a Riemann conformal map
ψ: D → Ω has a continuous extension to D (still denoted by ψ ). We can thus
define the curve w(t) = ψ(eit) , 0 ≤ t ≤ 2π . According to [5, Section 3.5], Ω is
called a regulated domain, if each point of ∂Ω is attained only finitely often by
ψ , and if

(2.1) β(t) := lim
τ→t+

arg
(
w(τ)− w(t)

)

exists for all t and defines a regulated function. (Recall that β is regulated, if it
can be approximated uniformly by step functions, i.e. for every ε > 0 there exist
0 = t0 < t1 < · · · < tn = 2π and constants γ1, . . . , γn such that

(2.2) |β(t)− γj | < ε for tj−1 < t < tj , j = 1, . . . , n.)

Geometrically, β is the direction angle of the forward tangent of ∂Ω at w(t) . For
more details, see [5, Section 3.5].

Regulated domains can be characterized as follows.

Theorem 2.1. Let Ω ⊂ D be a simply connected domain with locally
connected boundary. Then Ω is regulated if and only if, for a Riemann conformal
map ψ: D→ Ω ,

(2.3) logψ′(z) = log |ψ′(0)|+ i

2π

∫ 2π

0

eit + z

eit − z

(
β(t)− t− π

2

)
dt,

where β: [0, 2π]→ R is a regulated function.

In the situation of Theorem 2.1 the function β coincides with the direction
angle defined above. For a proof, see [5].

Let us denote by BMO(∂D) the BMO-space on the boundary of the unit disc;
for a detailed definition, see [8]. Let BMO(D) stand for the space of measurable
functions f on the disc with norm

(2.4) sup
Q

1

m(Q)

∫

Q

|f − fQ| dm,
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where Q is running over all open Euclidean discs intersecting D and fQ is the
mean of f over Q . See [3, p. 282].

We shall need the John–Nirenberg inequality for functions in BMO(∂D)
(cf. [3, Theorem VI.2.1]):

Lemma 2.2. There exists a constant C > 0 such that for every positive λ

(2.5) sup
I

µ
(
{x ∈ I | |f − fI | > λ}

)

µ(I)
≤ e−Cλ/‖f‖BMO(∂D) ,

where I runs over all subarcs of ∂D , µ(I) denotes the 1 -dimensional Lebesgue
measure of I , f ∈ BMO(∂D) , and fI denotes the integral mean of f over I .

Given a function in BMO(∂D) we shall also need to control some two-
dimensional BMO-like properties of its Poisson extension:

Lemma 2.3. There exists a constant C > 0 as follows. If f ∈ BMO(∂D)
with ‖f‖BMO ≤ 1 and F : D→ C is the harmonic Poisson extension of f , then

(2.6) sup
Q

m
(
{z ∈ Q | |F (z)− FQ| ≥ λ}

)

m(Q)
≤ e−Cλ/‖f‖BMO(∂D),

where the supremum is taken over all Euclidean discs intersecting D and FQ is
the mean value of F on Q .

Proof. It is known that BMO(∂D) is mapped continuously into the harmonic
Bloch space Bh (the space of harmonic functions on the unit disc with finite Bloch
norm) via the Poisson extension. On the other hand, Bh is known to have a norm
equivalent to that of BMO(D) . See e.g. [8, p. 188] and [3, p. 282] for these
statements. Hence ‖F‖BMO(D) ≤ C‖F‖Bh

≤ C ′‖f‖BMO(∂D) ≤ C ′ .
On the other hand, the two-dimensional version of the John–Nirenberg in-

equality implies

(2.7) sup
Q

m
(
{z ∈ Q | |F (z)− FQ| ≥ λ}

)

m(Q)
≤ e−Cλ/‖F‖BMO(D) .

The lemma follows.

Finally, we need to control the mean FQ above.

Lemma 2.4. There exists a constant C > 0 as follows. If f , F and Q are
as in the previous lemma then

(2.8) |FQ| ≤ C| log(m(Q))| ‖f‖BMO(∂D) + C|FD|.

Proof. Let Q ⊂ Q1 ⊂ Q2 ⊂ · · ·Qk be a sequence (as short as possible) of sets
Qj (as in (2.4)) such that m(Qj ∩D) = 2m(Qj−1 ∩D) for all j (here Q0 := Q)
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and such that m(Qk) ≥ 1. Hence, k ≤ C ′
∣∣log

(
m(Q)

)∣∣ for an absolute strictly
positive constant C ′ .

We obtain |FQ| ≤ |FQ − FQk |+ |FQk − FD|+ |FD|, and here

(2.9) |FQ − FQk | ≤
k−1∑

j=0

|FQj − FQj+1 | ≤ Ck‖F‖BMO(D),

since

(2.10)

|FQj − FQj+1 | ≤
1

m(Qj)

∫

Qj

|F − FQj+1 | dm

≤ 2

m(Qj+1)

∫

Qj+1

|F − FQj+1 | dm ≤ 2‖F‖BMO(D).

The term |FQk − FD| is estimated in the same way, since the sets Qk and D
are of comparable 2-dimensional measure. Now, combine (2.9) with the bound
for k . The estimate in terms of the BMO-norm of f follows from the inequality
above (2.7).

3. Main result

Our main result, Theorem 3.1, gives a connection of a Muckenhoupt type con-
dition (for |ψ′|) with the geometry of Ω. The result holds for arbitrary regulated
domains.

Theorem 3.1. Let ψ be a Riemann conformal map from D onto the bounded
regulated domain Ω . Let a > 0 , 1 < p <∞ , 1/p+1/p∗ = 1 , and let the numbers
α , σ and γ (all > −1) satisfy

(3.1) α =
σ

p
+

γ

p∗
.

Then the (weight) function |ψ′|a satisfies the condition

(3.2) sup
S

∫

S

|ψ′|a dmσ

(∫

S

|ψ′|−ap∗/p dmγ

)p/p∗
≤ Cmα(S)p,

if

(3.3) 2 + σ >
aδ1
π

and
aδ2
π

> − p

p∗
(γ + 2).

Conversely, if 2 + σ < aδ1/π or aδ2/π < −p(p∗)−1(γ + 2), then (3.2) fails.
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Remarks. 1◦ Here, the sup is as in (1.4) and

(3.4)

δ1 := sup
t

lim
τ→0+

(
β(t+ τ)− β(t− τ)

)
≥ 0 and

δ2 := inf
t

lim
τ→0+

(
β(t+ τ)− β(t− τ)

)
≤ 0

which exist e.g. by (2.2), see also [5].
2◦ The theorem still holds, if a < 0. In this case (3.3) has to be replaced

by “2 + σ > aδ2/π and aδ1/π > −p(γ + 2)/p∗ ” and the reverse condition by
“2 + σ < aδ2/π or aδ1/π < −p(γ + 2)/p∗ ”. This can be deduced from the case
a > 0 by replacing a by b := −ap∗/p and p by p∗ .

3◦ The first (respectively second) condition (3.3) means a restriction for out-
ward (respectively inward) pointing corners and cusps in the boundary of Ω.

The method of proof is basically still the same as in [2]. The main difference is
that we explicitly use the notion of regulated domains. This allows us to approxi-
mate the direction angle of the boundary curve conveniently just by step functions,
and this leads to some simplifications and generalizations in the arguments.

Proof. 1◦ Let us assume that (3.3) holds. We first derive in (3.5)–(3.21) a
representation for |ψ′|a which reveals the essential factors in (3.2).

Let us fix 0 < ε < 1 such that 2 + σ − aδ1/π > 2 max(1, aδ1/π, |σ|)ε and

γ + 2 +
p∗

p

aδ2
π

> 2 max

(
1,
p∗

p
|aδ2
π
|, |γ|

)
ε

and such that

(3.5)
1

ε
> 100Amax

(
1,

4π

a

(
1 +

p

p∗

))
,

where A > 0 is the maximum of the constants C occurring in the bound [3,
Theorem VI.1.5], and Lemmas 2.2, 2.3 and 2.4.

According to (2.3), the function |ψ′|a has the representation

(3.6) |ψ′|a = C exp

(
− a

2π
Re

∫ 2π

0

eit + z

eit − z β̃(t) dt

)
,

where β̃ is the harmonic conjugate of β − t , β defined by (2.3).
By (2.2), there exist finitely many points 0 = t0 < t1 < · · · < tn = 2π such

that |β(t)−t−γj | < ε5 for tj−1 < t < tj , for some real constants γj , j = 1, . . . , n .
We denote by β1 and β2 the 2π -periodic extensions to R of the functions

(3.7) β1 =

n∑

j=1

γjχj , β2 = β − t− β1,
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where χj(t) = 1 for tj−1 < t < tj and zero elsewhere. Clearly, the modulus of β2

is bounded by ε5 . By the choice of the points tj we have (with γ0 := γn )

(3.8)
∣∣∣δ1 − max

0≤j<n
(γj+1 − γj)

∣∣∣ ≤ 2ε5 and
∣∣∣δ2 − min

0≤j<n
(γj+1 − γj)

∣∣∣ ≤ 2ε5.

Let us define for j = 1, 2

(3.9)

νj(z) := exp

(
− a

2π
Re

∫ 2π

0

eit + z

eit − z β̃j(t) dt
)

= exp

(
− a

2π
Im

∫ 2π

0

eit + z

eit − z βj(t) dt
)

;

we thus have |ψ′|a = eCν1ν2 .
Concerning ν2 , we want to show that, for % = 1 + ε−1 (which may be a large

number),

(3.10)

∫

S

ν%2 dm

(∫

S

ν
−%p∗/p
2 dm

)p/p∗
≤ Cm(S)p.

This follows from [2, Théorème 1.2], as soon as we show that (notation as in (2.5))

(3.11)

(
1

µ(I)

∫

I

ν
%/2
2 dµ

)(
1

µ(I)

∫

I

ν
−%p∗/(2p)
2 dµ

)p/p∗
≤ C.

Notice that by the theorem for conjugate functions, [3, Theorem VI.1.5],

(3.12) ‖β̃2‖BMO(∂D) ≤ A‖β2‖L∞(∂D) = A ess sup
t∈[0,2π]

|β2(t)| < ε4,

see the choice of ε above. By [3, Lemma VI.6.5], (3.11) is satisfied, if

(3.13)

sup
I

1

µ(I)

∫

I

e%a(β̃2−β̃2,I)/4π dµ < C and

sup
I

1

µ(I)

∫

I

e−%ap(β̃2−β̃2,I)/4πp∗ dµ < C.

The proof of these is standard: let I be an interval and denote, for the positive
real numbers s < s′ , I[s, s′] :=

{
t ∈ I | s ≤ |β̃2(t)− β̃2,I | ≤ s′

}
. Then

(3.14)∫

I

e%a(β̃2−β̃2,I)/4π dµ =

( ∫

I[0,4π/(%a)]

+

∫

I[4π/(%a),1]

+

∞∑

k=1

∫

I[k,k+1]

)
e%a(β̃2−β̃2,I)/4π dµ.
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Here the integrand is bounded by a constant on I[0, 4π/(%a)] . On I[4π/(%a), 1] ,
the integrand is bounded by e%a/4π , but the measure of the set I[4π/(%a), 1] is at
most µ(I) times

(3.15) e−C4π/%a‖β̃2‖BMO ≤ e−C4π/%aε4 ≤ e−2%a/4π,

see the John–Nirenberg inequality (2.5), (3.5), and (3.12), and notice also 1/ε ≤
% ≤ 2/ε . This integral thus is less than 1

2 . In the same way one finds that the
integral over I[k, k + 1] is bounded by 2−k . We thus obtain the first inequality
of (3.13). The proof of the second one is similar.

For ν1 we want to prove

(3.16)

∫

S

ν%
∗

1 dmσ%∗

(∫

S

ν
−%∗p∗/p
1 dmγ%∗

)p/p∗
≤ Cmα%∗(S)p,

where 1/% + 1/%∗ = 1, hence, 1 < %∗ = 1 + ε . It is enough to prove this for so
small sets S that dist (S, eitj ) ≤ 2m(S) < 1 for at most one j . First, ν1 has a
representation

(3.17) ν1(z) = ν1(reiθ) = ν̂1(z)
n−1∏

j=0

(
(1− r)2 + r(θ − tj)2

)−a(γj+1−γj)/(2π)
,

where ν̂1 is a bounded function on D which is also bounded away from zero.
One obtains (3.17) easily by taking the convolution of (3.7) times −a/(2π) with
the conjugate Poisson kernel −Qz(t) , see [3, p. 102]; the product stems from the
principal part 2r(θ − t)/

(
(1− r)2 + r(θ − t)2

)
of −Qz(t) . Now

(3.18)
(1− r)2 + r(θ − tj)2 ∼= (1− r)2 + (θ − tj)2 ∼= dist (eiθ, reitj )2

∼= dist (reiθ, eitj )2.

Keeping this in mind, we want to estimate
∫
S
ν%
∗

1 dmσ%∗ .
Because of (3.17) and (3.18), we can replace ν1 by

(3.19) dist (reiθ, eitj )−a(γj+1−γj)/π

for some j ; let us also denote diam(S) by h , hence m(S) ∼= h2 . Let us fix a
point ReiT ∈ S , where 1 − h < R < 1, 0 ≤ T ≤ 2π . Applying the linear
change of variables L: z → z − ReiT we find that L(S) is contained in the set
{w ∈ C | |w| ≤ 10h} . Hence, using polar coordinates,

(3.20)

∫

S

ν%
∗

1 dmσ%∗
∼=
∫

S

dist (reiθ, eitj )−a%
∗(γj+1−γj)/π dmσ%∗

≤
∫ 10h

0

∫ 2π

0

r−%
∗a(γj+1−γj)/πrσ%

∗
(cos θ)σ%

∗
r dr dθ.



Regulated domains and Bergman type projections 63

Since (3.3) and (3.8) hold, the total exponent of r in (3.20) becomes larger than
−1 (we have %∗ = 1 + ε , see also the choice of ε). Hence, (3.20) converges and is
bounded by a constant times

(3.21) h−%
∗ai(γj+1−γj)/π+%∗σ+2.

In the same way one proves that

(3.22)

∫

S

ν
−%∗p∗/p
1 dmγ%∗ ≤ Ch%

∗p∗a(γj+1−γj)pπ+%∗γ+2.

As a consequence of (3.21) and (3.22) we obtain (3.16):
(3.23)∫

S

ν%
∗

1 dmσ%∗

(∫

S

ν
−%∗p∗/p
1 dmγ%∗

)p/p∗

≤ Ch%∗((a/π)−(a/π))(γj+1−γj)+%∗(σ+γp/p∗)+2(1+p/p∗) = Ch%
∗pα+2p ∼= m%∗α(S)p

For the last step one uses mc

(
S(θ, h)

) ∼= h2+c .
Moreover, to see (3.2) we combine (3.10) and (3.16) and use Hölder:

∫

S

|ψ′|admσ

(∫

S

|ψ′|−ap∗/pdmγ

)p/p∗

≤
(∫

S

ν%
∗

1 dmσ%∗

)1/%∗(∫

S

ν%2 dm

)1/%

×
(∫

S

ν
−%∗p∗/p
1 dmγ%∗

)p/(%∗p∗)(∫

S

ν
−%p∗/p
2 dm

)p/(%p∗)

≤ Cm(S)p/%m%∗α(S)p/%
∗ ≤ C ′mα(S)p.

2◦ We consider the reverse direction. Assume for example 2 + σ < aδ1/π .
This time we choose ε > 0 such that −(2 + σ) + aδ1/π > 2 max(1, aδ1/π, |σ|)ε
and such that (3.5) also holds. We again define the functions βj and νj as in
(3.6)–(3.9).

Using the methods of part 1◦ we find an essential lower bound for ν1 at
least in a large enough subset of D , as follows. We again use the representation
(3.17) and Lemma 2.2. Let us fix j such that γj+1 − γj > δ1 − 2ε5 ; consider
the sets S(tj , %) , where notation is as in (1.5) and 0 < % ≤ 1

2 is so small that
% ≤ minι(|eitι+1 − eitι |)/100. As in (3.19) we see that

(3.24) ν1(z) ≥ C dist (z, eitj )−a(γj+1−γj)/π ≥ C dist (z, eitj )−a(δ1−2ε5)/π

for z ∈ S(tj , %) . Applying again the linear change of variables z → ei(π−tj)(z−eitj )
we thus obtain the bound (z = reiθ )
∫

S

|ψ′|a dmσ = C̃

∫

S

ν1ν2 dmσ ≥ C
∫

S

dist (reiθ, eitj )−a(δ1−2ε5)/πν2(reiθ) dmσ

≥ C

4

∫ h

0

∫ π/4

−π/4
r−a(δ1−2ε5)/πrσ(cos θ)σrν2(reiθ − eitj ) dr dθ.(3.25)
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This is bounded from below by a constant times

(3.26)

∫ h

0

∫ π/4

−π/4
ra
′
ν2(reiθ − eitj ) dr dθ,

where a′ = −a(δ1 − 2ε5)/π + σ + 1 < −1− ε .
Our aim is now to obtain the lower bound ∞ for (3.26). The main difficulty

is to prove that ν2 is large enough on a large enough set. We prove this by taking
advantage of the BMO-property of β̃2 . It might be dangerous if |β̃2| were large;
but the set where this happens is very small. One of the technical difficulties is to
extend the estimates on the boundary to the inside of the disc. We claim that

(3.27) m
(
{z | |ν2(z)| ≤ k−ε}

)
≤ Ck−ε−1

for every k ∈ N . Let us denote by B: D → C the Poisson extension of β̃2 . The
mean value (with respect to z ) over the whole disc of the conjugate Poisson kernel
(eit + z)/(eit − z) is a bounded function with respect to t , with a bound, say, 10.
Hence, since the sup-norm of β2 is smaller than ε4 , we find that the mean value
BD of B over the unit disc satisfies |BD| ≤ ε3 . Let us define a decomposition of
D into subsets Q′n,j as follows. Denote

(3.28) Q′n,j :=
{
z | 1−2−n ≤ |z| < 1−2−n−1, 2πj2−n ≤ arg(z) ≤ 2π(j+1)2−n

}

for all n ∈ N , 1 ≤ j ≤ 2n . Let Qn,j be a Euclidean disc containing Q′n,j such
that m(Qn,j) ≤ 2m(Q′n,j) . By Lemma 2.4,

(∗) |BQn,j | ≤ Cn‖β̃2‖BMO(∂D) + CBD ≤ C ′nε3.

Moreover, by Lemma 2.3,

(3.29)
m
({
z ∈ Qn,j | |B(z)−BQn,j | ≥ 1

2ε log k
})

≤ C ′m(Qn,j)e
−Cε log k/‖β̃2‖BMO(∂D) ≤ C ′′m(Qn,j)k

−ε−2

.

Given k , denote now by N(k) the set of pairs (n, j) , n ∈ N , 1 ≤ j ≤ 2n , such
that |BQn,j | ≥ 1

2ε log k for (n, j) ∈ N(k) . Clearly, (∗) implies n ≥ Cε−2 log k .
Hence, by (3.28),

(3.30) m

( ⋃
(n,j)∈N(k)

Qn,j

)
≤ C2−Cε

−2 log k ≤ C ′k−cε−2

.

Moreover, for (n, j) /∈ N(k) we have |BQn,j | ≤ ε log k/2. Hence, for such (n, j)
and for z ∈ Qn,j , if |B(z)| ≥ ε log k , then |B(z) − BQn,j | ≥ ε log k/2. This

combined with (3.29) yields m
(
{z ∈ Qn,j | |B(z)| ≥ ε log k}

)
≤ Cm(Qn,j)k

−ε−2

.
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This and (3.30) together imply m
(
{z ∈ D | |B(z)| ≥ ε log k}

)
≤ Ck−cε−2

. Hence,
(3.27) follows.

We denote by Λk the set consisting of z with the properties (k+1)−1 ≤ |z| ≤
k−1 and |ν2(z)| ≥ k−ε . Now (3.27) clearly implies m(Λk) ≥ C ′k−2 . Hence, by
(3.26),

(3.31)

∫

S

|ψ′|a dmσ = C̃

∫

S

ν1ν2 dmσ ≥ C
∞∑

k=0

∫

Λk

k−a
′
k−ε

= C
∞∑

k=0

m(Λk)k−a
′
k−ε ≥ C ′

∞∑

k=0

k−2−a′−ε =∞,

since −2− a′ − ε > −1. Hence, (3.2) cannot hold.

4. Applications: Bergman type projections

In this section we assume that ψ is a conformal map onto a bounded regulated
domain Ω, ϕ := ψ−1: Ω→ D , and β , δ1 and δ2 are as in Theorem 3.1.

1◦ The standard Bergman projection. Using Theorem 3.1 and [2, Lemma 1.1]
we obtain

Theorem 4.1. The Bergman projection

(4.1) PΩf(z) :=
1

π

∫

Ω

ϕ′(z)ϕ′(ζ)

(1− ϕ(z)ϕ(ζ))2
f(ζ) dm(ζ),

is a bounded operator from Lp(Ω) onto A p(Ω) , if

(4.2) (2− p)δ2
π
> −2p

p∗
(in case p ≤ 2), or, 2 > (2− p)δ2

π
(in case p ≥ 2).

Conversely, if

(4.3) (2− p)δ2
π
< −2p

p∗
(in case p ≤ 2), or, 2 < (2− p)δ2

π
(in case p ≥ 2),

then PΩ is unbounded in the given space.

Proof. Take α = γ = σ = 0 and a = 2 − p in Theorem 3.1. Use (3.3)
or Remark 2 after Theorem 3.1 depending on whether p ≤ 2 or p ≥ 2. Notice
that the first condition (3.3) in Theorem 3.1, 2 > (2− p)δ1/π , always holds, since
0 ≤ δ1 ≤ π . The same is true for the analogous condition in Remark 2.

See the case 3◦ for the relation of PΩ and the standard Bergman projection
on the disc. The conditions (4.2) and (4.3) are analogous to (i), p. 143 of [2].
Theorem 4.1 is more general than Theorems 2.1 or 3.3 of [2] in the sense that we
do not need a ‘bounded boundary rotation’-type assumption, cf. H2, (ii), on p. 138
of [2]. Moreover, we do not put any restriction for the number of cusps or for the
local geometry around cusps as in H2, (i), on p. 155.
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Corollary 4.2. If 4
3 < p < 4 , then the Bergman projection (4.1) is bounded

on Lp(Ω) for every bounded regulated domain Ω .

2◦ The conjugated Bergman projection. It is clear that the composition
operator Cψ: f 7→ f ◦ψ is a linear homeomorphism from Lp(Ω) onto Lpν(D) (this
space endowed with the norm ‖ · ‖p,ν , see (1.2)) and from A p(Ω) onto A p

ν (D) ,
where the weight ν on D is defined by ν(z) = |ψ′(z)|2 . So, the operator Pψ :=
(Cψ)−1PDCψ , where PDf =

∫
D
f(ζ)/(1 − zζ̄)2 dm(ζ) is the standard Bergman

projection on the disc, is again algebraically a projection operator on Lp(Ω).
It is known by [1] that PD is bounded on Lpν(D) if and only if

(4.4) sup
S

∫

S

|ν| dm
(∫

S

|ν|−p∗/p dm
)p/p∗

≤ Cm(S)p,

where S is as before. From this and Theorem 3.1 we obtain

Proposition 4.3. The conjugated Bergman projection Pψ is bounded on
Lp(Ω) , if

(4.5)
δ1
π
< 1 and

δ2
π
> − p

p∗
.

The converse statement is analogous to Theorem 4.1.

Here the first condition (4.5) always excludes outward cusps. The second
condition is vacuous if p > 2. So in this case arbitrary inward cusps are allowed.

3◦ A general family of projections. Finally we want to show that given an
arbitrary regulated domain Ω, an arbitrary 1 < p <∞ and an arbitrary weight

(4.6) ω(z) =
(
dist (z, ∂Ω)

)a
,

a > −1, one can find bounded Bergman type projections from Lpω(Ω) onto A p
ω (Ω).

These will be picked out of a family which depends on the indices n ∈ Z and
α > −1. We consider the space Lpω(Ω) and the operator

(4.7)

Pf(z) := Pϕ,α,nf(z)

:= (α+ 1)

∫

Ω

ϕ′(z)2−nϕ′(ζ)n−1ϕ′(ζ)
(
1− |ϕ(ζ)|2

)α
(
1− ϕ(z)ϕ(ζ)

)2+α f(ζ) dm(ζ).

Notice that the standard Bergman projection is the case α = 0, n = 1 and the
conjugated Bergman projection is the case α = 0, n = 2.

Formally, P reproduces analytic functions, since

(4.8) Pf(z) = (α+ 1)ϕ′(z)1−n
∫

Ω

K(z, ζ)ϕ′(ζ)n−1f(ζ) dm(ζ),
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and here the kernel

(4.9) K(z, ζ) :=
ϕ′(z)ϕ′(ζ)

(
1− |ϕ(ζ)|2

)α
(
1− ϕ(z)ϕ(ζ)

)2+α

is reproducing. To see this, use

(i) the fact that

(4.10) P
(α)
D f(z) = (α+ 1)

∫

D

(1− |ζ|2)α

(1− zζ̄)2+α
f(ζ) dm(ζ)

is the orthogonal projection from L2
(1−|z|2)α(D) onto A 2

(1−|z|2)α(D) , and

(ii) the Hilbert space isomorphism f 7→ (f ◦ ψ)ψ′ from L2
(1−|ϕ(z)|2)α(Ω) onto

L2
(1−|z|2)α(D) , and from A 2

(1−|ϕ(z)|2)α(Ω) onto A 2
(1−|z|2)α(D) .

We have the following

Lemma 4.4. The operator P , (4.7) , can be extended as a bounded projec-

tion from Lpω(Ω) onto A p
ω (Ω) , if and only if the projection P

(α)
D is bounded from

Lpν(D) onto A p
ν (D) , where

(4.11) ν(z) := |ψ′(z)|2−(2−n)p+a(1− |z|)a.

Proof. Since P reproduces an analytic function, we only need to worry about
its boundedness. But the proof for this is straightforward. Use e.g. the Koebe
distortion theorem (see [5, Corollary 1.4]), to see that the weight ω ◦ ψ(z) on D
is equivalent to the weight (1− |z|)a|ψ′(z)|a . We omit the details.

It is very useful for us that the boundedness of P
(α)
D in the situation of

Lemma 4.4 can be characterized in terms of a condition like (3.2), see [1]: P
(α)
D is

bounded on Lpν(D) , if and only if

(4.12) sup
S

∫

S

|ν| dmα

(∫

S

|ν|−p∗/p dmα

)p/p∗
≤ Cmα(S)p.

This immediately gives us

Theorem 4.5. Let Ω be an arbitrary regulated domain, let, for some a > −1 ,
ω(z) =

(
dist (z, ∂Ω))a and 1 < p < ∞ . Let P be as in (4.7) and assume

2− (2− n)p+ a > 0 . Then P is a bounded projection from Lpω(Ω) onto A p
ω (Ω) ,

if

(4.13)
2 + α+ a > (2− (2− n)p+ a)

δ1
π

and

(2− (2− n)p+ a)
δ2
π
> − p

p∗
(α+ 2) + a.
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Here δ1 and δ2 are as in Theorem 3.1. The converse statement is analogous
to Theorem 4.1. Also the formulation of the case 2 − (2 − n)p + a < 0 is left to
the reader.

Proof. The boundedness of P is equivalent to (4.12), by Lemma 4.4. This is
equivalent, in view of (4.11), to
(4.14)

sup
S

∫

S

|ψ′|2−(2−n)p+a dmα+a

(∫

S

|ψ′|−
p∗
p (2−(2−n)p+a) dmα−ap∗/p

)p/p∗
≤ Cmα(S)p,

which by Theorem 3.1 is satisfied, if (4.13) holds.

Taking a large enough α in Theorem 4.5 one obtains

Corollary 4.6. Let Ω be an arbitrary regulated domain, let, for some a >
−1 , ω(z) =

(
dist (z, ∂Ω)

)a
and 1 < p < ∞ . There exists a bounded projection

from Lpω(Ω) onto A p
ω (Ω) . The space A p

ω (Ω) is isomorphic to lp .

Proof. The operator f 7→ (f ◦ ψ)ψ′ is a linear homeomorphism from Lpω(Ω)
onto Lpν(D) and from A p

ω (Ω) onto A p
ν (D) , where ν(z) = |ψ′(z)|2−p+a(1− |z|)a .

Taking n = 1 and α large enough, Lemma 4.4 and Theorem 4.5 show that P
(α)
D

is a bounded projection Lpν(D) onto A p
ν (D) . But in view of [7, proof of Theorem

III.A.11], this suffices to establish that A p
ν (D) is isomorphic to lp .

References
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[2] Békollé, D.: Projections sur des espaces de fonctions holomorphes dans des domains
plans. - Canad. J. Math. XXXVIII, 1986, 127–157.

[3] Garnett, J.: Bounded Analytic Functions. - Academic Press, New York, 1981.

[4] Luecking, D.: Representation and duality in weighted spaces of analytic functions. -
Indiana Univ. Math. J. 34, 1985, 319–336. Erratum: Indiana Univ. Math. J. 35,
1986, 927–928.

[5] Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. - Grundlehren der mathe-
matischen Wissenschaften 299, Springer-Verlag, 1992.

[6] Taskinen, J.: Muckenhoupt-type condition for regulated domains. - Manuscript, 2001.

[7] Wojtaszczyk, P.: Banach Spaces for Analysts. - Cambridge University Press, 1991.

[8] Zhu, K.: Operator Theory in Function Spaces. - Marcel Decker, New York, 1995.

Received 16 May 2001


