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OF TEICHMÜLLER SPACE

FOR SURFACES WITH CUSPS

Ursula Hamenstädt
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Abstract. For g ≥ 0 and m ≥ 1 such that 2g−2+m ≥ 1 let Tg,m be the Teichmüller space
of hyperbolic metrics on a surface of genus g with m punctures, and let ∂Tg,m be its Thurston
boundary. Using geodesic length functions, we construct a homeomorphism of Tg,m ∪ ∂Tg,m onto
a convex finite-sided polyhedron in RP 6g−6+2m .

1. Introduction

A Riemann surface of finite type is a closed Riemann surface from which a
finite number m ≥ 0 of points, the so-called punctures, have been deleted. Such
a surface S0 is topologically determined by its genus g ≥ 0 and the number m of
its punctures. In the sequel we only consider surfaces S0 of negative Euler char-
acteristic with at least one puncture which are different from the thrice-punctured
sphere. Then S0 carries a nontrivial family of complete hyperbolic metrics of finite
volume.

The Teichmüller space Tg,m of marked hyperbolic metrics on S0 is the set
of all pairs (f, h) where h is a hyperbolic metric on a surface S and f is the
homotopy class of a homeomorphism F : S0 → S of S0 onto S . With respect to
a natural topology, the space Tg,m is homeomorphic to an open cell of dimension
6g − 6 + 2m .

A geodesic length function on Tg,m is defined by the choice of a closed curve
γ on the base surface S0 which is not nullhomotopic and not puncture parallel, i.e.
which cannot be homotoped into one of the punctures. For every hyperbolic metric
h on a surface S which is marked by the homotopy class of a homeomorphism
F : S0 → S the curve F (γ) is then freely homotopic to a unique closed geodesic
with respect to the metric h . The length lγ(S) of this geodesic depends on h
and the marking and defines a smooth (in fact real analytic) function lγ on Tg,m

which we call the length function of γ .
It is well known [FLP] that Teichmüller space can be parameterized by finitely

many of these length functions. A natural problem is then to find a collection
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γ1, . . . , γk of closed geodesics on our base surface S0 of minimal cardinality whose
length functions define an embedding of Tg,m into Rk . For surfaces with cusps,
i.e. if m ≥ 1, this problem was solved by Seppälä and Sorvali [SS2] who showed
that Tg,m can be parameterized by 6g− 6 + 2m length functions of simple closed
geodesics. For closed surfaces it is known that no embedding of Tg,0 into R6g−6

by 6g − 6 geodesic length functions exists. In this case the optimal answer was
given by Schmutz Schaller [S1] who found an embedding of Tg,0 by 6g−5 geodesic
length functions. In Section 4 of this note we construct a new and simpler such
embedding of Tg,0 into R6g−5 .

The Thurston boundary ∂Tg,m of Tg,m consists of projective classes of
measured geodesic laminations and is homeomorphic to a sphere of dimension
6g − 7 + 2m . It defines naturally a compactification of Tg,m in such a way that
Tg,m ∪ ∂Tg,m is homeomorphic to a closed ball.

To construct parameterizations of Tg,m which extend continuously to a ho-
meomorphism of the Thurston boundary we have to projectivize our k -tuple
of length functions. Namely, if the curves γ1, . . . , γk fill up, i.e. if every closed
geodesic on our surface intersects at least one of the curves γi transversely, then
the map which assigns to a surface S ∈ Tg,m the projectivized k -tuple

[
lγ1(S), . . . , lγk(S)

]
∈ RP k−1

of length functions extends continuously to the Thurston boundary by mapping
a measured lamination η to its projectivized k -tuple

[
i(η, γ1), . . . , i(η, γk)

]
∈

RP k−1 of intersection numbers. We call a map of Tg,m ∪ ∂Tg,m into RP k−1

geometric if it is defined in this way by geodesic length functions.

Call a subset P of the real projective space RP k−1 a finite-sided convex poly-
hedron if it is the projection of an intersection of finitely many closed halfspaces
in Rk . We show:

Theorem. For every g ≥ 0 and m ≥ 1 there is a geometric homeomorphism
of Tg,m ∪ ∂Tg,m onto a finite-sided convex polyhedron in RP 6g−6+2m .

The case of closed surfaces seems to be much more difficult. A geometric em-
bedding of Tg,0 into a real projective space of minimal dimension is only known for
g = 2 [S2]. In any case it can be easily computed that the projections into RP 6g−6

of the known embeddings of Tg,0 into R6g−5 do not extend to injective maps on
the Thurston boundary. On the other hand, there are 6g − 5 length functions of
simple closed geodesics which define a homeomorphism of the Thurston bound-
ary ∂Tg,0 onto the boundary of a finite-sided convex polyhedron in RP 6g−5 [H].
We do not know whether this embedding extends to an embedding of Tg,0 into
RP 6g−5 .
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2. Triangulations and laminations on surfaces with cusps

In this section we construct a homeomorphism of the space of measured lam-
inations on a surface S ∈ Tg,m with m ≥ 1 cusps onto the boundary of a convex
cone in R6g−5+2m .

First we look briefly at closed surfaces. A signed geodesic current on a closed
surface S of genus g ≥ 2 is a locally finite signed Borel-measure on the space
of unoriented geodesics in the hyperbolic plane H2 which is invariant under the
action of the fundamental group π1(S) of S . The space S C of signed geodesic
currents for S , equipped with the weak∗ -topology, is a topological vector space
which only depends on the topological type of S . It contains the space C of
geodesic currents which consists of all nonnegative elements of S C as a closed
subcone.

There is a bilinear form i on S C , the so called intersection form, whose re-
striction to C is continuous with respect to the weak∗ -topology [B], but it is not
continuous globally as a form on S C . The subset L of C of all geodesic currents
µ ∈ C with vanishing self-intersection i(µ, µ) = 0 is the closed cone of measured
geodesic laminations and is homeomorphic to R6g−6 [FLP]. However, L is not
contained in any finite-dimensional linear subspace of S C . The projectivization
PL of the space of nonzero measured geodesic laminations defines a compact-
ification of the Teichmüller space Tg,0 which is called the Thurston boundary.
Every closed geodesic ψ on S can naturally be viewed as a geodesic current and
hence via µ → i(ψ, µ) it defines a linear functional on S C whose restriction to
C and hence to L is continuous.

We can also consider the space L of measured geodesic laminations on hy-
perbolic surfaces with cusps. By definition, a measured geodesic lamination for
such a surface S with m ≥ 1 cusps is a compact subset of S which is foliated by
geodesics and equipped with a transverse invariant measure.

Now let m ≥ 1 and let S ∈ Tg,m . Fix one of the cusps of S and denote it
by O . Choose 6g − 5 + 2m simple mutually disjoint geodesics η̃1, . . . , η̃6g−5+2m

on S whose two ends go into the cusp O and which decompose S into 4g−3 +m
ideal triangles and m− 1 once-punctured discs (see [S3]).

If ψ is any closed geodesic on S then ψ is contained in a compact subset of
S and hence it intersects each of the geodesics η̃i transversely in a finite number
of points. We denote by i(ψ, η̃i) the number of intersections of ψ with η̃i . Since
measured laminations on S have compact support, intersection of closed geodesics
with one of the curves η̃i extends to a continuous convex-linear functional i( · , η̃i)
on the space L .

The intersection of each closed geodesic ψ on S with one of the ideal triangles
T cut out by the geodesics η̃i consists of a finite number of simple arcs. Each
of these arcs has its endpoints on two different sides of T . In other words, the
number of intersections of ψ with a fixed side of T is not smaller than the sum
of the number of intersections with the two other sides. In particular, the 6g −
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5 + 2m -tuple of intersection numbers of ψ with the geodesics η̃i is contained in
the intersection of a collection of 10g − 8 + 3m halfspaces bounded by a linear
hyperplane through the origin. The boundary A ⊂ R6g−5+2m of this convex cone
equals the set of all 6g − 5 + 2m -tuples (a1, . . . , a6g−5+2m) of nonnegative real
numbers with the following properties:

(1) ai ≤ aj + ak if the geodesics η̃i, η̃j , η̃k are the sides of an ideal triangle in S .

(2) There is at least one ideal triangle in S with sides η̃i, η̃j , η̃k and such that
ai = aj + ak .

In particular, A is a cone with vertex at the origin over the boundary ∂P of
a convex polyhedron P in the unit sphere S6g−6+2m ⊂ R6g−5+2m . Since the
boundary of a convex polyhedron in S6g−6+2m is homeomorphic to a sphere of
dimension 6g − 7 + 2m , our set A is homeomorphic to R6g−6+2m .

We summarize our discussion in the following lemma.

Lemma 2.1. A is a cone with vertex at the origin over the boundary of
a convex finite-sided polyhedron in the sphere S6g−6+2m . In particular, A is
homeomorphic to R6g−6+2m .

Lemma 2.2. The map µ ∈ L →
(
i(η̃1, µ), . . . , i(η̃6g−5+2m, µ)

)
∈ R6g−5+2m

is a homeomorphism of L onto A .

Proof. For µ ∈ L write Φ(µ) =
(
i(η̃1, µ), . . . , i(η̃6g−5+2m, µ)

)
. We show first

that the map Φ is injective. By continuity, for this it suffices to show that every
simple closed geodesic multicurve γ (i.e. a finite union of pairwise disjoint simple
closed geodesics, possibly multiple covered) is determined by Φ(γ) .

By assumption, the arcs η̃i define a decomposition of S into 4g − 3 + m
ideal triangles with vertices at the cusp O and m − 1 punctured discs. Each
arc is either the common side of exactly two triangles or it is the common side
of one triangle and one once-punctured disc. Let γ be a simple closed geodesic
multicurve on S and let T be a triangle from our triangulation of S with sides
β1, β2, β3 . Write ji = i(βi, γ) and assume that j1 ≥ j2 ≥ j3 . Since the interior
of T is contractible in the compactification of S , the total intersection number
j1 + j2 + j3 of γ with the boundary of T is even and hence j2 + j3− j1 is even as
well. Moreover we have j1 ≤ j2 + j3 . Draw 1

2 (j2 + j3− j1) simple arcs connecting
the sides β2 and β3 , j2 − 1

2 (j2 + j3 − j1) simple arcs connecting the sides β1 and
β2 , j3− 1

2 (j2 + j3− j1) simple arcs connecting the sides β1 and β3 in such a way
that all these arcs are disjoint. The configuration of these arcs in T is uniquely
determined up to homotopy by j1, j2, j3 .

If η̃i is the boundary of a once-punctured disc D then each connected com-
ponent of γ ∩D has its two endpoints on η̃i and therefore i(γ, η̃i) = 2k for some
k ≥ 0. Draw k simple arcs in D with endpoints on η̃i and the additional prop-
erty that each of these arcs separates the puncture in the interior of D from the
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puncture on the boundary. Once again, this configuration is determined uniquely
up to homotopy by the number 2k .

The thus constructed arcs in the 4g−3+m triangles and m−1 punctured discs
of our triangulation can be connected in a unique way to a simple closed multicurve
ψ on S . This multicurve is determined up to isotopy by the intersection numbers
with the geodesics η̃1, . . . , η̃6g−5+2m .

To show that ψ is isotopic to γ we just have to verify that each connected
component of the intersection of γ with a punctured disc D separates the puncture
in the interior from the puncture on the boundary. But this follows from the fact
that those arcs are the only simple arcs in D which are not freely homotopic
relative to the boundary of D to an arc contained in the boundary. Thus γ is
uniquely determined by Φ(γ) (compare the discussion in [FLP]) and Φ is injective.

We are left with showing that the image of L under the map Φ equals
the cone A . We show first that ΦL is contained in A . For this recall from
our consideration above that every 6g − 5 + 2m -tuple (b1, . . . , b6g−5+2m) of even
nonnegative integers with the additional property that bi ≤ bj + bk whenever
the geodesics η̃i, η̃j , η̃k are the sides of an ideal triangle determines uniquely a
(possibly multiple covered) simple closed multicurve (compare [FLP]). However,
not every such multicurve is freely homotopic to a simple geodesic multicurve.
Namely, a simple closed curve which is parallel to the cusp O corresponds to the
6g − 5 + 2m -tuple (2, . . . , 2). Since the homotopy class of this curve cannot be
represented by a simple closed geodesic, a 6g−5+2m -tuple of equal even positive
integers does not occur as the intersection tuple of a geodesic lamination.

Denote by B ⊂ R6g−5+2m the set of all 6g−5+2m -tuples (b1, . . . , b6g−5+2m)
of nonnegative numbers with the additional property that bi ≤ bj + bk if η̃i, η̃j , η̃k
are the sides of a triangle in S . If (b1, . . . , b6g−5+2m) ∈ B is such that for each
triangle in S with sides η̃i, η̃j , η̃k the strict inequality bi < bj + bk holds, then
there are β > 0 and (a1, . . . , a6g−5+2m) ∈ A such that (b1, . . . , b6g−5+2m) =
(a1, . . . , a6g−5+2m) + β(2, . . . , 2). As before, if the numbers ai are even integers,
then the vector (a1, . . . , a6g−5+2m) defines a unique simple closed multicurve µ
in S . Let γ be a simple closed curve which is parallel to the cusp O and which does
not intersect µ . Then µ ∪ βγ is a weighted multicurve whose intersection tuple
equals (b1, . . . , b6g−5+2m) . By uniqueness, (b1, . . . , b6g−5+2m) does not define a
measured lamination. From continuity we therefore conclude that the image of Φ
is contained in A .

To show that Φ maps L onto A , recall that a tuple (m1, . . . ,m6g−5+2m) ∈
A with even integers as coefficients determines uniquely up to isotopy a simple
closed multicurve µ which does not contain any puncture parallel component.
In particular, µ is isotopic to a geodesic multicurve γ . Our discussion above
(compare also [FLP]) shows that the 6g−5+2m -tuple of intersection numbers for
γ with the geodesics η̃i coincides with (m1, . . . ,m6g−5+2m) . But this just means
that we can define a map from A to L which is inverse to Φ. This finishes the
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proof of the lemma.

As a corollary, we find the following well-known fact [FLP].

Corollary 2.3. The space L of measured geodesic laminations on a surface
of genus g ≥ 1 with m ≥ 1 cusps is homeomorphic to an open cell of dimension
6g − 6 + 2m .

We assign now to each of the geodesics η̃i a closed geodesic with two self-
intersections as follows. For each i the geodesic η̃i is contained in a unique once-
punctured annulus A ⊂ S with geodesic boundary. Let ψi be the closed geodesic
in A with two self-intersections which intersects the perpendicular ν between the
boundary geodesics of A twice and is invariant under reflection along ν . The
next lemma shows that measured laminations on a surface of genus g with m ≥ 1
punctures can be parameterized by their intersections with the 6g−5+2m closed
geodesics ψ1, . . . , ψ6g−5+2m .

Lemma 2.4. Let µ ∈ L be a measured geodesic lamination. Then i(µ, ψi) =
2i(µ, η̃i) for all i ; in particular, the map

Ψ: µ→
(
i(µ, ψ1), . . . , i(µ, ψ6g−5+2m)

)

is a homeomorphism of L onto A .

Proof. As before, it is enough to show the statement of the lemma for simple
closed geodesic multicurves. Consider again the once-punctured annulus A con-
taining η̃i and ψi . Its boundary consists of simple closed geodesics σ, σ̂ . There is
no simple closed geodesic contained in the interior of A , so the intersection with
A of each simple closed geodesic multicurve is a finite collection of simple arcs
with endpoints on the boundary. There are only 3 different free homotopy classes
of such simple arcs in A relative to the boundary. For each of these classes, it can
be checked explicitly that the number of its intersections with the geodesic ψi is
twice the number of its intersections with η̃i .

3. Length functions for surfaces with cusps

In Section 2 we constructed for every g ≥ 0 and m ≥ 1 such that 2g−2+m ≥
1 a collection of 6g−5+2m free homotopy classes on a surface of genus g with m
cusps which parameterize the space of measured geodesic laminations L via inter-
section. The projectivization of this parameterization defines a homeomorphism of
the Thurston boundary of Tg,m onto the boundary of a finite-sided convex poly-
hedron P in RP 6g−6+2m . The purpose of this section is to show that the length
functions of these curves define a homeomorphism of Teichmüller space onto the
interior of P . For this we continue to use the assumptions and notations from
Section 2.
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As in Section 2 we fix one of the punctures of a surface S ∈ Tg,m and call it O .
Consider once again a collection of 6g−5 + 2m simple geodesics η̃1, . . . , η̃6g−5+2m

whose two ends go into the cusp O and which decompose S into 4g − 3 ideal
triangles and m−1 once-punctured discs. We call this decomposition the preferred
triangulation of our surface S , and we call O the preferred puncture. For each i
the length of the geodesic η̃i is infinite; however, we can assign a relative length
lη̃i(S) to it as follows. The puncture O of S admits a neighborhood in S which
is isometric to a standard cusp C [Bu]. By definition, such a standard cusp can
be identified with the cylinder [− log 2,∞) × S1 with the metric d%2 + e−2% dt2 .
We define the height of a point in C to be the value of the % -coordinate in this
representation.

Let 4∞ be an ideal triangle in H2 . It contains a unique finite equilateral
triangle T with vertices on the sides of 4∞ and which is invariant under all
isometries of 4∞ . For every ideal vertex ξ of 4∞ there is a unique horocircle
H at ξ which passes through two of the vertices of T . Choose a number %0 > 0
in such a way that 2πe−2%0 is smaller than the length of the intersection of the
horocircle H with 4∞ . Explicit computation shows that this is the case if and
only if we have %0 ≥ − log

(
sinh

(
1
2arccosh

(
3
2

))
/π
)
∼ 1.838. Every geodesic going

into the cusp meets the circles % = const orthogonally and hence, since both ends
of the geodesic η̃i go into the cusp, each choice of a height cuts from η̃i a unique
compact arc of finite length. Denote by lη̃i(S) the length of the subarc of η̃i which
corresponds to the height %0 .

Proposition 3.1. The map

Λ: S ∈ Tg,m →
(
lη̃1(S), . . . , lη̃6g−5+2m(S)

)
∈ R6g−5+2m

is a diffeomorphism of Tg,m onto a hypersurface in R6g−5+2m .

Proof. Consider again an ideal triangle 4∞ in H2 with sides a1, a2, a3 .
We parameterize the geodesics ai by arc length in such a way that the origin
corresponds to the vertex zi of the subtriangle T ⊂ 4∞ on ai and that the
orientations of ai define the boundary orientation of 4∞ . The distinguished
points zi, zi+1 lie on a common horocircle through the point ai(∞) .

For given numbers l1, l2, l3 > 0 define

xi = ai
(

1
2 (−li + li+1 − li+2)

)
, yi = ai

(
1
2 (li + li+1 − li+2)

)
.

The distance between xi and yi equals li , and the points yi and xi+1 are con-
tained in a common horocircle at ai(∞) . If we identify the sides of 4∞ with R in
the above way, then the assignment which maps (l1, l2, l3) to the triple (x1, x2, x3)
of points on the three different sides of 4∞ is a real analytic diffeomorphism onto
its image.
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Now let (l1, . . . , l6g−5+2m) be any 6g − 5 + 2m -tuple of positive numbers. If
i, j, k ≤ 6g−5+2m are such that the geodesics η̃i, η̃j , η̃k are the sides of a triangle
of our preferred triangulation, then the triple (li, lj , lk) determines uniquely three
arcs of length li, lj , lk on the three sides of an ideal triangle 4∞ . Moreover,
there is a distinguished point on the boundary geodesic of a once-punctured disc
which is just the orthogonal projection of the puncture to the boundary. Each
number l ≥ 0 then determines a compact arc of length l on the boundary of a
once-punctured disc whose midpoint is this distinguished point.

Each geodesic η̃i is either a common side of exactly two ideal triangles from
our triangulation, or a common side of one triangle and a once-punctured disc.
Each such pair of sides can be glued with an isometry which identifies the dis-
tinguished arcs of length li and reverses the orientation. The result of these
6g− 5 + 2m glueings is a complete hyperbolic surface with m cusps and a distin-
guished horocircle going around one of the cusps. The length of this horocircle is
the sum of the lengths of all the horocyclic arcs connecting pairs of endpoints of
our distinguished boundary segments in each of the triangles and once-punctured
discs.

Our construction defines a real analytic map µ of R6g−5+2m
+ into Tg,m which

satisfies µ◦Λ = Id and hence is surjective. A point (l1, . . . , l6g−5+2m) ∈ R6g−5+2m
+

belongs to the image of Λ if and only if the total length of the distinguished
horocircle in the surface constructed from (l1, . . . , l6g−5+2m) in the above way
equals 2πe−2%0 . In particular, the map Λ is a real analytic diffeomorphism of
Tg,m onto a smooth hypersurface in R6g−5+2m .

Let Π: R6g−5+2m − {0} → RP 6g−6+2m be the canonical projection. The
map Π ◦ Λ: Tg,m → RP 6g−6+2m is real analytic.

Corollary 3.2. The map Π◦Λ is a diffeomorphism of Tg,m onto the interior
of a finite-sided closed convex polyhedron P in RP 6g−6+2m which extends to a
homeomorphism of Tg,m ∪ ∂Tg,m onto P .

Proof. Let again 4∞ be an ideal triangle in H2 and consider a horocyclic
arc through one of its ideal vertices ζ which passes through the two distinguished
points on the sides adjacent to ζ . By the choice of %0 , the length of this arc
is bigger than 2πe−2%0 . It therefore follows from the construction in the proof
of Proposition 3.1 that for every (l1, . . . , l6g−5+2m) ∈ ΛTg,m and for every triple
i, j, k which defines a triangle of our triangulation we have li < lj + lk .

Denote by a1, a2, a3 the sides of the ideal triangle 4∞ and let (l1, l2, l3) be
a triple of positive reals such that li < li+1 + li+2 for all i (indices are taken
mod 3). In the proof of Proposition 3.1 we constructed from this triple for each i
a subsegment αi of length li of the side ai of 4∞ . For ε > 0 denote by α̃i the
subsegment of ai which is induced by the triple

(
(1 + ε)l1, (1 + ε)l2, (1 + ε)l3

)
.

Since li < li+1 + li+2 , our explicit construction of the segments αi, α̃i shows that
αi is a subarc of α̃i . But this means that the length of each of the three horocyclic
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arcs in 4∞ connecting pairs of endpoints of the segments α̃i as above is strictly
shorter than the length of the corresponding horocyclic arc connecting endpoints of
the segments αi . Similarly, the horocyclic arc connecting points on the boundary
geodesic of a once-punctured disc which is determined by the length (1 + ε)l is
shorter than the arc determined by the length l .

Thus replacing a tuple (l1, . . . , l6g−5+2m) in our construction above by a mul-
tiple with factor 1 + ε > 1 results in decreasing the length of our distinguished
horocircle. In particular, Π◦Λ is injective. The proposition now follows from this
and Lemma 2.2.

In Section 2 we associated to each of the geodesics η̃i on a surface S ∈ Tg,m a
closed geodesic ψi (i = 1, . . . , 6g− 5 + 2m) on S . The “length” lη̃i(S) of η̃i on S
can be computed from the length lψi(S) of ψi as follows. In the hyperbolic plane
H2 draw a geodesic segment ν of length lψi(S)/4. Let ζ1, ζ2 be the orthogonals
of ν through the endpoints of ν . There is a unique geodesic line ζ3 in H2 with
one endpoint at ζ1(∞) which intersects the geodesic ζ2 orthogonally in a point x .
Through each point of ζ3 passes a horocircle at ζ3(∞) = ζ1(∞) which intersects
the geodesic ζ1 . The length of the subarc of this horocircle with endpoints on
ζ1 and ζ3 decreases exponentially along ζ3 . Thus there is a unique point y on
ζ3 such that this length equals πe−2%0 . Then lη̃1(S)/2 is the oriented distance
between x and y . This observation is summarized in the following lemma.

Lemma 3.3. There is a strictly increasing real analytic function ϕ: [0,∞)→
[0,∞) such that for every i ≤ 6g − 5 + 2m and every surface S ∈ Tg,m we have
lη̃i(S) = ϕ

(
lψi(S)

)
. In particular, the map

Ψ: S ∈ Tg,m →
(
lψ1(S), . . . , lψ6g−5+2m(S)

)
∈ R6g−5+2m

is a diffeomorphism onto its image.

The fact that a surface S ∈ Tg,m is uniquely determined by the lengths of
the geodesics ψi was earlier observed by Seppälä and Sorvali [SS2] (see also [S3]).

Recall from Section 2 that the image of the space PL of projective measured
laminations under the map [µ] →

[
i(ψ1, µ), . . . , i(ψ6g−5+2m, µ)

]
is the boundary

∂P of a compact convex polyhedron P in RP 6g−6+2m with finitely many sides.

Lemma 3.4. The image of Tg,m under the map Π ◦Ψ equals the interior of
the convex polyhedron P .

Proof. It follows from Lemma 2.4 that the map Π◦Ψ extends continuously to
a homeomorphism of ∂Tg,m onto the boundary ∂P of the polyhedron P . Since
Tg,m∪∂Tg,m is homeomorphic to a closed ball it is therefore enough to show that
the image of Tg,m under Π ◦Ψ is contained in the interior of P .

For j ∈ {1, . . . , 6g − 5 + 2m} and a measured lamination µ on a surface of
genus g with m punctures define αj(µ) = i(ψj , µ) . Then αj is a linear functional
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on the space L of measured laminations. Each side B of codimension 1 of our
polyhedron P is either the projection of a hyperplane defined by the equation
αj = 0 for some j ∈ {1, . . . , 6g − 5 + 2m} or there is a triangle of our preferred
triangulation with sides η̃i, η̃j , η̃k and such that B is the intersection with P of
the projection of the linear hyperplane defined by αi + αj − αk = 0. Thus it is
enough to show that whenever η̃i, η̃j , η̃k are the sides of a triangle of our preferred
triangulation, then lψi(S) + lψj (S)− lψk(S) > 0 for every S ∈ Tg,m .

By Lemma 3.3 there is a real analytic monotonously increasing function
f : (0,∞)→ (0,∞) such that lη̃i(S)/2 = f

(
lψi(S)/4

)
for all i ≤ 6g − 5 + 2m and

all S ∈ Tg,m . The function f can be computed explicitly as follows (see [S3]). For
some small ε > 0 replace our surface S with cusps by a surface Sε with geodesic
boundary and such that the length of each boundary component equals ε . Define
the length lη̃i(Sε) as the length of the perpendicular to the boundary component
of Sε which corresponds to the preferred cusp O of S and whose free homotopy
class relative to the boundary corresponds to η̃i . The closed geodesic ψi on Sε
and its length lψi(Sε) is also defined. Hyperbolic trigonometry shows [S3] that

lη̃i(Sε)/2 = arsinh
(
sinh(ε/2)−1 cosh

(
lψi(Sε)/4

))
.

By definition of our functions lη̃i there is a sequence of constants aε → ∞ such
that lη̃i(Sε)− aε → lη̃i(S) for all S ∈ Tg,m ; moreover, we have lψi(Sε)→ lψi(S) .
Since arsinh (t)− log(t)+log(2)→ 0 (t→∞) we conclude that there is a constant
c ∈ R such that

lη̃i(S)/2 = log cosh
(
lψi(S)/4

)
+ c.

It follows from our explicit construction that we may adjust our normalization
for the definition of the functions lη̃i (i.e. the choice of the height %0 ) in such a
way that c = 0. Then we have f(t) = log cosh(t) , or equivalently, lψi(S)/4 =
arcosh elη̃i (S)/2 for all S ∈ Tg,m .

Now lη̃i(S) + lη̃j (S) − lη̃k(S) > 0 for every S ∈ Tg,m and all i, j, k such
that the geodesics η̃i, η̃j , η̃k form a triangle of the preferred triangulation. Since
the function t→ arcosh (et) is a strictly increasing concave diffeomorphism of the
half-line [0,∞) we conclude that also lψi(S) + lψj (S) − lψk(S) > 0. This shows
the lemma.

We can use Lemma 3.3 and Lemma 3.4 to complete the proof of our theorem
from the introduction.

Proposition 3.5. The map Π◦Ψ: Tg,m → RP 6g−6+2m is a diffeomorphism
of Tg,0 onto the interior of a finite-sided convex polyhedron P in RP 6g−6+2m

which extends to a homeomorphism of Tg,m ∪ ∂Tg,m .

Proof. Since Ψ is a diffeomorphism of Tg,m onto a smooth hypersurface in
R6g−5+2m it is enough to show that for every S ∈ Tg,m the line through Ψ(S)
and the origin is not tangent to the hypersurface Ψ(Tg,m) at Ψ(S) .



Length functions and parameterizations of Teichmüller space 85

For this we assume to the contrary that there is a surface S ∈ Tg,m and a
smooth curve c(t) ⊂ Tg,m through c(0) = S such that

d

dt
Ψ
(
c(t)
) ∣∣∣

t=0
= Ψ

(
c(0)

)
.

Hyperbolic trigonometry shows that the lengths of the geodesics ψi are bounded
from below by 2 arsinh (4π) ∼ 6.45. Recall from the proof of Lemma 3.4 that for a
suitable choice of a height at the cusp O we have lη̃i(M)/2 = log cosh

(
lψi(M)/4

)

for all i and all M ∈ Tg,m and therefore

d

dt
lη̃i
(
c(t)
)
/2
∣∣∣
t=0

= lψi(S) tanh
(
lψi(S)/4

)
/4.

The function σ: s→ log cosh(s)+log(2)−s tanh(s) is monotonously decreas-
ing with s and tends to 0 as s → ∞ . Its value at 1.5 is smaller than (log 2)/3.
By the above, for s = lψi(S)/4 we have

0 < σ(s) =
1

2
lη̃i(S) + log 2− d

dt

(
1

2
lη̃i
(
c(t)
)) ∣∣∣

t=0
<

log 2

3

and, in particular,

1

2
lη̃i(S) +

2

3
log 2 <

d

dt
lη̃i
(
c(t)
) ∣∣∣

t=0
<

1

2
lη̃i(S) + log 2.

Lemma 3.4 and its proof show that for every triangle of our preferred triangulation
with sides η̃i, η̃j , η̃k we have lη̃i(S) < lη̃j (S) + lη̃k(S) . From this and the above we
conclude that

d

dt
lη̃i
(
c(t)
) ∣∣∣

t=0
+
d

dt
lη̃j
(
c(t)
) ∣∣∣

t=0
− d

dt
lη̃k
(
c(t)
) ∣∣∣

t=0
> 0.

Our explicit construction in the proof of Lemma 3.1 then shows that the differential
at 0 of the length of the distinguished horocircle in the surface c(t) is negative.
This contradicts the definition of the functions lη̃i and therefore our hypersur-
face Ψ(Tg,m) is nowhere tangent to the lines through the origin. This shows the
proposition.
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4. Length functions on closed surfaces

The purpose of this section is to construct a simple parameterization of Tg,0

by 6g − 5 geodesic length functions and hence to give a new and simpler proof of
the result of Schmutz Schaller [S1].

For this let S ∈ Tg,0 be a closed hyperbolic surface and let ν0 be a simple
closed separating geodesic on S such that after cutting S open along ν0 we obtain
a bordered torus T0 and a bordered surface S0 of genus g − 1. Let ν1, ν2, ν3 be
simple closed geodesics on T0 which mutually intersect in a single point. If we cut
S open along ν1 then we obtain a connected surface S1 of genus g − 1 with two
boundary circles. Denote one of the boundary circles by O .

We can use our definition of the geodesic arcs η̃i from Lemma 2.2 also for
surfaces with geodesic boundary by requiring that these arcs meet the boundary
circle O perpendicularly at both of their endpoints. This then defines a collection
of 6g−7 simple geodesic arcs η̃1, . . . , η̃6g−7 on S1 which decompose S1 into 4g−5
right-angled hexagons and one annulus A with piecewise geodesic boundary. One
boundary component of A is the boundary circle of S1 different from O . We
choose the numbering of our geodesic arcs in such a way that the second boundary
component of A contains the geodesic η̃6g−7 as a subarc.

For each i ≤ 6g − 8 the geodesic η̃i is contained in a unique pair of pants
P ⊂ S1 whose geodesic boundary consists of the circle O and two additional
simple closed geodesics σ, σ̂ . Let ψi be the closed geodesic in P with two self-
intersections which intersects the perpendicular ν of the geodesics σ, σ̂ twice and
is invariant under reflection along ν . We view ψi as a geodesic on S . Write,
moreover, ψ6g−8+i = νi ⊂ T0 ⊂ S .

We can now show that the length functions of the family ψ1, . . . , ψ6g−5 of
6g − 5 closed geodesics define an embedding of Tg,0 into RP 6g−5 .

Proposition 4.1. The map

Ψ0: S ∈ Tg,0 →
(
lψ1(S), . . . , lψ6g−5(S)

)
∈ R6g−5

is a diffeomorphism onto its image.

Proof. Consider the subtorus T0 of the closed hyperbolic surface S of genus g .
The simple closed geodesics νi = ψ6g−8+i ⊂ T0 (i = 1, 2, 3) mutually intersect in a
single point. Seppälä and Sorvali ([SS1], compare also [SS5] and [S1]) showed that
the length functions of the geodesics ν1, ν2, ν3 determine the hyperbolic structure
of T0 and the length of its boundary geodesic.

Let again S1 be the subsurface of S of genus g−1 with two boundary circles
which we obtain by cutting S along the geodesic ν1 = ψ6g−7 ⊂ T0 . Recall from
Section 2 the definition of the geodesic arc η̃6g−7 in S1 ; it is contained in the torus
T0 and therefore its length is determined by the lengths of the geodesics νi .
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As above let η̃j (j ≤ 6g− 8) be the simple geodesic arcs in S1 which decom-
pose S1 into 4g− 5 right-angled hexagons and one annulus and which we used to
define our geodesics ψj . Hyperbolic trigonometry shows that

cosh
(
lψi(S)/4

)
= sinh

(
lη̃i(S)/2

)
sinh(lν1(S)/2)

(compare [S3]). In particular, the lengths of the arcs η̃j (1 ≤ j ≤ 6g − 8) are
determined by the lengths of the geodesics ψj and the length of the boundary
geodesic ν1 = ψ6g−7 . By construction, the arcs η̃j (j = 1, . . . , 6g − 7) determine
the hyperbolic structure of a collection of 4g− 5 right-angled hexagons which can
be glued in a unique way to form the complement Ŝ1 of an annulus A in the
surface S1 . The boundary of A consists of one closed geodesic and one right-
angled geodesic bigon. The hyperbolic structure of the annulus is completely
determined by the length lν1(S) of the boundary circle and the length of the arc

η̃6g−7 . Moreover, there is a unique way to glue A to our subsurface Ŝ1 of S1

which is composed of our right-angled hexagons and such that we obtain a smooth
hyperbolic surface with two boundary components. But this just means that the
hyperbolic structure of S1 is determined.

The surface S is obtained from S1 by glueing the two boundary geodesics
with a suitable twist. Since the boundary of S1 is contained in the torus T0 , the
twist parameter for the glueing is determined by the hyperbolic structure on T0 .
Thus the lengths of the geodesics ψj determine the hyperbolic structure on S .
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[H] Hamenstädt, U.: Parameterizations of Teichmüller space and its Thurston boundary. -
In: Geometric Analysis and Nonlinear Partial Differential Equations, Proceedings of
the SFB 256 Bonn (to appear).
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