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Abstract. Let A: H1
0 (Ω) → H−1(Ω) be Lipschitz and monotone operator; let 〈 · , · 〉 stand

for the dual bracket between H1
0 (Ω) and H−1(Ω) . For given functions ϕ , ψ we define (under

suitable assumptions) the admissible set Kψ
ϕ := {v ∈ H1

0 (Ω) : ϕ ≤ v ≤ ψ a.e. in Ω} .
Next for sequences (ϕn) , (ψn) , converging to ϕ , ψ , respectively, we consider the sequence

of admissible sets (Kψn
ϕn ) defined as Kψn

ϕn := {v ∈ H1
0 (Ω) : ϕn ≤ v ≤ ψn a.e. in Ω} . Then for

f ∈ H−1(Ω) we discuss the following obstacle problems.
(Pn) : Find un ∈ Kψn

ϕn : 〈Aun, vn − un〉 ≥ 〈f, vn − un〉 for all vn ∈ Kψn
ϕn

and
(P ) : Find u ∈ Kψ

ϕ : 〈Au, v − u〉 ≥ 〈f, v − u〉 for all v ∈ Kψ
ϕ .

The above problems represent the so-called double global obstacle problem. See [2], [3] for
existence and regularity results.

The purpose of this paper is to study convergence (in certain sense) of the solutions un of
(Pn) providing the sequences of impediments converge to their limits. Such problems are known
as “varying obstacle problems”.

We extend here the results given in [6] where the author has considered the global obstacle
problem (see [2], [3] for definitions, existence and regularity results).

1. Introduction

In this paper we study continuity properties corresponding to double global
obstacle problems. We consider two sequences of impediments (ϕn) and (ψn)
converging to ϕ and ψ , respectively. Let un for n ∈ N denote the solution of
the double global obstacle problem with the admissible set Kψn

ϕn = {v ∈ H1
0 (Ω) :

ϕn ≤ v ≤ ψn a.e. in Ω} . We analyze the convergence of the sequence (un) to the
solution u of the obstacle problem with the admissible set Kψ

ϕ = {v ∈ H1
0 (Ω) :

ϕ ≤ v ≤ ψ a.e. in Ω} . Certain assumptions are imposed on the functions ϕn
and ψn .

We present two results. In the first one we assume that the sequence (ϕn)
converges to ϕ from below while (ψn) converges to ψ from above. We prove that
the solutions un approach u . We also give an example illustrating that if one
of the assumptions is not satisfied then the convergence of impediments does not
imply convergence of the solutions to the solution of the limit problem.
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In the second one we assume that both (ϕn) and (ψn) converge to ϕ and
ψ , respectively, from above. Moreover, the functions ϕn are convex while ψn are
concave. Then the solutions un approach the solution of the limit problem.

The proofs are based on properties of H1
0 (Ω) functions, Sobolev’s embedding

theorem and Minty’s lemma.

2. Notation and basic definitions

Throughout this paper we shall use the following notation and assumptions
if not stated otherwise:

Ω ⊂ Rn bounded domain with smooth boundary ∂Ω;

H1(Ω) is the Sobolev space W 1,2(Ω);

H1
0 (Ω) represents H1 closure of C∞0 (Ω);

( · , · ) stands for the inner product in L2(Ω);

Q(Ω) is the vector space of equivalent classes of quasi-continuous functions;

L2
c(Ω) :=

{
ϕ ∈ Q(Ω) : ṽ ≥ |ϕ| quasi-everywhere in Ω for v ∈ H1

0 (Ω), where

ṽ is a quasi-continuous representative of v
}

.

The definitions of a quasi-continuous function, properties which hold quasi-every-
where and Q(Ω) can be found in [5].

It is well known (see [4]) that the sequence of solutions (un) converges strongly
to u in H1

0 (Ω) provided (Kψn
ϕn ) is a sequence of closed, convex subsets of H1

0 (Ω)

which converges to Kψ
ϕ in the sense of Mosco.

The capacity problems allowed to introduce necessary and sufficient conditions
for convergence in the sense of Mosco of sequences of the convex admissible sets;
see [1]. Referring to the result mentioned we recall that (un) converges strongly
to u in H1

0 (Ω) provided (ϕn) and (ψn) converge to ϕ , ψ in L2
c(Ω).

Similarly as in [6] we define the class of obstacles converging from above and
from below. More precisely:

Definition 1. We say that the sequence (γn) converges to γ from below
(above) a.e. in Ω provided:

(i) γn −→
n→∞

γ a.e. in Ω,

(ii) for all n ∈ N γn ≤ γ (γn ≥ γ ) a.e. in Ω.

Definition 2. We say that the sequence (γn) converges to γ from below
(above) in L2(Ω) provided:

(i) γn −→
n→∞

γ in L2(Ω),

(ii) for all n ∈ N γn ≤ γ (γn ≥ γ ) a.e. in Ω.
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Throughout this paper we agree that we are given an operator A: H1
0 (Ω) →

H−1(Ω) which is Lipschitz and monotone i.e. there exist α, γ > 0 such that for
all u, v ∈ H1

0 (Ω)

‖Au−Av‖ ≤ γ‖u− v‖,
〈Au−Av, u− v〉 ≥ α‖u− v‖2;

f ∈ H−1(Ω) and functions ϕn, ϕ, ψn, ψ ∈ L2
c(Ω), n ∈ N .

We consider double global obstacle problems Pn with impediments ϕn, ψn
given by:

Pn : Find un ∈ Kψn
ϕn :=

{
v ∈ H1

0 (Ω) : ϕn ≤ v ≤ ψn a.e. in Ω
}

such that

〈Aun, vn − un〉 ≥ 〈f, vn − un〉 for all vn ∈ Kψn
ϕn

and the double global obstacle problem P with impediments ϕ,ψ defined as:
P : Find u ∈ Kψ

ϕ :=
{
v ∈ H1

0 (Ω) : ϕ ≤ v ≤ ψ a.e. in Ω
}

such that

〈Au, v − u〉 ≥ 〈f, v − u〉 for all v ∈ Kψ
ϕ .

3. Continuity results

Our first result consists in showing that the solution of the double global
obstacle problem with impediments ϕ and ψ can be obtained as the limit (in the
H1

0 (Ω) space) of the solutions un with impediments ϕn, ψn converging to ϕ,ψ
from below and above, respectively. Observe that monotonicity of the sequences
(ϕn) and (ψn) is not required.

The proof is based on properties of H1
0 (Ω) functions taking advantage of

Sobolev’s embedding theorem and Minty’s lemma.

Theorem 1. If we assume that the sequences (ϕn) and (ψn) converge a.e.
in Ω to ϕ and ψ from below and above, respectively, and ϕn ≤ ψn a.e. in Ω ,
ϕn|∂Ω ≤ 0 , ψn|∂Ω ≥ 0 then the solutions un of the double global obstacle problem
Pn converge strongly in H1

0 (Ω) to the solution u of the double global obstacle
problem P .

Here we present an example which illustrates that convergence from above of
the impediments does not necessarily imply convergence of solutions to the limit
solution.

Example. Let Ω = (−1; 1), A = −d2/dx2 and f ≡ 0 in Ω. We take

ϕn =





1 in

[
− 1

n+ 1
;

1

n+ 1

]
,

0 otherwise.
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We put

ψn =





1

2
in

(
−1;− 2

n+ 2

]
∪
[

2

n+ 2
; 1

)
,

2 otherwise.

Note that ϕ = 0 and ψ = 1
2 a.e. in Ω. Moreover, for all n ∈ N

(
ψn ≥ ϕn a.e. in Ω, ϕn|∂Ω ≤ 0, ψn|∂Ω ≥ 0

)
.

Next we have for all n ∈ N , (ϕn ≥ ϕ,ψn ≥ ψ) .
We consider the sequence (Pn) of the double global obstacle problems: Find

un ∈ Kψn
ϕn :=

{
v ∈ H1

0 ((−1; 1)) : ϕn ≤ v ≤ ψn a.e. in (−1; 1)
}

such that:

∫ 1

−1

u′n · (u′n − v′) ≥ 0 for all v ∈ Kψn
ϕn .

We know that H1
0

(
(−1; 1)

)
is embedded in C

1,1−1/2
0

(
(−1; 1)

)
from the Sobolev

theorem, so after an easy computation we arrive at the solutions of Pn given by

un(x) =





n+ 2

2n
x+

n+ 2

2n
, x ∈

(
−1,

−2

n+ 2

]
,

(n+ 2)(n+ 1)

2n
x+

3n+ 2

2n
, x ∈

[ −2

n+ 2
,
−1

n+ 1

]
,

1, x ∈
[ −1

n+ 1
,

1

n+ 1

]
,

−(n+ 2)(n+ 1)

2n
x+

3n+ 2

2n
, x ∈

[
1

n+ 1
,

2

n+ 2

]
,

−(n+ 2)

2n
x+

n+ 2

2n
, x ∈

[
2

n+ 2
, 1

)
.

We notice that un → u∗ a.e. in Ω where

u∗ =





x

2
+

1

2
, x ∈ [−1; 0],

−x
2

+
1

2
, x ∈ [0; 1].

Now the limit obstacle problem P is:

Find u ∈ Kψ
ϕ =

{
v ∈ H1

0

(
(−1; 1)

)
: 0 ≤ v ≤ 1

2 a.e. in (−1; 1)
}

such that∫ 1

−1
u′ · (u′ − v′) ≥ 0 for all v ∈ Kψ

ϕ . It is also very easy to see that u ≡ 0.
Obviously (un) does not converge to u in any sense.
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Now we concentrate on the case of the double obstacle problems with im-
pediments converging from above. In order to obtain convergence of solutions
we introduce some additional assumptions imposed on the functions ϕn and ψn .
This result is obtained due to a certain approximation procedure applied to a
H1

0 (Ω)-function and the theory of singular perturbation problems.

Theorem 2. Let the following be satisfied:

(1)

ϕn, ψn, ϕ, ψ ∈ H1
0 (Ω),

−∆ϕn ≤ 0 in H−1(Ω),

−∆ψn ≥ 0

in H−1(Ω) , n ∈ N . If (ϕn), (ψn) approach ϕ,ψ , respectively, from above in
L2(Ω) then

un −→
n→∞

u

strongly in H1
0 (Ω) .

Remark. We have also managed to derive a similar result to the one given
in [6] for the global double obstacle problem when the impediments ϕn, ψn are
concave and convex, respectively.

4. Proof of Theorem 1

The existence and uniqueness of the solutions of the problems Pn and P fol-
low directly from the Lions–Stampacchia theorem ([3], [5]). First we show adapting
the ideas from [6] that if there exists v0 ∈

⋂
n≥1K

ψn
ϕn then the following estimate

holds:

‖un − v0‖ ≤
1

α
(‖f‖+ ‖Av‖).

Indeed we put v = v0 at every problem Pn to get

(2) 〈Aun, v0 − un〉 ≥ 〈f, v0 − un〉.

Using the fact that A is monotone and Lipschitz, f ∈ H−1(Ω) we have

(3)

α‖un − v0‖2 ≤ 〈Aun −Av0, un − v0〉
= 〈Aun, un − v0〉 − 〈Av0, un − v0〉
≤ 〈f, un − v0〉 − 〈Av0, un − v0〉
≤ ‖f‖ ‖un − v0‖+M‖v0‖ ‖un − v0‖.

Whence

‖un − v0‖ ≤
1

α
(‖f‖+M‖v0‖).
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Since v0 is a priori known we get that (un) is bounded which implies that there
exists a subsequence

(4)

un → u∗ weakly in H1
0 (Ω);

un → u∗ strongly in L2(Ω);

un → u∗ a.e. in Ω

for some u∗ ∈ H1
0 (Ω). Since ϕn ≤ un ≤ ψn a.e. in Ω if we let n→∞ we obtain

that ϕ ≤ u∗ ≤ ψ a.e. in Ω and this implies that u∗ ∈ Kψ
ϕ .

Now let us remark that for any v ∈ Kψ
ϕ we get: ϕn ≤ ϕ ≤ v ≤ ψ ≤ ψn a.e.

in Ω which gives that

(5) Kψ
ϕ ⊂ Kψn

ϕn for all n ∈ N .

Let us note that ϕ+ − ψ− ∈ Kψ
ϕ (see [1], [3], [5] for definitions and details).

Therefore there exists
v0 ∈

⋂

n≥1

Kψn
ϕn

and
un → u∗ weakly in H1

0 (Ω).

From Minty’s lemma ([3]) we can identify the problem Pn with: un ∈ Kψn
ϕn

such that
〈Av, v − un〉 ≥ 〈f, v − un〉 for all v ∈ Kψn

ϕn .

Having (5), we replace Kψn
ϕn by Kψ

ϕ and get:

〈Av, v − un〉 ≥ 〈f, v − un〉 for all v ∈ Kψ
ϕ .

Now we let n→∞ and we arrive at the following:

u∗ ∈ Kψ
ϕ : 〈Av, v − u∗〉 ≥ 〈f, v − u∗〉 for all v ∈ Kψ

ϕ .

Applying Minty’s lemma to the last problem we get:

u∗ ∈ Kψ
ϕ : 〈Au∗, v − u∗〉 ≥ 〈f, v − u∗〉 for all v ∈ Kψ

ϕ .

Uniqueness of the solution of the problem P allows us to state that u∗ = u . So
we have shown that un → u weakly in H1

0 (Ω).
In order to show strong convergence we observe that

u ∈
⋂

n≥1

Kψn
ϕn

so we can put v0 = u in (3). We arrive at the following estimate:

α · ‖un − u‖2 ≤ 〈f −Au, un − u〉.
If we let n → ∞ we obtain that un → u strongly in H1

0 (Ω) which finishes the
proof.
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5. Proof of Theorem 2

From the maximum principle we find that ϕn ≤ 0, ψn ≥ 0 a.e. in Ω. There-
fore 0 ∈ ⋂n∈NKψn

ϕn and using the results of Theorem 1 we can estimate ‖un‖ ≤ C
(where C does not depend on n).

Next for v ∈ Kψ
ϕ we define its approximation vn as:

(6) vn ∈ H1
0 (Ω) : − 1

n
∆vn + vn = (v ∨ ϕn)− (v ∧ ψn) + v,

where v ∨ ϕn = max(v, ϕn) and v ∧ ψn = min(v, ψn) . By the theory of singular
perturbation problems ([5]) (vn) converges to v in H1

0 (Ω) and vn → max(v, ϕ)−
min(v, ψ) + v = v strongly in H1

0 (Ω).

Now we show that vn ∈ Kψn
ϕn .

First we multiply both sides of (6) by (ϕn − vn)+ and we integrate:

∫

Ω

(
1

n
∆vn − vn

)
(ϕn − vn)+ = − 1

n

∫

Ω

∇vn∇(ϕn − vn)+ −
∫

Ω

vn(ϕn − vn)

= −
∫

Ω

(v ∨ ϕn − v ∧ ψn + v)(ϕn − vn)+.

Next we add
∫

Ω

(
−(1/n)∆ϕn + ϕn

)
(ϕn − vn)+ to both sides and obtain

− 1

n

∫

Ω

∇vn∇(ϕn − vn)+ −
∫

Ω

vn(ϕn − vn)+ +

∫

Ω

(− 1

n
∆ϕn + ϕn)(ϕn − vn)+

= − 1

n

∫

Ω

∇vn∇(ϕn − vn)+ − 1

n

∫

Ω

∆ϕn(ϕn − vn)+ +

∫

Ω

(ϕn − vn)(ϕn − vn)+

= − 1

n

∫

Ω

∇vn∇(ϕn − vn)+ +
1

n

∫

Ω

∇ϕn∇(ϕn − vn)+ +

∫

Ω

(ϕn − vn)(ϕn − vn)+

=

∫

Ω

1

n
∇(ϕn − vn)∇(ϕn − vn)+ +

∫

Ω

(ϕn − vn)(ϕn − vn)+

=

∫

Ω

1

n
|∇(ϕn − vn)+|2 +

∫

Ω

|(ϕn − vn)+|2.

On the other hand,

∫

Ω

(
− 1

n
∆ϕn + ϕn − v ∨ ϕn + v ∧ ψn − v

)
(ϕn − vn)+

=

∫

Ω

(
− 1

n
∆ϕn − (v − ϕn)+ − (v − ψn)+

)
(ϕn − vn)+.
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The last integral is nonpositive, since ϕn−(v∨ϕn) = −(v−ϕn)+ and (v∧ψn)−v =
−(v − ψn)+ . This gives us that

∫

Ω

1

n
|∇(ϕn − vn)+|2 +

∫

Ω

|(ϕn − vn)+|2 ≤ 0

which means that ϕn − vn ≤ 0 a.e. in Ω; so vn ≥ ϕn a.e. in Ω.
Now we multiply both sides of (6) by (vn − ψn)+ and integrate. Thus

∫

Ω

1

n
∇vn∇(vn−ψn)+ +

∫

Ω

vn(vn−ψn)+ =

∫

Ω

(
(v∨ϕn)− (v∧ψn) + v

)
(vn−ψn)+.

Now we add ∫

Ω

(
1

n
∆ψn − ψn

)
(vn − ψn)+

to both sides of the above equality and transform, using the Stampacchia result,
in order to get

∫

Ω

(
1

n
∇(vn − ψn)∇(vn − ψn)+ + (vn − ψn)(vn − ψn)+

)

=

∫

Ω

1

n
|∇(vn − ψn)+|2 +

∫

Ω

|(vn − ψn)+|2

=

∫

Ω

(
1

n
∆ψn − ψn + (v ∨ ϕn)− (v ∧ ψn) + v

)
(vn − ψn)+.

Having (1) we deduce that ϕn ≤ ψn a.e. in Ω. Moreover, since ψn ≥ ψ for all
n ∈ N we note that the first factor in the last integral is nonpositive.

Therefore ∫

Ω

(
1

n
|∇(vn − ψn)+|2 + |(vn − ψn)+|2

)
≤ 0

which implies that vn ≤ ψn a.e. in Ω. This finishes the argumentation demanded
for showing that vn ∈ Kψn

ϕn .
Applying Minty’s lemma to Pn we get

(7) 〈Aw,w − un〉 ≥ 〈f, w − un〉 for all w ∈ Kψn
ϕn .

Taking into account the above results we deal with the approximation (vn) of
v ∈ Kψ

ϕ . Therefore we can replace w = vn in (7) and we have:

〈Avn, vn − un〉 ≥ 〈f, vn − un〉.

If we let n→∞ we arrive at the following:

〈Av, v − u∗〉 ≥ 〈f, v − u∗〉 for all v ∈ Kψ
ϕ ,
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where u∗ was introduced during the proof of Theorem 1.
Since un ∈ Kψn

ϕn we have ϕn ≤ un ≤ ψn a.e. in Ω. Letting n → ∞ ,
we obtain, using (4), that ϕ ≤ u∗ ≤ ψ a.e. in Ω, which indicates that u∗ ∈
Kψ
ϕ . Using Minty’s lemma again we transform the last variational inequality into

〈Au∗, v − u∗〉 ≥ 〈f, v − u∗〉 for all v ∈ Kψ
ϕ .

Using the uniqueness of the solution of P we have u = u∗ . This implies that
un → u weakly in H1

0 (Ω).
To get the strong convergence we can take an approximation (ūn) of u . By

coerciveness of A we evaluate

α‖un − ūn‖2 ≤ 〈Aun −Aūn, un − ūn〉.

Next, since we have 〈Aun, ūn − un〉 ≥ 〈f, ūn − un〉 , we estimate

α‖un − ūn‖2 ≤ 〈Aun −Aūn, un − ūn〉
= 〈Aun, un − ūn〉+ 〈−Aūn, un − ūn〉
≤ 〈f, un − ūn〉+ 〈−Aūn, un − ūn〉
= 〈f −Aūn, un − ūn〉.

So if we let n→∞ we have that un → u strongly in H1
0 (Ω), which completes

the proof.
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