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Abstract. In this paper, we give a characterization of mappings which preserve caloric
functions between semi-riemannian manifolds.

1. Introduction

The Appell transformation plays important roles in the study of the heat
equation—especially in the study of positive solutions of the heat equation, be-
cause it preserves the solution of the heat equation, and also its positivity. In
this note, we shall give a characterization of such transformations, called caloric
morphisms between manifolds. We treat not only riemannian manifolds but also
semi-riemannian manifolds.

H. Leitwiler [4] and the author [7] studied the characterization of caloric
morphism on Euclidean domains. For riemannian manifolds, the characteriza-
tion can be obtained in almost parallel form. But it does not go similarly for
semi-riemannian manifolds. The biggest difference is that f 0 can depend on the
space variables, although f 0 depends only on the time variable for riemannian
manifolds.

We organize this paper as follows: In Section 2, we define the caloric mor-
phism, and state the main theorem and related results. In Section 3, we shall give
some lemmas, and prove the main theorem in Section 4. Examples are given in
the final Section 5.

2. Notation and results

In this paper we always consider manifolds to be connected and infinitely
differentiable. Let (M, g) be a semi-riemannian manifold, that is, M is a manifold
endowed with non-degenerate and symmetric metric g which is not necessarily
positive definite. If g is positive definite, then (M, g) is called a riemannian
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manifold. For details on semi-riemannian manifolds, we refer to [6] and for our
purpose see also [1].

When M is the euclidean space with a translation invariant metric g , we call
(M, g) a semi-euclidean space. In [5], the authors determined caloric morphisms
between semi-euclidean spaces of same dimension, which is a generalization of the
result by H. Leutwiler [4].

We denote by ∆g the Laplace–Beltrami operator on (M, g) which is given in
local coordinates (xi)mi=1 by

∆gu =
m∑

i,j=1

1√
|g|

∂

∂xi

(√
|g| gij ∂u

∂xj

)
,

where

gij = g

(
∂

∂xi
,
∂

∂xj

)
, g = det(gij)

and (gij) denotes the inverse matrix of (gij) .
A C2 function u(t, x) defined on an open set in R×M is said to be caloric

if u satisfies the heat equation

Hgu :=
∂u

∂t
−∆gu = 0.

Definition 1. Let M and N be semi-riemannian manifolds and D be a
domain in R ×M . A pair (f, ϕ) of a C2 mapping f : D → R × N and a C2

function ϕ > 0 on D is said to be a caloric morphism if:
(1) f(D) is a domain in R×N ,
(2) for any caloric function u defined on a domain E ⊂ R×N , the function

ϕ(t, x) · (u ◦ f)(t, x)

is caloric on f−1(E) .

Evidently, the composition of two caloric morphisms is also a caloric mor-
phism. To be precise, let M , N and L be semi-riemannian manifolds and D ,
E be domains in R × M , R × N , respectively. If (f, ϕ): E → R × L and
(g, ψ): D → R×N are caloric morphisms such that g(D) ⊂ E , then we can make
a caloric morphism (F,Φ): D → R×L from (f, ϕ) and (g, ψ) by the composition
(F,Φ) =

(
f ◦ g, (ϕ ◦ g)ψ

)
.

Now we shall state our main theorems, first in the case that M is a riemannian
manifold and next in the general case. The author gave the characterization theo-
rem of caloric morphisms on Euclidean spaces in [7] (cf. [4]). It can be generalized
to the riemannian case in a very natural form as follows.
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Theorem 2.1. Let (M, g) be a riemannian manifold and (N,h) be a semi-
riemannian manifold. For a C2 mapping f on a domain D ⊂ R×M to R×N
such that f(D) is a domain and for a C2 function ϕ > 0 on D , the following
four statements are equivalent:
(1) (f, ϕ) is a caloric morphism;
(2) We write f = (f0, f1, . . . , fn) for a local coordinate (y1, . . . , yn) of N . Then

f0, f1, . . . , fn and ϕ satisfy the following equations (E-1)–(E-4):
(E-1) Hgϕ = 0 ,
(E-2) Hgf

α = 2g(∇g logϕ,∇gfα)−∑n
β,γ=1 g(∇gfβ ,∇gfγ) · hΓαβγ ◦ f for α =

1, . . . , n ,
(E-3) ∇gf0 = 0 ,
(E-4) g(∇gfα,∇gfβ) = (hαβ ◦ f) · (df0/dt) for α, β = 1, . . . , n ,

where ∇g denotes the gradient operator of (M, g) and hΓαβγ denotes the Christof-
fel symbol of (N,h) ;
(3) There exists a continuous function λ on D , depending only on t , such that

Hg(ϕ · u ◦ f)(t, x) = λ(t) · ϕ(t, x) ·Hhu ◦ f(t, x)

for any C2 function u on R×N ;
(4) There exists a continuous function λ on D such that

Hg(ϕ · u ◦ f)(t, x) = λ(t, x) · ϕ(t, x) ·Hhu ◦ f(t, x)

for any C2 function u on R×N .

In the case of semi-riemannian manifolds, we have the following characteriza-
tion.

Theorem 2.2. Let (M, g) and (N,h) be semi-riemannian manifolds. For a
C2 mapping f on a domain D ⊂ R×M to a domain f(D) in R×N and for a
C2 function ϕ > 0 on D , the following three statements are equivalent:
(1) (f, ϕ) is a caloric morphism;
(2) f = (f0, f1, . . . , fn) and ϕ satisfy the following equations (E-5)–(E-8) for a

local coordinate of N :
(E-5) Hgϕ = 0 ,
(E-6) Hgf

α = 2g(∇g logϕ,∇gfα)−∑n
β,γ=1 g(∇gfβ ,∇gfγ) · hΓαβγ ◦ f for α =

1, . . . , n ,
(E-7) g(∇gf0,∇gfα) = 0 for α = 0, 1, . . . , n ,
(E-8) g(∇gfα,∇gfβ) = (hαβ ◦ f) · λ for α, β = 1, . . . , n ,

where λ = Hgf
0 − 2g(∇g logϕ,∇gf0) ;

(3) There exists a continuous function λ on D such that

Hg(ϕ · u ◦ f)(t, x) = λ(t, x) · ϕ(t, x) ·Hhu ◦ f(t, x)

for any C2 function u on R×N .
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Remark 1. If dimM = dimN or (M, g) is riemannian, then it follows from
(E-7) that f0 depends only on t and then λ = df 0/dt , which shows that (E-7) and
(E-8) are equivalent to (E-3) and (E-4), respectively. Thus Theorem 2.1 follows
from Theorem 2.2. Moreover, since f(D) is a domain in our definition, λ does
not vanish. In the case that M is not riemannian, it happens that f 0 depends
both on t and on x (see Example 4). Also, it happens that λ changes its sign in
the case that M is not riemannian (see Example 5).

Corollary 1. Let (M, g) , (N,h) be semi-riemannian manifolds and let the
signature of the metric g (respectively h) be (p, q) (respectively (r, s)). If there
exists a caloric morphism from D ⊂ R ×M to R × N such that λ(t, x) 6= 0 at
some point (t, x) ∈ D , then

p = r, q = s or p = s, q = r
holds. Especially, if M and N have the same dimension, then

p = r, q = s or p = s, q = r.

Corollary 2. Let (M, g) , (N,h) be semi-riemannian manifolds of same
dimensions. If (f, ϕ) is a caloric morphism from D ⊂ R×M to R×N such that
f has an inverse mapping f−1 on a open set E ⊂ f(D) , then

(
f−1, 1/ϕ ◦ f−1

)

is a caloric morphism from E into R×M .

Proof. Let v be any C2 function on R×M . Then u = (1/ϕ ◦ f−1) · v ◦ f−1

is a C2 function on E . By (3), there exists a continuous function λ on D such
that Hg(ϕ · u ◦ f) = λ · ϕ · (Hhu) ◦ f . Since dimM = dimN , λ does not vanish
(see Remark 1). Hence we have

1

λ ◦ f−1

1

ϕ ◦ f−1
(Hgv) ◦ f−1 = Hh

(
1

ϕ ◦ f−1
· v ◦ f−1

)
.

Therefore
(
f−1, 1/ϕ ◦ f−1

)
is a caloric morphism from E into D by (3).

As an application of Theorem 2.2, we have the following propositions, which
enable us to construct new caloric morphisms. These are proved by a calculation
similar to the one in [7, Proposition 5].

Proposition 2.1 (direct product). Let I be an open interval of R and
Mj be a semi-riemannian manifold (j = 1, 2) . For two caloric morphisms of form((
f0(t), fj(t, xj)

)
, ϕj(t, xj)

)
from I×Mj to R×Nj , we consider a map (f0, f1, f2)

from I ×M1 ×M2 to R×N1 ×N2 :

(t, x1, x2) 7→
(
f0(t), f1(t, x1), f2(t, x2)

)

and a function ϕ1ϕ2 on I × M1 ×M2 :

(t, x1, x2) 7→ ϕ1(t, x1)ϕ2(t, x2).

Then a pair
(
(f0, f1, f2), ϕ1ϕ2

)
is a caloric morphism.
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Proposition 2.2 (direct sum). Let E be a semi-Euclidean space, I an open
interval and Mj a semi-riemannian manifold (j = 1, 2) . For two caloric morphisms
(fj , ϕj) from I ×Mj to R× E , we put

f(t, x1, x2) = f1(t, x1) + f2(t, x2),

ϕ(t, x1, x2) = ϕ1(t, x1)ϕ2(t, x2)

for (t, x1, x2) ∈ I×M1×M2 . Then (f, ϕ) is a caloric morphism from I×M1×M2

to R× E .

Remark 2. Let g be a harmonic morphism with constant dilatation from a
domain Ω ⊂M to N (see [1] for the definition of harmonic morphism). Putting

f(t, x) =
(
t, g(x)

)
, ϕ(t, x) = 1,

we obtain a caloric morphism (f, ϕ) .

Finally, we make a remark on the relation between harmonic maps and caloric
morphisms. Let (M, g) and (N,h) be semi-riemannian manifolds. For a mapping
f : M → N , the tension field τ(f) is defined as

τα(f) = ∆gf
α +

∑

γ,η

g(∇gfγ ,∇gfη) · (hΓαγη ◦ f), α = 1, . . . , n,

in the local coordinates. A harmonic map is the solution of

(1) τ(f) = 0.

Then (E-2) or (E-6) can be written as

∂fα

∂t
= τα(f) + 2g(∇g logϕ,∇gfα), α = 1, . . . , n.

Now we introduce a new field τϕ(f) by

ταϕ (f) := τα(f) + 2g(∇g logϕ,∇gfα), α = 1, . . . , n.

Then (E-2) or (E-6) can be simplified as

∂f

∂t
= τϕ(f).

The equation
τϕ(f) = 0
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is the Euler–Lagrange equation of the weighted energy functional

EΩ,ϕ(f) =

∫

Ω

e(f)ϕ2 dµg,

while (1) is the Euler–Lagrange equation of the energy functional

EΩ(f) =

∫

Ω

e(f) dµg,

where

e(f) =
1

2
|df |2 :=

1

2

∑

α,β

g(∇gfα,∇gfβ) · (hαβ ◦ f), dµg(x) =
√
|g| dx

and Ω is a relatively compact subdomain of M .

3. Preliminaries

First, we quote a theorem by L. Hörmander from [2], in order to construct
local solutions of the heat equation with prescribed derivatives at a given point.

Let P be a second order differential operator of C∞ coefficients on Rn of
the form

P =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

k=1

bk(x)
∂

∂xk
+ c(x),

where the matrix
(
aij(x)

)
is symmetric and non-degenerate for all x .

Theorem A. Let m = 2 be an integer. If u ∈ Cm+1(Rn) and Pu(x) =
O(|x|m−1) as x → 0 , then for any s > m there exists U ∈ Cs(Rn) such that
U(x)− u(x) = O(|x|m+1) as x→ 0 and PU = 0 on a neighborhood of 0 .

In the proof, he uses the following theorem, which is also useful for our pur-
pose.

Theorem B ([2, Theorem 7.1]). For any positive integer s , there exists a
bounded linear operator Gs from the Sobolev space Hs(Rn) to Hs+1(Rn) such
that for every f ∈ Hs(Rn) , PGsf = f on a neighborhood of the origin.

Next we prepare lemmas for the proof of the main theorem. Combining the
Sobolev imbedding theorem with Theorem B, we have the following lemma.

Lemma 3.1. For any integers s = 2 and s′ > 1
2n+s−1 and any Cs

′
function

f defined on a neighborhood of the origin in Rn , there exists a Cs function u
such that Pu = f on a neighborhood of the origin.

By Theorem A, we have the following lemma.
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Lemma 3.2. Let
(
(ηij)

n
i,j=1, (ηk)nk=1, η

)
∈ Rn2+n+1 satisfy ηij = ηji and

n∑

i,j=1

aij(0)ηij +
n∑

k=1

bk(0)ηk + c(0)η = 0.

Then for any s > 2 there exists a Cs function U such that

∂2U

∂xi∂xj
(0) = ηij ,

∂U

∂xk
(0) = ηk, U(0) = η, for i, j, k = 1, . . . , n,

and PU = 0 on a neighborhood of 0 .

Proof. Put m = 2 and apply Theorem A to the function

u(x) =
1

2

n∑

i,j=1

ηijx
ixj +

n∑

k=1

ηkx
k + η.

Using these lemmas, we have the following existence theorem for the solution
of the heat equation with prescribed derivatives.

Lemma 3.3. For any
(
(ηij)

n
i,j=0, (ηk)nk=0, η

)
∈ R(n+1)2+(n+1)+1 such that

ηij = ηji and

η0 =

n∑

i,j=1

aij(0)ηij +

n∑

k=1

bk(0)ηk + c(0)η,

there exists a C2 function u on a neighborhood of the origin of R×Rn such that

(2)
∂2u

∂xi∂xj
(0, 0) = ηij ,

∂u

∂xk
(0, 0) = ηk, u(0, 0) = η, for i, j, k = 0, 1, . . . , n,

and (∂u/∂t)− Pu = 0 . Here we use a convention (∂/∂x0) = (∂/∂t) .

Proof. We shall construct a solution of form

(3) u(t, x) = u0(x) + u1(x)t+ 1
2u2(x)t2.

Substitute (3) into the heat equation (∂u/∂t) − Pu = 0 and compare the coeffi-
cients as the function of t . Then we obtain the equations

Pu2 = 0, Pu1 = u2, Pu0 = u1.
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From the initial value condition (2), u0 , u1 , u2 must satisfy

u2(0) =
∂2u

∂t2
(0, 0) = η00,

u1(0) =
∂u

∂t
(0, 0) = η0,

∂u1

∂xj
(0) =

∂2u

∂t∂xj
(0, 0) = η0j for j = 1, . . . , n,

u0(0) = u(0, 0) = η,

∂u0

∂xk
(0) =

∂u

∂xk
(0, 0) = ηk for k = 1, . . . , n,

∂2u0

∂xi∂xj
(0) =

∂2u

∂xi∂xj
(0, 0) = ηij for i, j = 1, . . . , n.

First we shall solve the equation Pu2 = 0 under the condition u2(0) = η00 .
Put η̃ = η00 and η̃k = 0 for k = 1, . . . , n . Since the matrix (aij(0))ni,j=1 is
non-degenerate, there exists a symmetric matrix (η̃ij)

n
i,j=1 satisfying that

(4)
n∑

i,j=1

aij(0)η̃ij +
n∑

k=1

bk(0)η̃k + c(0)η̃ = 0.

Then we can solve the equation Pu2 = 0 by Lemma 3.2.
Next we shall solve the equation Pu1 = u2 under the conditions u1(0) = η0

and (∂u1/∂x
j)(0) = η0j for j = 1, . . . , n . We can take w1 with Pw1 = u2 by

Lemma 3.1. Putting η̃ = η0−w1(0) and η̃k = η0k−(∂w1/∂x
k)(0) for k = 1, . . . , n ,

we can take η̃ij for i, j = 1, . . . , n with (4). Then we can solve the equation Pv1 =
0 under the conditions v1(0) = η0−w1(0) and (∂v1/∂x

k)(0) = η0k−(∂W1/∂x
k)(0)

for k = 1, . . . , n by Lemma 3.2. Then u1 = v1 + w1 is a desired solution.
Finally, we shall solve the equation Pu0 = u1 under the conditions u0(0) =

η , (∂u0/∂x
k)(0) = ηk and (∂2u0/∂x

i∂xj)(0) = ηij for i, j, k = 1, . . . , n . We
take w0 with Pw0 = u1 by Lemma 3.1 and solve the equation Pv0 = 0 un-
der the conditions v0(0) = η − w0(0), (∂v0/∂x

k)(0) = ηk − (∂w0/∂x
k)(0) and

(∂2v0/∂x
i∂xj)(0) = ηij − (∂2w0/∂x

i∂xj)(0) for i, j, k = 1, . . . , n , because the
condition (4) holds for η̃ = η − w0(0), η̃k = ηk − (∂w0/∂x

k)(0) and η̃ij =
ηij − (∂2w0/∂x

i∂xj)(0). Putting u0 = v0 + w0 , we have the lemma.

4. Proof of Theorem 2.2

In this section we shall prove our main theorem. Before the proof, we prepare
a small lemma from linear algebra.

Lemma 4.1. Let a, b ∈ Rl and consider linear forms %(x) = (x, a) and
µ(x) = (x, b) , which are the usual inner product in Rl . If %(x) = 0 implies
µ(x) = 0 for all x ∈ Rl , then there exists ν ∈ R such that b = νa .
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Proof of Theorem 2.2. (1) ⇒ (2): For any point (t, P ) ∈ D , we put (τ,Q) =
f(t, P ) and take a local coordinate y of N near Q such that Q corresponds to
the origin. Then since

∆h =
n∑

α,β=1

hαβ(y)
∂2

∂yα∂yβ
+

n∑

γ=1

( n∑

α,β=1

hαβ(y)hΓγαβ(y)

)
∂

∂yγ
,

we put aαβ(y) = hαβ(y) , bγ(y) =
∑n
α,β=1 h

αβ(y)hΓγαβ(y) and c(y) = 0 for

α, β, γ = 1, . . . , n . Hence for every
(
(ηαβ)nα,β=0, (ηγ)nγ=0, η

)
∈ R(n+1)2+(n+1)+1

such that

η0 =
n∑

α,β=1

aαβ(0)ηαβ +
n∑

γ=1

bγ(0)ηγ + c(0)η,

it follows from Lemma 3.3 that there exists a caloric function u on a neighborhood
of (τ,Q) such that

∂2u

∂yα∂yβ
(τ,Q) = ηαβ ,

∂u

∂yγ
(τ,Q) = ηγ , u(τ,Q) = η

for α, β, γ = 0, 1, . . . , n . Since (f, ϕ) is assumed to be a caloric morphism, ϕ·(u◦f)
must be caloric, that is,

0 = Hg

(
ϕ · (u ◦ f)

)

= (Hgϕ) · (u ◦ f) + ϕ ·Hg(u ◦ f)− 2g
(
∇gϕ,∇g(u ◦ f)

)

= (Hgϕ) · (u ◦ f) +

n∑

γ=0

(
ϕ ·Hgf

γ − 2g(∇gϕ,∇gfγ)
)
·
(
∂u

∂yγ

)
◦ f

− ϕ
n∑

α,β=0

g(∇gfα,∇gfβ) ·
(

∂2u

∂yα∂yβ

)
◦ f.

Substituting (t, P ) , we have

0 = (Hgϕ)(t, P ) · η +
n∑

γ=0

(
ϕ ·Hgf

γ − 2g(∇gϕ,∇gfγ)
)
(t, P ) · ηγ

−
n∑

α,β=0

(
ϕ · g(∇gfα,∇gfβ)

)
(t, P ) · ηαβ ,

which implies that there exists ν(t, P ) ∈ R such that

Hgϕ(t, P ) = 0,(
ϕ ·Hgf

0 − 2g(∇gϕ,∇gf0)
)
(t, P ) = ν(t, P ),

(
ϕ ·Hgf

γ − 2g(∇gϕ,∇gfγ)
)
(t, P ) = −ν(t, P ) · bγ(0) for γ = 1, . . . , n,(A)

(
ϕ · g(∇gf0,∇gfβ)

)
(t, P ) = 0 for β = 0, 1, . . . , n,

(
ϕ · g(∇gfα,∇gfβ)

)
(t, P ) = ν(t, P ) · aαβ(0) for α, β = 1, . . . , n,(B)
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because of Lemma 4.1. Putting λ(t, P ) = ν(t, P )/ϕ(t, P ) and substituting (B)
into (A), we obtain (2).

(2) ⇒ (3): By a direct calculation, we have

Hg

(
ϕ · (u ◦ f)

)
= (Hgϕ) · (u ◦ f) +

n∑

γ=0

(
ϕ ·Hgf

γ − 2g(∇gϕ,∇gfγ)
)
·
(
∂u

∂yγ

)
◦ f

− ϕ
n∑

α,β=0

g(∇gfα,∇gfβ) ·
(

∂2u

∂yα∂yβ

)
◦ f

= (λ · ϕ) ·
(
∂u

∂y0
+

n∑

γ=1

( n∑

α,β=1

hαβhΓγαβ

)
∂u

∂yγ

)
◦ f

− (λ · ϕ) ·
( n∑

α,β=1

hαβ
∂2u

∂yα∂yβ

)
◦ f

= (λ · ϕ) · (Hhu) ◦ f.

(3) ⇒ (1) is trivial, which completes the proof.

5. Examples

In the following Examples 1–3, we consider the case that M = Rn \ {0} and
g has the form gij = %(|x|)δij , where % is a C∞ function on (0,∞) .

Example 1. Let n = 2, %(r) = 1/r2 . Then

f(t, x) =

(
t+ b,

et

|x|2R(t)x

)
, ϕ(t, r, θ) = r−1/2 exp

(
1

2
θ +

1

2
t

)
,

is a caloric morphism, where

R(t) =

(
cos t − sin t
sin t cos t

)

and (r, θ) is the polar coordinate of R2 .

Example 2. Let n = 3, %(r) = 1/r2 . Then

f(t, x) =

(
t, et

x

|x|2
)
, ϕ(t, x) = |x|−1/2 exp

(
1

4
t

)

is a caloric morphism.
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Example 3 (Appell transformation). Let %(r) = rk , k ∈ R , k 6= −2. Then

f(t, x) =

(
ct+ d

at+ b
,

x

|at+ b|2/(k+2)

)
,

ϕ(t, x) =
1

|at+ b|n/2 exp

(
− a|x|k+2

(k + 2)2(at+ b)

)

is a caloric morphism, where a, b, c, d ∈ R , bc− ad = 1. In particular, in the case
of k = 0, this example includes the usual Appell transformation:

f(t, x) =

(
−1

t
,
x

t

)
, ϕ(t, x) =

1

(4π|t|)n/2 exp

(
−|x|

2

4t

)
.

Next we consider the non-riemannian case.

Example 4. Let M = R3 be a semi-Euclidean space whose metric is g =
(dx1)2 + (dx2)2 − (dx3)2 and N = R1 be the Euclidean space. Then

f(t, x) = (t+ x2 + x3, x1), ϕ(t, x) = 1

satisfy (E-5)–(E-8). In this case λ(t, x) = 1. Composing this to the Appell
transformation on R×R

(
−1

τ
,
y

τ

)
,

1√
|τ |

exp

(
− y

2

4τ

)
,

we have another example

f(t, x) =

(
− 1

t+ x2 + x3
,

x1

t+ x2 + x3

)
,

ϕ(t, x) =
1√

|t+ x2 + x3|
exp

(
− (x1)2

4(t+ x2 + x3)

)

such that λ(t, x) = 1/τ 2 = 1/(t+ x2 + x3)2 depends on both t and x .

Example 5. Let M = R4 be a semi-Euclidean space whose metric is g =
(dx1)2 − (dx2)2 + (dx3)2 − (dx4)2 and N = R2 be a semi-Euclidean space whose
metric is g = (dx1)2 − (dx2)2 . Then

f(t, x) =

(
1

t(t− 1)
,
x1

t
+

x4

t− 1
,
x2

t
+

x3

t− 1

)
,

ϕ(t, x) =
1

|t(t− 1)| exp

(
− (x1)2 − (x2)2

4t
− (x3)2 − (x4)2

4(t− 1)

)

satisfy (E-5)–(E-8) on (0, 1)×M . Then λ(t) = (1/t2)−
(
1/(t− 1)2

)
, which changes

the sign at t = 1
2 . Note that (f, ϕ) is a direct sum of two Appell transfomations.
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Example 6 (Reverse). Put f(t, x) = (−t, x) and ϕ(t, x) = 1. Then (f, ϕ) is
a caloric morphism from R× (M, g) onto R× (M,−g) . Moreover, if M is a 2n -
dimensional semi-euclidean space such that the signature of g is equal to (n, n) ,
then there exists a (2n × 2n)-matrix R such that R2 = I and tRGR = −G ,
where I is the identity matrix and G = (gij) . Hence putting f(t, x) = (−t, Rx)
and ϕ(t, x) = 1, we have a caloric morphism on R × (M, g) . We remark that
(f0)′ is negative in these examples.

Example 7 (Appell transformation). For integers p, q = 0 and k ∈ R\{−2} ,
put

M =
{
x ∈ Rp+q : (x1)2 + · · ·+ (xp)2 − (xp+1)2 − · · · − (xp+q)2 > 0

}
,

〈x〉 =
√

(x1)2 + · · ·+ (xp)2 − (xp+1)2 − · · · − (xp+q)2

and

gij(x) =




〈x〉k, i = j = 1, . . . , p,
−〈x〉k, i = j = p+ 1, . . . , p+ q,
0, i 6= j.

Then

f(t, x) =

(
−1

t
,

x

t2/(k+2)

)
, ϕ(t, x) =

1

t(p+q)/2
exp

(
− 〈x〉

k+2

(k + 2)2t

)

is a caloric morphism from (0,∞)×M to (−∞, 0)×M . This is a generalization
of Example 3.
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