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Abstract. We prove that the Cauchy transform of a positive measure on the interval
(−1, 1) ⊂ R in the complex plane maps the exterior of the unit disc onto a domain Ω ⊂ C
which can be written as a union of discs centered on the real axis. This is applied to the obstacle
problem, partial balayage, quadrature domains and Hele-Shaw flow moving boundary problems,
and we obtain sharp estimates of the curvature of free boundaries appearing in such problems.

1. Introduction

In this paper we obtain natural and sharp estimates of the curvature of some
free boundaries arising in obstacle-type problems in two dimensions. We use con-
formal maps as an essential tool and the main result may be stated as a geometric
property of the image domain under such a map: the Cauchy transform of a pos-
itive measure on the interval (−1, 1) ⊂ R in the complex plane maps the exterior
of the unit disc onto a domain Ω ⊂ C which can be written as a union of discs
centered on the real axis (Theorem 3.1).

An equivalent way of expressing this geometric property of Ω is to say that
the inward normal rays from points on (∂Ω)+ (the part of ∂Ω which is in the
upper half-plane) never intersect in Ω+ ; or that the foot point map, namely the
map which takes the x -coordinate of a point on (∂Ω)+ to (the x -coordinate of)
the point where the inward normal crosses the real axis, is monotone increasing.
(See Proposition 2.1 for these and other equivalent formulations.) It is in this last
formulation, monotonicity of the foot point map, that our main result is proven.
Writing down the statement in detail in terms of the original measure, everything
comes down to proving that a certain polynomial of degree 10, in three variables
and with 48 terms, is nonnegative in the unit cube.
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This result for conformal maps with Cauchy transforms is interesting in itself,
but for us it is mainly a tool. Using it we show (in Section 4) that, for the obstacle
problem in its simplest form (concerning a continuously differentiable function
u ≥ 0 satisfying ∆u = 1 in {u > 0}), any part of the free boundary ∂{u > 0}
which can be cut off by a straight line is an envelope of circles centered on the line
(Theorem 4.1). Thus we get a natural estimate, in one direction, of the curvature
of the free boundary.

Some related applications concern partial balayage, quadrature domains and
Hele-Shaw flow moving boundary problems, see Sections 5 and 6. For these appli-
cations the main result can be amplified to a global statement. If µ is a positive
measure with compact support in C and K denotes the convex hull of the support,
then if µ is swept out to Lebesgue measure (partial balayage), the set Ω where
Lebesgue measure really is attained can be written as a union of discs centered on
Ω∩K . And the inward normals from points on ∂Ω \K do not intersect in Ω \K
(Theorem 5.5).

In particular these properties hold if Ω is a quadrature domain for subhar-
monic functions for µ (Corollary 5.6). Similarly, considering Hele-Shaw flow evo-
lution {Ωt : t > 0} of an initial fluid domain Ω0 , the evolution being caused by
sources in Ω0 , if K denotes the closed convex hull of Ω0 , then Ωt can be expressed
as a union of discs with centers on Ωt ∩K . In addition, the inward normals from
points on ∂Ωt \K do not intersect in Ωt \K (Theorem 6.1).

List of notation:

Ĉ = C ∪ {∞} ;
D = {z ∈ C : |z| < 1} ;
De = {z ∈ C : |z| > 1} ∪ {∞} ;
B(a, r) = {z ∈ C : |z−a| < r} (we use D = B(0, 1) in complex analytic contexts);
m = Lebesgue measure in C ;
p(x) , p(z) : foot point map, see Proposition 2.1 and after Proposition 5.4;
Nx , Nz : normal segments, see Proposition 2.1 and after Proposition 5.4;
Ω+ = {x+ iy ∈ Ω : y > 0} if Ω ⊂ C ;
Ω− = {x+ iy ∈ Ω : y < 0} if Ω ⊂ C ;

∆ = Laplace operator =
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z
;

Uµ(z) =
1

2π

∫
log

1

|ζ − z| dµ(ζ) = the logaritmic potential of a measure µ ;

Bal (µ,m) = partial balayage of µ onto m , see Section 5;
Ω(µ) : the saturated set for partial balayage, see (5.1);
SL1(Ω) = the set of subharmonic functions in Ω which are integrable with respect
to Lebesgue measure;
Q(µ,SL1) : set of quadrature domains, see Section 5.
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2. Specific domains symmetric about the real axis

We formulate here in a number of different ways the statement that a domain
symmetric about the real axis is a union of discs centered on the axis. The result
is (to most parts) completely elementary and we state it because it will be useful
to have several different points of view at hand when discussing geometry of free
boundaries.

Proposition 2.1. Let g be a positive, twice continuously differentiable func-
tion defined on an open bounded interval I ⊂ R and assume that g(x) → 0 as
x→ ∂I (the boundary as a subset of R). Let

Ω = {x+ iy : x ∈ I, |y| < g(x)},
Ω+ = {x+ iy : x ∈ I, 0 < y < g(x)},

(∂Ω)+ = ∂Ω ∩ {y > 0}.

For x ∈ I , let p(x) denote the foot point of the normal of ∂Ω at z = x+ ig(x) ∈
(∂Ω)+ , i.e., the point of intersection of the normal with the real line:

p(x) = x+ g(x)g′(x).

Let Nx denote the open normal segment from x+ ig(x) to p(x) :

Nx =
{
t
(
x+ ig(x)

)
+ (1− t)p(x) : 0 < t < 1

}
.

Then the following statements are equivalent.

(i) The function
x 7→ x2 + g(x)2,

defined on I , is convex.

(ii) For every c = a+ ib with a ∈ R , b > 0 , the function

x 7→ (x− a)2 +
(
g(x)− b

)2

is convex (alternatively : strictly convex) on each x -interval on which g(x) > b .

(iii) p′(x) ≥ 0 (x ∈ I).

(iv) Ω =
⋃
x∈I

B
(
p(x), |x+ ig(x)− p(x)|

)
.

(v) There exist radii r = r(x) > 0 such that

Ω =
⋃
x∈I

B
(
x, r(x)

)
.
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(vi) Nx1 ∩Nx2 = ∅ for x1 6= x2.

(vii) For each z ∈ (∂Ω)+ the curvature radius of ∂Ω at z is, in case the curvature
has negative sign (g′′ < 0), at least as large as the distance from z to its foot
point.

(viii) Every point in Ω+ has a unique closest neighbour on (∂Ω)+ .

(ix) Every point on (∂Ω)+ is a closest point on ∂Ω for some point on I .

Notational remark. We shall also write p(z) for p(x) and Nz for Nx ,
where z = x+ ig(x) . Then, e.g., statement (iv) of the proposition can be written

Ω =
⋃

z∈(∂Ω)+

B
(
p(z), |z − p(z)|

)
.

Proof. We begin with some general considerations. For c = a+ib with a ∈ R ,
b ≥ 0 let

Φc(x) = 1
2

[
(x− a)2 +

(
g(x)− b

)2]
,

considered to be defined for those x ∈ I for which g(x) > b . Then Φc is twice
continuously differentiable with

Φ′c(x) = x− a+
(
g(x)− b

)
g′(x),

Φ′′c (x) = 1 + g′(x)2 +
(
g(x)− b

)
g′′(x) = Φ′′a(x)− bg′′(x).

We note that (taking b = 0)

(2.1) Φ′a(x) = p(x)− a

for any a ∈ R . In particular
Φ′p(a)(a) = 0

for a ∈ I , i.e., the map x 7→ Φp(a)(x) has a stationary point at x = a . Since
Φp(a)(x) is a monotone function of the distance from p(a) to x + ig(x) this sta-
tionary point is a (global) minimum if and only if

(2.2) B
(
p(a), |a+ ig(a)− p(a)|

)
⊂ Ω.

For any point w ∈ Ω+ there is at least one closest point z on ∂Ω, and
any such z is necessarily located on (∂Ω)+ . Then w ∈ Nz and, in particular,
w ∈ B

(
p(z), |z − p(z)|

)
. Note that Nz is one of the radii in B

(
p(z), |z − p(z)|

)
.

It follows that

(2.3) Ω+ ⊂ ⋃
z∈(∂Ω)+

Nz ⊂
⋃

z∈(∂Ω)+

B
(
p(z), |z − p(z)|

)
.
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Also:

(2.4) Ω ⊂ ⋃
z∈(∂Ω)+

B
(
p(z), |z − p(z)|

)
.

Now we turn to the statements of the proposition.
(i) ⇒ (ii): This is seen from the formula for Φ′′c (x) above: if c = a + ib ,

b > 0 and Φ′′0(x) ≥ 0 (hence Φ′′a(x) ≥ 0), then Φ′′c (x) > 0 follows by reading off
the first expression for Φ′′c (x) in case g′′(x) ≥ 0 (recall that g(x) > b), the second
expression in case g′′(x) < 0.

(ii) ⇒ (i): Just let b→ 0 in the second expression for Φ′′c (x) .
(i) ⇔ (iii): This is clear from (2.1) with a = 0.
(iii) ⇔ (vii): The curvature of (∂Ω)+ at z = x+ ig(x) is

g′′(x)
(
1 + g′(x)2

)3/2

and the curvature radius is one over that (taken to be +∞ if g′′(x) = 0). The
center of curvature (the center of the circle which has the best fitting to ∂Ω at z )
is located somewhere along the normal of ∂Ω at z (or at infinity, if g′′(x) = 0). It
may be noticed that the assertion of (vii) is exactly that this center of curvature
is not located on the segment Nx .

Now, the y -coordinate of the center of curvature is easily calculated to be

g(x) +
1 + g′(x)2

g′′(x)
=
p′(x)

g′′(x)
.

If g′′(x) ≥ 0 then p′(x) ≥ 0 holds automatically, and if g′′(x) < 0 then p′(x) ≥ 0
holds if and only if the above y -coordinate is ≤ 0. From this (iii) ⇔ (vii) follows.

(i) ⇒ (iv): By (2.4) we only need to prove (2.2) for every a ∈ I . But when
Φ0 (equivalently Φp(a) ) is convex then every stationary point of x 7→ Φp(a)(x)
is a global minimum, hence the desired conclusion follows from what was said in
connection with (2.2).

(iv) ⇒ (v): If the representation in (iv) holds then we get a representation as
in (v) by adding small discs B

(
x, r(x)

)
⊂ Ω for those x ∈ I which are not in the

range of p . (Clearly p maps I into I when (iv) holds, but it need not be onto.)
(v) ⇒ (iv): Let z ∈ (∂Ω)+ . Then, if (v) holds, there exist an ∈ I and

zn ∈ B
(
an, r(an)

)
such that zn → z . The smoothness of (∂Ω)+ and the inclusions

B
(
an, r(an)

)
⊂ Ω force the convergences an → p(z) and r(an) → |z − p(z)| and

it follows that B
(
p(z), |z − p(z)|

)
⊂ Ω. Now (iv) follows from (2.4).

(iv) ⇔ (ix): Note that z ∈ (∂Ω)+ is a closest point of a ∈ I if and only if
a = p(z) and B

(
p(z), |p(z) − z|

)
⊂ Ω. Thus a is determined by z and it follows

immediately (in view also of (2.4)) that all z ∈ (∂Ω)+ are such closest points if
and only if (iv) holds.
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(iv) ⇒ (vi): Assume w ∈ Nz1 ∩ Nz2 for some z1, z2 ∈ (∂Ω)+ , z1 6= z2 .
Without loss of generality |z1 − w| ≤ |z2 − w| . Then z1 ∈ B(w, |z2 − w|) and it
follows that z1 ∈ B

(
p(z2), |z2 − p(z2)|

)
, which contradicts (iv) since z1 /∈ Ω.

(vi) ⇒ (viii): If w ∈ Ω+ has two closest neighbours z1, z2 ∈ (∂Ω)+ then
w ∈ Nz1 ∩Nz2 .

(viii) ⇒ (ii): This conclusion is somewhat analogous to [7, Theorem 2.1.30]
(attributed to Motzkin) and it is slightly more tricky than the other ones.

Assume that (ii) fails and we shall produce a point c ∈ Ω+ with at least
two closest neighbours on (∂Ω)+ . By assumption there exists b > 0 and an open
interval J ⊂ I on which g(x) > b and such that Φib(x) is not convex on J . We
may assume that J is maximal, so that g(x) = b for x ∈ ∂J .

By definition of Φib

(2.5) Φib(x) ≥ 1
2x

2 for x ∈ J ∪ ∂J

with equality for x ∈ ∂J . Let Ψ(x) be the largest convex function on J ∪ ∂J
satisfying Ψ(x) ≤ Φib(x) on J ∪ ∂J . It follows from (2.5) and the fact that 1

2x
2

is convex that
1
2x

2 ≤ Ψ(x) ≤ Φib(x) for x ∈ J ∪ ∂J.

Since Φib(x) is not convex in J we have Ψ(x) < Φib(x) on some subinterval
(x1, x2) ⊂ J , which we take to be maximal with this property. In the interior
(x1, x2) we have Ψ′′(x) = 0, otherwise Ψ could have been made larger. At the
end points Ψ(xj) = Φib(xj) (j = 1, 2) because (x1, x2) is maximal. It follows
that Ψ(x) is linear (affine) on [x1, x2] , say

Ψ(x) = ax+ k (x1 ≤ x ≤ x2).

Then ax+ k ≤ Ψ(x) on J ∪ ∂J , in particular,

ax+ k ≤ Φib(x) for x ∈ J ∪ ∂J

with equality attained at least for the two points x1 and x2 .
Now we take

c = a+ ib.

Then, by the above,

(2.6) Φc(x) = Φib(x)− ax+ 1
2a

2 ≥ 1
2 (2k + a2) for x ∈ J ∪ ∂J

with equality for x = x1, x2 .
We shall see that 2k + a2 > 0. Since ax + k = Ψ(x) > 1

2x
2 in (x1, x2) , the

line y = ax+k and the quadratic curve y = 1
2x

2 intersect at two points (exactly).
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Let q+ 1
2 iq

2 be one of them, satisfying q 6= 0. Then a = (q2/2−k)/q = q/2−k/q ,
and so

2k + a2 = 2k +

(
q

2
− k

q

)2

=

(
q

2
+
k

q

)2

≥ 0.

If 2k + a2 = 0, then k = − 1
2q

2 . This means that y = ax + k has a point of
tangency with y = 1

2x
2 at q + 1

2 iq
2 , contradicting ax + k > 1

2x
2 in (x1, x2) .

Hence 2k + a2 > 0.
By definition of Φc(x) , (2.6) means that z /∈ B

(
c,
√

2k + a2
)

for all z =

x+ ig(x) ∈ (∂Ω)+ with x ∈ J ∪ ∂J and that zj = xj + ig(xj) ∈ ∂B
(
c,
√

2k + a2
)

for j = 1, 2. In particular a ∈ J and so c ∈ Ω+ . Since x+ib /∈ B
(
c,
√

2k + a2
)

for

x ∈ ∂J , it also follows that z /∈ B
(
c,
√

2k + a2
)

for those z = x+ ig(x) ∈ (∂Ω)+

for which x /∈ J . Thus c is a point with at least two closest neighbours on (∂Ω)+ ,
namely zj = xj + ig(xj) ∈ (∂Ω)+ , as required.

3. The main result in terms of conformal mappings

The following is our main result.

Theorem 3.1. Let µ be a positive measure on the interval (−1, 1) satisfying∫
dµ > 0 and

(3.1)

∫ 1

−1

dµ(t)

1− t2 <∞,

and define

f(w) =

∫ 1

−1

dµ(t)

t− w .

Then f is univalent on De and maps De onto a bounded domain Ω which satis-
fies the assumptions (with g real analytic) and equivalent conditions in Proposi-
tion 2.1. For example, the foot point map p(x) of (∂Ω)+ is monotone increasing
and Ω can be written as a union of discs centered on R :

Ω =
⋃
x∈I

B
(
x, r(x)

)

for suitable r(x) > 0 (I = Ω ∩R).
If µ is not a point mass then p′(x) > 0 and B(p(x), |x+ ig(x)− p(x)|) ⊂

Ω ∪ {x+ ig(x)} for every x ∈ I . (If µ is a point mass then Ω is a disc and p(x)
is constant, namely equal to the center of the disc.)

Remark. Via an inversion in ∂D the result may equally well be stated for a
function defined in the unit disc:

h(w) =

∫ 1

−1

w dµ(t)

1− tw
maps D conformally onto a domain Ω having the properties in Proposition 2.1.
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Proof. An application of the argument principle shows that f is univalent
in {|w| > 1 + ε} for every ε > 0, hence f is univalent in De . Assumption (3.1)
implies that Ω = f(De) is a bounded domain, and it is clearly also symmetric
about the real axis.

We shall study f on (∂D)+ , which is mapped onto (∂Ω)+ but with a reversion
of the orientation since f maps what is outside ∂D to what is inside ∂Ω. With
w = eiθ , 0 < θ < π , we have

Re
d

dθ
f(eiθ) = Re

[
iwf ′(w)

]
= − Im

∫ 1

−1

eiθ dµ(t)

(t− eiθ)2
=

∫ 1

−1

(1− t2) sin θ

|t− eiθ|4 dµ(t).

Since
∫
dµ > 0 it follows that

(3.2) Re
d

dθ
f(eiθ) > 0

for 0 < θ < π .
This again implies the univalency of f . Moreover it shows that the tangent of

(∂Ω)+ is never vertical, that (∂Ω)+ is a graph of a function g as in Proposition 2.1
and that the foot point map p exists. Since f is analytic in the entire upper half-
plane, g is real analytic.

We now relate p to f and µ . We write

z = x+ iy = f(w) and w = u+ iv.

For z ∈ (∂Ω)+ we have w = eiθ with 0 < θ < π . We may then consider x , y , p
etc. as functions of θ and we shall write xθ , yθ , pθ etc. for the derivatives with
respect to θ .

Our aim is to prove that the equivalent conditions in Proposition 2.1 hold by
proving the third one: p′(x) ≥ 0 (x ∈ I ). Since we saw above (3.2) that xθ > 0
this condition can be written

(3.3) x2
θpθ ≥ 0 for 0 < θ < π

(to be proved). It is well known that D can be mapped conformally onto itself
by a Möbius transformation which preserves the real axis and takes any point on
(∂D)+ onto any prescribed point on (∂D)+ . For this reason it is enough to prove
(3.3) for one single value of θ , for example for θ = 1

2π . This argument will be
made more precise in Lemma 3.2 stated after the proof.

From

p(x) = x+
dy

dx
y = x+

yθ
xθ
y

we get
x2
θpθ = xθ(x

2
θ + y2

θ) + y(xθyθθ − xθθyθ).
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Denoting derivatives with respect to w by prime we have xθ + iyθ = zθ = z′ · iw ,
xθθ + iyθθ = (z′ · iw)′ · iw = −(z′′w2 + z′w) . Using ww = 1 we obtain

x2
θpθ = Re(iwz′) · |wz′|2 + Im z · Im

[
(iwz′)(w2z′′ + wz′)

]

= Im(z − wz′) · |z′|2 + Im z · Re(z′wz′′ ).

Inserting here

z =

∫
dµ(a)

a− w , z′ =

∫
dµ(a)

(a− w)2
, z′wz′′ =

∫
dµ(b)

(b− w)2
·
∫

2w dµ(c)

(c− w)3

gives

x2
θpθ = Im

∫
a− 2w

(a− w)2
dµ(a) · Re

(∫
dµ(b)

(b− w)2
·
∫

dµ(c)

(c− w)2

)

+ Im

∫
dµ(a)

a− w · Re

(∫
dµ(b)

(b− w)2
·
∫

2wdµ(c)

(c− w)3

)

=

∫ ∫ ∫ [
Im

a− 2w

(a− w)2
· Re

1

(b− w)2(c− w)2

+ Im
1

a− w · Re
2w

(b− w)2(c− w)3

]
dµ(a) dµ(b) dµ(c).

We write the last integrand as

v

|w − a|6|w − b|6|w − c|6 ·
[
|w − a|2|w − b|2|w − c|2(1− au) Re

(
(w − b)2(w − c)2

)

− |w − a|4|w − b|2 Re
(
w(w − b)2(w − c)3

)]

=
v

|w − a|6|w − b|6|w − c|6 · P (u; a, b, c).

Here P (u; a, b, c) is a polynomial with real coefficients. Indeed, the expression
defining P is a polynomial in w , w , a , b and c which is invariant under conju-
gation w 7→ w and which takes only real values. Hence, as a polynomial in u ,
v (and a , b , c) only even powers of v occur, and since u2 + v2 = 1 we get a
polynomial in u when v is eliminated.

It is natural to symmetrize P in the variables a , b , c into

Q(u; a, b, c) = 1
6

[
P (u; a, b, c) + P (u; a, c, b)

+ P (u; b, a, c) + P (u; b, c, a) + P (u; c, a, b) + P (u; c, b, a)
]
.

This gives us

x2
θpθ =

∫ ∫ ∫
vQ(u; a, b, c)

|w − a|6|w − b|6|w − c|6 dµ(a) dµ(b) dµ(c).
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It is difficult to write down Q(u; a, b, c) explicitly because of its size. Using e.g.
Mathematica one finds that it is a polynomial in u , a , b and c of degree 5 in u
and of degree 4 in each of a , b , and c , and that it has in total 232 terms.

However, as remarked above, it is enough to prove (3.3) for θ = 1
2π , i.e. for

w = u + iv = i , and this reduces the complexity considerably. The polynomial
Q(0; a, b, c) is of total degree 10 and of degree 4 in each of a , b and c . It has
48 terms. We shall prove that it is nonnegative for a, b, c ∈ [−1, 1] , which will
imply (3.3).

A lengthy but straightforward calculation shows that Q(0; a, b, c) can be writ-
ten explicitly as

Q(0; a, b, c) = 4
3R(a, b, c) + 32

3 S(a, b, c),

where

R(a, b, c) = (1−a2)(1−b2)(1−c2)
[
(a−b)2(1+c2)+(b−c)2(1+a2)+(c−a)2(1+b2)

]

and
S(a, b, c) = a2b2 + b2c2 + c2a2 + a3b3 + b3c3 + c3a3

+ a2b3c3 + a3b2c3 + a3b3c2 − a2bc− ab2c− abc2

− a4bc− ab4c− abc4 − a4b2c2 − a2b4c2 − a2b2c4.

We see directly that R(a, b, c) ≥ 0, and it remains to prove that S(a, b, c) ≥ 0.
For this we may assume that |a| ≤ |b| ≤ |c| and |c| > 0, because S(0, 0, 0) = 0.
Set a = Ac and b = Bc . Then −1 ≤ A ≤ 1, −1 ≤ B ≤ 1 and

S(a, b, c) = S(Ac,Bc, c) = c4T (A,B, c2),

where T is a polynomial in A , B and c2 , which is of degree 2 in c2 . Set C = c2 .
Then

T (A,B,C) = A2 −AB +B2 −A2B −AB2 +A2B2

+ (A3 −AB +B3 −A4B −AB4 +A3B3)C

−A2B2
(
(1−A)(1−B) + (A−B)2

)
C2.

Since the coefficient of C2 is nonpositive, since

T (A,B,−1) = (1−A)(1−B)(1−AB)(A2 +B2) ≥ 0

and
T (A,B, 1) = (1 +A)(1 +B)(1−AB)(A−B)2 ≥ 0

it follows that T (A,B,C) ≥ 0 on [−1, 1]3 . This implies that x2
θpθ ≥ 0 for θ = 1

2π
and hence proves that the equivalent statements in Proposition 2.1 hold.

Suppose now x2
θpθ = 0 for θ = 1

2π . Then Q(0; a, b, c) = 0 a.e. with respect to
µ×µ×µ . But this implies R(a, b, c) = S(a, b, c) = 0 a.e., and R(a, b, c) = 0 holds
at a point (a, b, c) ∈ (−1, 1)3 if and only if a = b = c . Hence Q(0; a, b, c) = 0 a.e.
implies that µ is a point measure, as required.
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The following lemma, which was used in the proof above, shows that in order
to prove (3.3) for all 0 < θ < π it is enough to prove it for one single value of θ ,
but then for all measures µ .

Lemma 3.2. For l ∈ (−1, 1) set

L(w) =
w − l
1− lw ,

a Möbius transformation which preserves the upper half-plane and the unit disc.
Let µ and M be positive measures on (−1, 1) related by dM

(
L(a)

)
= L′(a) dµ(a) .

Then with the variables w and W linked by W = L(w) we have the identity

∫
dM(A)

A−W =

∫
dµ(a)

a− w + C,

where C is a real constant.
Given any pair of points w0,W0 ∈ (∂D)+ the parameter l can be chosen so

that W0 = L(w0) , namely by taking l = (w0 −W0)/(1− w0W0) .

Proof. A calculation shows that

L′(a)

L(a)− L(w)
=

1

a− w +
l

1− la .

Integrating this with respect to µ gives

∫
L′(a) dµ(a)

L(a)− L(w)
=

∫
dµ(a)

a− w +

∫
l dµ(a)

1− la

and changing the variable of integration to A = L(a) in the first integral gives the
desired formula.

4. Application to the free boundary for an obstacle problem

We shall here formulate our main result as an assertion about the local ge-
ometry of the free boundary for the obstacle problem in its simplest form. Some
general references for this section are [3], [8] and [10]. Regularity questions for the
free boundary are treated e.g. in [1], [12] and [13].

The obstacle problem can be stated as the problem of finding the smallest
superharmonic function v satisfying suitable boundary conditions and passing a
given obstacle, represented by a function ψ . Assuming that ψ satisfies ∆ψ = −1,
at least in a small disc B under consideration, the difference u = v−ψ will satisfy
the following conditions within B :

u ∈ C1(B), u ≥ 0 in B, ∆u = χΩ in B,
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where
Ω = {z ∈ B : u(z) > 0}

is the subset of B where the solution goes free from the obstacle (the noncoinci-
dence set).

By definition of Ω,
u = 0 on B \ Ω

and, since this is the minimum value of u ,

∇u = 0 on B \ Ω.

The latter two equations mean that u , as a solution of the elliptic equation ∆u = 1
in Ω, satisfies too many boundary conditions on ∂Ω∩B , which on the other hand
is a free boundary (i.e., is not prescribed in advance).

For convenience we shall in the sequel take B to be centered at the origin.

Theorem 4.1. Assume that Ω+ = {x+ iy ∈ Ω : y > 0} is relatively compact
in B = B(0, r) , where the obstacle satisfies ∆ψ = −1 . Let I = Ω ∩R , let (Ω+)∗

denote the reflection of Ω+ in R and let D be a component of Ω+ ∪ I ∪ (Ω+)∗ .
Then D satisfies the assumptions (with g real analytic) and equivalent con-

ditions in Proposition 2.1. In addition, (Ω+)∗ ⊂ Ω . In particular,

Ω+ =
⋃
x∈I

B
(
x, r(x)

)+
=

⋃
z∈(∂Ω)+

B
(
p(z), |z − p(z)|

)+

for some radii r(x) > 0 , and

Ω+ =
⋃

z∈(∂Ω)+

Nz,

where the normal segments Nz are disjoint (notation as in Proposition 2.1).

Proof. We shall show that D is the conformal image of De under a map
f as in Theorem 3.1. The first part of the proof essentially consists of repeti-
tions from [5], but we need this as a background, and it will also be helpful for
understanding the material in Section 5. Define

u∗(x+ iy) = u(x− iy),

û = u− inf(u, u∗) = sup(0, u− u∗)
in B . Since ∆u ≤ 1, ∆u∗ ≤ 1 we have ∆ inf(u, u∗) ≤ 1. Also, 0 ≤ û ≤ u . It
follows that û satisfies

∆û ≥ 0 in Ω+,

û = 0 on ∂(Ω+).
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Applying the maximum principle in Ω+ , using that this set is relatively compact
in B , shows that û ≤ 0 in Ω+ . This means that u ≤ u∗ in Ω+ , i.e., that
u(x+ iy) ≤ u(x− iy) for y > 0. Hence (Ω+)∗ ⊂ Ω and

∂u

∂y
≤ 0 on R.

Next we apply the maximum principle to ∂u/∂y in Ω+ . Since ∂u/∂y = 0
on (∂Ω)+ and ∆∂u/∂y = 0 in Ω+ this shows that ∂u/∂y ≤ 0 in all Ω+ , in fact
even that ∂u/∂y < 0 in Ω+ (having ∂u/∂y = 0 in a component of Ω+ would
contradict the definition of Ω). Thus u is a decreasing function of y in Ω+ and
it follows that each component of Ω+ is of the same form as the set Ω+ in the
assumption of Proposition 2.1, i.e., is the subgraph of a function g (for which we
so far have no regularity information).

It also follows that each component D of the symmetrized domain Ω+ ∪ I ∪
(Ω+)∗ is simply connected. Let f : De → D be a conformal map preserving the
real axis and taking (De)+ onto D+ . Using u we can define the Schwarz function
(see [2] and [14]) of (∂Ω)+ by

S(z) = z − 4
∂u

∂z
.

One immediately realizes that S(z) is holomorphic in Ω+ and equals z on (∂Ω)+ .
Thus z 7→ S(z), for z ∈ Ω+ , is the anticonformal reflection in (∂Ω)+ and it

can be used to extend f from (De)+ to the entire upper half-plane, namely by
defining

(4.1) f(w) = S
(
f(1/w)

)
= f(1/w)− 2

∂u

∂x

(
f(1/w)

)
− 2i

∂u

∂y

(
f(1/w)

)

for w ∈ D+ . It is continuous across (∂D)+ and hence holomorphic in C+ . Extend-
ing f in the lower half-plane in the same way we get f defined and holomorphic
in Ĉ \ [−1, 1] . We therefore can represent it as a Cauchy integral around the

boundary ∂(Ĉ \ [−1, 1]) , regarded as an oriented closed curve:

f(w) = f(∞) +
1

2πi

∫

∂(Ĉ\[−1,1])

f(t) dt

t− w = f(∞) +
1

2πi

∫ 1

−1

f+(t)− f−(t)

t− w dt.

Here f±(t) = limε↘0 f(t ± iε) . It also follows from f being holomorphic in

Ĉ \ [−1, 1] that (∂D)+ and g are real analytic.
The jump f+(t)− f−(t) only comes from the ∂u/∂y -term in (4.1), the other

terms are continuous for w ∈ R , and it evaluates to

f+(t)− f−(t) = −2i lim
ε↘0

[
∂u

∂y

(
f
(
1/(t+ iε )

))
− ∂u

∂y

(
f
(
1/(t− iε )

))]

= −4i lim
ε↘0

∂u

∂y

(
f(1/t) + iε

)
.
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Since ∂u/∂y < 0 in Ω+ this shows that, aside for the constant f(∞) , f is of the
form in Theorem 3.1, namely the Cauchy transform of the measure

dµ(t) = − 2

π
lim
ε↘0

∂u

∂y

(
f(1/t) + iε

)
dt (t ∈ [−1, 1]).

This proves the theorem.

5. Application to partial balayage and quadrature domains

For problems of partial balayage and quadrature domains our main result
has a natural global interpretation. We start with a short review of the concepts
involved. More details can be found in, e.g., [11], [4] and [5].

Classical balayage is the process of sweeping a measure µ completely out to
the boundary of a given domain, supposed to contain suppµ , in such a way that
the exterior potential is left unchanged. For partial balayage there need not be
any fixed domain (other than the entire plane) to start with, instead one tries to
sweep the measure to have a prescribed density with respect to Lebesgue measure.
The swept measure will then occupy a set which is unknown from the beginning.
Thus partial balayage gives rise to a free boundary problem, which turns out to
be of obstacle type.

To make the above more precise, let µ be a positive measure with compact
support in C . We shall consider partial balayage of µ onto Legesgue measure (area
measure) m and use the notation Bal (µ,m) for the result, a positive measure ≤ m
having the property that its potential agrees with that of µ outside the (a priori
unknown) set Ω = Ω(µ) on which it equals m .

In case µ has finite energy (the energy of µ being defined as ‖µ‖2energy =∫
Uµdµ) the partial balayage measure can be defined as the measure closest to µ

in the energy norm among all measures which are ≤ m . A slightly more handy
and general definition is the following, which completely parallels the description
of the obstacle problem given in Section 4.

Definition 5.1. Define

Bal (µ,m) = −∆V µ,

where V µ is the largest of all locally integrable functions (or even distributions)
V satisfying

V ≤ Uµ in C,

−∆V ≤ 1 in C.

It is easy to see, with a Perron family argument, that such a largest V µ exists.
It satisfies 0 ≤ −∆V µ ≤ 1, hence has a representative which is a continuously
differentiable function. It also follows that Bal (µ,m) is a positive measure which
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is dominated by m , and it is not hard to show that it has compact support. We
note that UBal (µ,m) = V µ .

The desired result of applying Bal (µ,m) is usually that it shall take the form

Bal (µ,m) = χΩm

for some open set Ω. This is not always achieved (namely if µ is too much spread
out, e.g. has density < 1, already from beginning) but one can always define a
largest good set Ω (the saturated set for Bal (µ,m)) as follows:

(5.1)
Ω(µ) =

{
the largest open set in which Bal (µ,m) = m

}

= C \ supp
(
m− Bal (µ,m)

)
.

Then one shows that

UBal (µ,m) = Uµ on C \ Ω(µ).

By construction of V µ we also have

UBal (µ,m) ≤ Uµ in all C.

Remark. The definition of partial balayage extends to much more general
goal measures than m , e.g. to any measure of the form %m where the density %
is any locally integrable function bounded from above and below: 0 < c1 ≤ % ≤
c2 <∞ . In the definition above one just replaces the upper bound for −∆V by % .
Also, classical (complete) balayage can be incorporated as a special case of partial
balayage, see [5].

Related to partial balayage is the notion of quadrature domain for subhar-
monic functions. In the present paper a quadrature domain will be allowed to be
disconnected. Denoting by SL1(Ω) the set of subharmonic functions in Ω which
are integrable with respect to Lebesgue measure we have

Definition 5.2 [11]. Let µ be a positive measure with compact support and
let Ω be a bounded open set. We say that Ω is a quadrature domain for µ for
subharmonic functions, and write Ω ∈ Q(µ,SL1) , if

(i) µ(C \ Ω) = 0,

(ii)
∫

Ω
ϕdµ ≤

∫
Ω
ϕdm for all ϕ ∈ SL1(Ω).

The class Q(µ,SL1) may be empty, and if it is not empty it consists, up to
nullsets, of only one element, namely Ω(µ) (defined in (5.1)). More precisely we
have the following.
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Proposition 5.3. Assume Q(µ,SL1) 6= ∅ . Then Ω(µ) ∈ Q(µ,SL1) and
every element in Q(µ,SL1) is of the form Ω(µ) \E , where E is a relatively closed
subset of Ω(µ) satisfying m(E) = 0 , V µ = Uµ on E . Moreover,

Bal (µ,m) = χΩ(µ)m.

We recall that Ω(µ) always exists, even if Q(µ,SL1) = ∅ . Our main result
gives rather precise information on the geometry of Ω(µ) outside the convex hull
of suppµ . The following was proved in [5] (in any number of dimensions).

Proposition 5.4 [5]. Let µ be a positive measure with compact support in
C , let K denote the convex hull of suppµ and let Ω = Ω(µ) be the saturated set
for Bal (µ,m) as defined in (5.1) . Then:

(i) Outside K , Bal (µ,m) has the pure form χΩ :

Bal (µ,m)|C\K = χΩ\Km.

(ii) The part ∂Ω \K of the boundary of Ω is smooth real analytic.

(iii) For each z ∈ ∂Ω \K the inward normal ray of ∂Ω at z intersects K .

Moreover, E ⊂ K for any set E as in Proposition 5.3 .

Referring to the conclusions of the proposition, let p(z) denote the first point
of intersection of the inward normal of ∂Ω at z ∈ ∂Ω\K with K (the foot point).
Thus p(z) ∈ ∂K . Let further

Nz = {tz + (1− t)p(z) : 0 < t < 1}
be the open normal segment from z to p(z) . When stated for partial balayage
our main result reads as follows.

Theorem 5.5. With assumptions and notation as above and in Proposi-
tion 5.4 we have, continuing the numbering from Proposition 5.4 ,

(iv)
Ω =

⋃
z∈∂Ω\K

B
(
p(z), |z − p(z)|

)
∪ (Ω ∩K).

It follows that all of Ω can be written as a union of discs with centers on Ω ∩K ,
namely

Ω =
⋃

w∈Ω∩K
B
(
w, r(w)

)
,

where r(w) = |z− p(z)| if w = p(z) for some z ∈ ∂Ω \K and r(w) = dist (w, ∂Ω)
if w is not in the range of p .

(v) Ω \K is the disjoint union of all the normal segments Nz :

Ω \K =
⋃

z∈∂Ω\K
Nz, Nz1 ∩Nz2 = ∅ for z1 6= z2.

Corollary 5.6. With µ and K as in the theorem, assume Ω ∈ Q(µ,SL1) .
Then (ii)–(v) in Proposition 5.4 and Theorem 5.5 hold.
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The corollary is immediate from the theorem together with Propositions 5.3
and 5.4, so we only need to prove the theorem.

The theorem will be proved by reducing it to the special case that suppµ is
contained in a straight line (e.g., the real axis), and for that case Theorem 3.1
applies via known properties of conformal maps onto quadrature domains. We
state the special case as follows.

Lemma 5.7. Let µ be a positive measure with compact support on R . Then
Ω = Ω(µ) is the unique element in Q(µ,SL1) . It is symmetric about the real axis
and each component of it is simply connected and satisfies the assumptions (with
g real analytic) and equivalent conditions in Proposition 2.1 .

Proof. All statements except the last one (about the equivalent conditions)
are well known, in fact are contained in Proposition 14.7 of [11]. To prove the
last statement we may assume that Ω is connected, because each component is in
itself a quadrature domain for the part of µ which it contains.

Let f : De → Ω be a conformal map which preserves the real axis and takes
(De)+ onto Ω+ . It follows (essentially) from Proposition 10.19 in [11] (see also [2,
p. 158]) that f is of the form

f(w) = f(∞) +

∫
dν(t)

t− w

for some positive measure ν on (−1, 1). Indeed, f having such a form is equivalent
to Ω being a quadrature domain for the smaller test class of analytic functions.
The proof of the above formula for f consists of a reflection argument similar to
that used in the proof of Theorem 4.1. Now the final statement in Lemma 5.7
follows from Theorem 3.1.

Finally we show how Theorem 5.5 follows from Lemma 5.7.

Proof. We start by observing that

Ω \K ⊂ ⋃
z∈∂Ω\K

Nz ⊂
⋃

z∈∂Ω\K
B
(
p(z), |z − p(z)|

)
.

In fact, this is true outside H for any closed half-plane H with K ⊂ H by the
same argument as was used for (2.3) in the proof of Proposition 2.1, hence it is
true as stated since K is the intersection of all such half-spaces. The fact that, in
Proposition 2.1, the quantities p(z) and Nz are defined with respect to what in
the present context is the half-plane H , which contains K , only simplifies for the
conclusion. For example, having the foot point on ∂K rather than on ∂H only
makes the discs in the right member above larger.

Thus, in order to prove the theorem we only have to show that

(5.2) B
(
p(z), |z − p(z)|

)
⊂ Ω
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for all z ∈ ∂Ω \K and that

(5.3) Nz1 ∩Nz2 = ∅

for all z1, z2 ∈ ∂Ω \K with z1 6= z2 .
It is known (see Theorem 4.1 in [5]) that given any closed half-plane H con-

taining K there exists a positive measure ν = νH with support on ∂H and
producing the same partial balayage outside H as µ does. Precisely,

Bal (ν,m)|C\H = Bal (µ,m)|C\H and Bal (ν,m) ≤ Bal (µ,m).

In particular,

(5.4) Ω(ν) \H = Ω(µ) \H and Ω(ν) ⊂ Ω(µ).

These statements are closely related to what was obtained in the proof of Theo-
rem 4.1 in the context of the obstacle problem. Indeed, assume H = {x + iy ∈
C : y ≤ 0} and set u = Uµ − V µ , u∗(x + iy) = u(x − iy) , v = inf(u, u∗) . As in
the proof of Theorem 4.1 one finds that v = u (i.e., u ≤ u∗ ) in Ω(µ)\H and that
limε↘0(∂u/∂y)(x + iε) ≤ 0 (x ∈ R). Then the measure ν = νH on ∂H = R is
given by ν = (−∆v)|R or, what is the same, dν(x) = −2 limε↘0(∂u/∂y)(x+iε) dx .

Now given z ∈ ∂Ω \K choose a point c ∈ Nz . Then, since Nz ∩K = ∅ we
can find a closed half-plane H such that K ⊂ H and c /∈ H . Since p(z) ∈ H
we have z /∈ H . We shall apply Lemma 5.7 with ∂H identified with the real axis
(and H with the lower half-plane) and with µ taken to be the ν = νH defined
above.

In this situation, considering Ω \ H in place of Ω \ K , the inward normal
segment from z will be just Nz \H and the foot point will be the unique point
w in

(
Nz ∪ {p(z)}

)
∩ ∂H . Lemma 5.7 together with (5.4) then gives that

Nz \H ⊂ B(w, |z − w|) ⊂ Ω(νH) ⊂ Ω.

Letting now c→ p(z) (with c ∈ Nz ) we have w → p(z) and it follows that

Nz ⊂ B
(
p(z), |z − p(z)|

)
⊂ Ω,

in particular (5.2) holds.
In order to show (5.3) we assume, to derive a contradiction, that there exists a

point c ∈ Nz1 ∩Nz2 for some z1, z2 ∈ ∂Ω\K with z1 6= z2 . Again choose a closed
half-plane H with K ⊂ H and c /∈ H . Since p(z1), p(z2) ∈ H we have z1, z2 /∈ H .
Applying Lemma 5.7 in the same way as above gives (Nz1 \H) ∩ (Nz2 \H) = ∅ ,
which is the desired contradiction since c is in the intersection. Thus also (5.3)
holds, so that Theorem 5.5 is now proven.
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6. Application to Hele-Shaw flow moving boundary problems

Hele-Shaw flow refers to the flow of a viscous incompressible fluid in the
narrow gap between two parallel plates (see [6] and [9]). In the two-dimensional
picture, averaging over the gap and looking at the plates from above, Hele-Shaw
flow turns out to be a potential flow with a harmonic potential function. This
makes it interesting within function theory.

We shall consider the simplest model for a Hele-Shaw blob Ωt ⊂ C with free
boundary and which grows in time due to injection of more fluid. In case the
additional fluid is injected at one single point, taken to be the origin, the standard
mathematical description is the following.

An initial domain Ω0 containing the origin is given and one seeks its evolution
{Ωt} in time under the rule that

∂Ωt propagates with normal velocity − ∂GΩt

∂n
,

where GΩt(z) = −(1/2π) log |z|+ harmonic is the Green’s function of Ωt with pole
at the origin, and where ∂/∂n denotes the exterior normal derivative on ∂Ωt .

In the forward time direction the Hele-Shaw problem is well-posed and admits
a unique global weak solution (“variational inequality solution”). This solution is
in fact just a special case of partial balayage, namely {Ωt : 0 < t < ∞} is given
by

Bal (tδ + χΩ0m,m) = χΩtm,

where δ denotes the Dirac measure at the origin. To be more precise, Ωt =
Ω(tδ+χΩ0m) ∈ Q(tδ+χΩ0m,SL1) . See [11] and [5]. This balayage interpretation
of Hele-Shaw flow is a strengthened form of the property, discovered by S. Richard-
son [9], that Hele-Shaw flow preserves the complex moments of the domain.

Considering a more general source configuration than a point mass corre-
sponds to replacing the Dirac measure above by a more general positive mea-
sure µ . In general, one may think of Hele-Shaw evolution simply as continuous
partial balayage.

From Theorem 5.5 we immediately get

Theorem 6.1. Let Ω0 ⊂ C be a bounded initial domain for Hele-Shaw flow
and let µ ≥ 0 represent an arbitrary source distribution in Ω0 . Let {Ωt : 0 < t <
∞} be the corresponding Hele-Shaw evolution, namely Ωt = Ω(tµ+ χΩ0m) , and
let K denote the closed convex hull of Ω0 .

Then, for any t > 0 , Ωt is a union of discs with centers on Ωt∩K . Moreover,
Ωt \K is the disjoint union of all the open normal segments Nz from points on
∂Ωt \K to their first points of intersection with K .
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