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Abstract. We obtain precise results on the hyperbolic distance in a rectangle. In particular,
we give formulae for the hyperbolic distances along the lines of symmetry of the rectangle.

1. Introduction

The function z 7→ log z−πi/2 maps the upper half-plane H conformally onto
the infinite strip S = {x + iy : |y| < π/2} , and when we transfer the hyperbolic
metric |dz|/y from H to S we find that the hyperbolic density λS(z) in S satisfies
λS(x) = 1 for all real x . Thus the Euclidean and hyperbolic distances coincide
on the real axis in S . This paper contains a discussion of the hyperbolic metric,
and a comparison of Euclidean and hyperbolic distances, in the rectangle

R(l) = {x+ iy : |x| < l, |y| < π/2} = (−l, l)× (−π/2, π/2)

in the complex plane C , and it is a continuation of earlier work in [3] and [5].
For brevity, we shall often use R for R(l) , and we use λR(z) and dR(z, w) for
the hyperbolic density and distance, respectively, in R ; thus R , λR and dR all
depend implicitly on l . When l is large the results for R are similar to those for
S , but here we obtain an explicit formula for dR(0, x) that is valid for all l .

Let σ and τ be the hyperbolic geodesics joining the vertices of R(l) (as
illustrated in Figure 1), and let u and iv be the points where τ meets the real axis,
and σ meets the imaginary axis, respectively. Our first result gives asymptotic
values of the hyperbolic distance dR(0, u) , and the Euclidean distances |u−0| and
|l − u| , when l is large.

Theorem 1.1. Let R(l) , u and v be as above. Then, as l→ +∞ ,

(a) l = u+ log
(
1 +
√

2
)

+ o(1);
(b) d(0, u) = l − log 2 + o(1);
(c) d(0, u) = u+ log

(
1 +
√

2
)
/2 + o(1) .
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Figure 1.

As we have remarked above, when l is large, the Euclidean and hyperbolic
distances between 0 and x , where 0 < x < l , are similar providing that x is
not too close to l . These distances were compared in [5, Lemma 6], where (after
scaling the hyperbolic metric in [5] by a factor 2 so that it corresponds to |dz|/y
on H) it was shown that if 0 ≤ x ≤ l − π/2 then

(1.1) x ≤ dR(0, x) ≤ x+ π/2 = x+ 1.5708 . . . .

This was improved in [3], where it was shown that if 0 < x < l − π/2, then

(1.2) x < dR(0, x) < x+
4

e2(l−x)
≤ x+

4

eπ
= x+ 0.17 . . . .

Both of these inequalities require x to be outside the semi-disc

R(l) ∩ {|z − l| < π/2},

and this is more restrictive than Theorem 1.1(c) because, as can be seen from
Theorem 1.1(a), u is approximately (l − π/2) + 0.68942. Moreover, whereas the
geodesic τ has an intrinsic significance in the geometry of R , the semi-circle does
not, and this is probably the reason why Theorem 1.1(c) leads to sharper estimates
than (1.1) and (1.2). Indeed, we shall see later that dR(0, x)− x is increasing, so
that if 0 ≤ x ≤ u , then, from Theorem 1.1(c),

(1.3) x ≤ dR(0, x) ≤ x+ log
(
1 +
√

2
)
/2 = x+ 0.18823 . . . .

Note that Theorem 1.1(c) also shows that this upper bound is asymptotically
correct when x = u and l→ +∞ .
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Let us now consider a different problem associated with a long rectangle.
Suppose that a simply connected domain D contains a long thin channel ; by this
we mean that there is a long rectangle R which is contained in D , and which is such
that the two long sides of R lie in ∂D . It is intuitively clear that any hyperbolic
geodesic γ in D that passes down the length of the rectangle must pass close to
the centre, say O , of R , and that the distance (hyperbolic or Euclidean) between
O and γ must tend to zero as rectangle gets longer (with a fixed width). We verify
this, and even obtain an explicit estimate for the distance between O and γ .

Theorem 1.2. Let R(l) and v be as above. Then dR(0, iv) ∼ 4/el as
l→∞ .

Corollary 1.3. Let D be a simply connected domain that contains the
channel R(l) . Then any hyperbolic geodesic in D that joins the two short ends
of R(l) passes within a hyperbolic distance 4e−l

(
1 + o(1)

)
as l→∞ .

Finally, we give an explicit formula for dR(0, x) , where 0 < x < l , in terms
of x and Jacobi’s elliptic function sn. We shall use the standard theory of elliptic
functions as may be found in, for example, [1], [4], [6], [7] and [8]. We suppose
that 0 < k < 1, and (as usual) we put k′ =

√
1− k2 . Then F given by

(1.4) F (z) =

∫ z

0

dw√
(1− w2)(1− k2w2)

.

is the conformal map of H onto the rectangle (−K,K) × (0,K ′) with −k−1 ,
−1, 1, k−1 mapping to −K + iK ′ , −K , K , K + iK ′ , respectively [7, p. 280].
Jacobi’s function sn is the inverse function F−1 , and this is an increasing map
of [−K,K] onto [−1, 1] . We remark that K is given in terms of k by an elliptic
integral ([7, p. 281]), and also as an infinite series ([3, p. 403] and [4, p. 90]), and
K ′(k) = K(k′) . Finally, given any positive number t there is a unique value of k
such that K(k)/K ′(k) = t .

Theorem 1.4. Let R(l) be as above. Then dR(0, x) is a convex function of
x on [0, l] , and if 0 ≤ x < l , then

(1.5) dR(0, x) =
1

2
log

(
1 + sn(Kx/l)

1− sn(Kx/l)

)
=

1

2
log

(
1 + sn(2K ′x/π)

1− sn(2K ′x/π)

)
,

where k is chosen so that l = πK(k)/2K ′(k) .

The author thanks the referee for comments which have resulted in a signifi-
cant improvement of this paper.
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2. The half-strip

We need detailed information on the hyperbolic metric in a half-strip. The
function sin z maps the half-strip H = (−π/2, π/2) × (0,+∞) conformally onto
H taking −π/2 and π/2 to −1 and 1, respectively [7, p. 276]. It follows that the
hyperbolic geodesic γ in H with endpoints ±π/2 is given by those z for which
| sin z| = 1. Now if z = x + iy then | sin z|2 = sin2 x + sinh2 y , so that γ is
given by sin2 x+ sinh2 y = 1. In particular, the ‘highest’ point of γ is iy0 , where
sinh y0 = 1 or, equivalently,

(2.1) y0 = sinh−1(1) = log
(
1 +
√

2
)
< π/2.

The equations of the other geodesics that ‘cross’ H are sin2 x+sinh2 y = R , where
R > 0, but we shall not need these.

−1 1−π/2 π/2

iy0

H
H

γ

sin z

Figure 2.

We return to a discussion of the rectangle R(l) and we shall show that, as
l → +∞ , the geodesic τ in Figure 1 converges (in the obvious sense) to the
corresponding geodesic in the half-strip (−∞, l) × (−π/2, π/2). In view of (2.1),
this shows that

(2.2) l − u→ y0 = log
(
1 +
√

2
)
,

and this is Theorem 1.1(a). It remains to prove that τ converges to the geodesic
in the half-strip as described above.
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The proof of this is based on the following observation. The hyperbolic
geodesic (−1, 1) in the unit disc D is the level curve ω(z) = 1/2 of the har-
monic measure ω of the upper (or lower) semi-circle of ∂D . By the conformal
invariance of both the harmonic measure and hyperbolic geometry, an analogous
result holds for all simply connected domains (for which the Dirichlet problem is
solvable).

Now consider the half-strip H and the rectangle R(l) , the rectangle R(l)
having been translated to the left by a distance l , and the half-strip H having
been rotated by an angle π/2; see Figure 3. We shall continue to use the same
notation as earlier despite these transformations of R(l) and H .

0

α

−2l

H
R

γ
τ

Figure 3.

Let α be the right-hand side of both H and R(l) , and let ωH and ωR be the
harmonic measures of α with respect to H and R(l) , respectively. As ωR ≤ ωH in
∂R(l) , with a strict inequality holding on the left-hand edge, we see immediately
that ωR < ωH in R(l) . This means that the geodesic τ separates γ from the
right-hand edge α (as illustrated in Figure 3). Standard techniques show that ωR
is increasing with l , and that ωR → ωH locally uniformly on H as l → +∞ . If
we now note that τ and γ are given by ωR = 1

2 and ωH = 1
2 , respectively, this

completes the proof of (2.2), and hence of Theorem 1.1(a).

3. Elliptic integrals

A quadrilateral Q(z1, z2, z3, z4) is a Jordan domain Q with four given points
z1, z2, z3, z4 lying in this order clockwise around the boundary of Q . The modulus
of this quadrilateral is given by

modQ(z1, z2, z3, z4) = b/a,

where a and b are determined by any conformal map f of Q onto a rectangle
R′ such that the f(zj) are the vertices of R′ , a = |f(z1) − f(z2)| and b =
|f(z2)− f(z3)| . Now let

M(k) = mod H(−k−1,−1, 1, k−1) =
2K(k)

K ′(k)
.
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The values of K(k) and K ′(k) can be found in standard numerical tables for, say,
0 < k < 0.9 so that, for k in this range, M(k) can be found numerically. For
example, if k = 4

5 then K = 1.9953 . . . , K ′ = 1.7508 . . . and M(k) = 2.2793 . . .
(see [6, pp. 278–279]). Tables do not seem to be available for values of k close to
1, but the asymptotic behaviours of K and K ′ are known. For example, it is well
known that as k → 0, K(k)→ π/2 and K ′(k)− log 4/k → 0 ([8, p. 522]). Thus,
as K ′(k) = K(k′) , we see that

M(k) =
2K(k)

K ′(k)
=

2K ′(k′)
K(k′)

∼ 4

π
log

4√
1− k2

as k → 1 (and k′ → 0). In fact, we have the following stronger result.

Lemma 3.1. As k → 1 ,

M(k) =
4

π
log

4√
1− k2

+ o(1).

Proof. Chapter 5 of [1] is devoted to a study of the function µ(r) , where

µ(k′) =
πK ′(k′)
2K(k′)

=
πK(k)

2K ′(k)
=
πM(k)

4
.

With this, Lemma 3.1 follows immediately from the inequality

k log
4

k′
< µ(k′) < log

4

k′

which is (5.3) in [1, p. 80].

We remark that Chapter 5 of [1] contains additional information about the
function µ(k) , and hence about the function M(k) ; for example, µ(k)µ(k′) =
π2/4.

4. Proof of Theorems 1.1 and 1.2

We begin with our proof of Theorem 1.2. Because µ: (0, 1) → (0,+∞) is a
homeomorphism, given any positive l we can choose a unique value of k in (0, 1)
such that

(4.1) l =
πK(k)

K ′(k)
,

and we recall that M(k) = 2l/π . Then the map

z 7→ π

K ′(k)
F (z)− iπ

2
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is a conformal map of H onto R(l) . As the hyperbolic metric is invariant under
conformal maps it is clear that

2dR(0, iv) = dR(−iv, iv) = dH(i, i/k) = log 1/k,

where dH is the hyperbolic metric in H , because log 1/k is the hyperbolic distance
between the geodesics given by |z| = 1 and |z| = 1/k in H . Now

dR(0, iv) el =

(
1

2
log

1

k

)
exp

(
πM(k)

2

)
,

and as (from Lemma 3.1)

πM(k)

2
= log

16

1− k2
+ o(1),

we see that dR(0, iv) el → 4 as k → 1 and this proves Theorem 1.2.

We can now complete the proof of Theorem 1.1. As we have already proved
(a), and as (c) follows trivially from (a) and (b), we need only prove (b). This can
be proved in a similar way by computing the hyperbolic distance in H between
the geodesic given by x = 0 and the geodesic whose Euclidean diameter is [1, 1/k]
(and using the formula given in [2, p. 145]). Alternatively, we can argue as follows.
The geodesics σ and τ , and the hyperbolic segments [0, u] and [0, iv] , in Figure 1
bound a Saccheri quadrilateral (a hyperbolic quadrilateral with three right-angles
and one angle zero). Now the trigonometry of Saccheri quadrilaterals is known
(see [2, p. 156]), so we see immediately that

sinh dR(0, u) sinh dR(0, iv) = 1.

This with Theorem 1.2 leads easily to Theorem 1.1(b).

5. Proof of Corollary 1.3

We start with a simply connected domain D that contains the channel R(l) .
Let β be the ‘upper’ side of R(l) so that β ⊂ ∂D . Now let ωR and ωD be the
harmonic measures of β with respect to R and D , respectively. It is clear that
ωD > ωR on R , and hence that ωD > 1

2 on the region bounded by β and σ . The
corresponding statement holds if we replace β by the ‘lower’ side of R , and this
implies that the geodesics relative to D that join the ends of the upper side, and
the ends of the lower side, of R form a narrower channel than the corresponding
geodesics for R . Corollary 1.4 follows directly from this and Theorem 1.3.
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6. Proof of Theorem 1.4

We begin by establishing the formula for dR(0, x) . Let

g(z) = (z2 − 1)/(z2 + 1);

then g maps Σ conformally onto Ω, where Σ = {x + iy : x > 0} and Ω is the
complex plane C cut from −∞ to −1, and from 1 to ∞ . Next, the Reflection
Principle implies that F maps Ω conformally onto R , where

R = {x+ iy : |x| < K, |y| < K ′}.

Now let h(z) = πz/(2K ′) ; then h maps R conformally onto R . Finally, let
Φ = hFg ; then Φ maps Σ conformally onto R , where now,

(6.1) l =
πK(k)

2K ′(k)

(note that this differs from the relationship (4.1) between l and k given earlier).
Note also that Φ maps (0,+∞) in Σ onto (−l, l) in R , and Φ(1) = 0.

As Φ is a hyperbolic isometry of Σ onto R , if x > 1 then

(6.2) dR
(
0,Φ(x)

)
= dΣ(1, x) = log x.

We also know that λR(z) is given by

1/Re[z] = λΣ(z) = λR
(
Φ(z)

)
|Φ′(z)|.

Thus, from the Chain Rule applied to Φ = hFg , we obtain

|Φ′(x)| = π

K ′
√

(x2 + 1)2 − k2(x2 − 1)2
,

and hence

(6.3) λR
(
Φ(x)

)
=

2K ′

π

√
1

4

(
x+

1

x

)2

− k2

4

(
x− 1

x

)2

.

Now (6.2) and (6.3) yield

λR
(
Φ(x)

)
=

2K ′

π

√
1 + (1− k2) sinh2 dR

(
0,Φ(x)

)
,

and as Φ(x) is any point of (0, l) , this with (6.1) proves that if 0 < x < l then

(6.4) λR(x) =
K

l

√
1 + (1− k2) sinh2 dR(0, x) .
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For brevity, we now write %(t) = dR(0, t) for 0 ≤ t < l . Then (6.4) implies
that % satisfies the differential equation

d%

dt
=
K

l

√
1 + k′2 sinh2 %,

and if we make the substitution m(t) = sinh %(t) this gives

dm

dt
=
dm

d%

d%

dt
=
K

l

√
1 +m2

√
1 + k′2m2 .

However, directly from (1.4), we have

d

dx
F

(
x√

1 + x2

)
=

1√
1 + x2

√
1 + k′2x2

so that if x > 0 then

F

(
x√

1 + x2

)
=

∫ x

0

dm√
1 +m2

√
1 + k′2m2

=
K

l

∫ τ

0

dt =
Kτ

l
,

where x = sinh %(τ) = sinh dR(0, τ) . As sn = F−1 , this shows that

tanh dR(0, τ) = sn
(
Kτ/l

)
,

and as tanh−1(y) = 1
2 log

[
(1 + y)/(1− y)

]
, this gives (1.5).

Finally, we need to show that dR(0, x) is a convex function of x on [0, l] . The
elliptic functions sn, cn and dn satisfy

cn2 + sn2 = 1, dn2 + k2sn2 = 1, sn′(y) = cn(y)dn(y),

and a straightforward calculation using (1.5) shows that

d

dx

[
dR(0, x)

]
=
K

l

√
1− k2sn(y)2

1− sn(y)2
,

where y = Kx/l . As t 7→ (1 − k2t)/(1 − t) is an increasing function of t , it is
immediate that dR(0, x) is a convex function of x as required.

We remark that Theorem 1.4 shows that the derivative of dR(0, x) − x is
increasing, and as

d

dx
dR(0, x)

∣∣∣
x=0

= λR(0) > λS(0) = 1,
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we see that dR(0, x) − x is increasing on (0, l) and this proves (1.3). The same
argument shows that when 0 ≤ x ≤ l − 1

2π we have the sharp inequality

(6.5) x ≤ dR(0, x) ≤ x+ dR(0, l − π/2)− l + π/2,

and the constant on the right-hand side of this inequality can be evaluated using
numerical tables for the values of sn. This technique allows us to see how accurate
(1.1) and (1.2) are, and we give one example to illustrate these ideas. First, (6.1)
implies that (2K ′/π)(l − π/2) = K −K ′ , and this with (1.5) shows that

(6.6) dR

(
0, l − π

2

)
=

1

2
log

(
1 + sn(K −K ′)
1− sn(K −K ′)

)
.

For example, if k = 0.9 then K = 2.28055 . . . and K ′ = 1.65462 . . . , so that
l = 2.165 . . . . Thus if k = 0.9 the lengths of the sides of R are approximately
3.14 and 4.33, and R is almost a square. Also, K − K ′ = 0.62593 . . . , so that
sn(K−K ′) is between sn(0.6) and sn(0.7). Using the tables given in, for example,
[6, pp. 278–284], and (6.6), we find that in this case, and with x = l − π/2, we
have

0.01317 . . . ≤ dR(0, x)− x ≤ 0.11786 . . . .

In any event, we now have the sharp inequality

x ≤ dR(0, x) ≤ x+
1

2
log

(
1 + sn(K −K ′)
1− sn(K −K ′)

)
− l +

π

2
,

where k is chosen so that l = πK(k)/2K ′(k) , and this inequality is valid for all
x in (0, l − π/2).
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