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Abstract. We call a Fuchsian group, G , δ -stable if δ(G′) = dim(Λ(G′)) for every quasi-
Fuchsian deformation G′ of G . It is well known that every finitely generated Fuchsian group has
this property. We give examples of infinitely generated Fuchsian groups for which it holds and
others for which it fails.

1. Introduction

Associated to a Kleinian group G are two numbers, the Hausdorff dimension
of its limit set, dim(Λ), and the critical exponent of its Poincaré series, δ and it is
natural to ask when they are equal (all definitions will be given in Section 2). The
question has a simple geometric interpretation. Points of the limit set Λ naturally
correspond to geodesic rays with a fixed base point z0 ∈ M = B/G . The limit
set Λ can be written as the disjoint union of two special subsets; the conical
limit set, Λc , which corresponds to geodesics which return to some compact set
infinitely often (the recurrent geodesics) and the escaping limit set, Λe , which
corresponds to geodesics which escape to infinity. Thus we always have dim(Λ) =
max

(
dim(Λc),dim(Λe)

)
. It is a theorem from [16] that δ = dim(Λc) for any non-

elementary group and hence δ ≤ dim(Λ) for all such groups with equality if and
only if dim(Λe) ≤ dim(Λc) . Moreover, δ = dim(Λb) , where Λb ⊂ Λc is the part
of the limit set corresponding to geodesics that remain bounded in M [16].

If a Kleinian group is geometrically finite then Λe is at most countable (see
[6], [8]) and so dim(Λe) = 0 ≤ dim(Λc) clearly holds and hence δ = dim(Λ). This
equality is conjectured to hold for all finitely generated Kleinian groups; the best
result so far says it holds if we also assume Λ has zero area (see [16]). For infinitely
generated groups, the equality can fail, but it is still interesting to find conditions
under which it holds.

We will restrict our attention to quasi-Fuchsian groups, i.e., groups G′ which
are conjugate to a Fuchsian group G of the first kind via a quasiconformal map of
the plane. We shall say that a Fuchsian group G is δ -stable if δ(G′) = dim

(
Λ(G′)

)

for every quasi-Fuchsian deformation G′ of G . Clearly every finitely generated
Fuchsian group has this property (because the deformations are geometrically
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finite), but it is it not obvious whether or not any infinitely generated group does.
The purpose of this note is to show both possibilities occur.

From our remarks above, we see that G is δ -stable if and only if

dim
(
Λe(G

′)
)
≤ dim

(
Λc(G

′)
)

= δ(G′)

for every quasiconformal deformation G′ of G . In other words, we want the part of
the limit set corresponding to escaping geodesics to be less distorted than the part
corresponding to reccurent geodesics. One way to ensure this is for the dilatation
to be compactly supported (modulo G); in [15] we showed that if the deformation
is compactly supported then dim(Λe) = 1 (indeed, has sigma finite length) and
hence dim(Λ) = δ . Thus every Fuchsian group with δ = 1 is δ -stable with respect
to compactly supported deformations (by Lemma 2.4, δ cannot decrease under a
deformation in this case). A criterion which applies to certain non-compactly
supported deformations is given in Lemma 5.1 of [10].

There is another way of ensuring that Λe is not distorted too much. It is well
known that the thrice punctured sphere has a trivial deformation space, i.e., any
quasiconformal conjugation gives another circle as the limit set. In [12] I give a
quantified version of this fact, showing that if part of a Riemann surface “looks
like” a thrice punctured sphere (i.e., consists of a union of Y -pieces, all with
short boundary curves) then any deformation supported there cannot raise the
dimension of the limit set very much. We will use this idea to construct δ -stable
groups. To be more precise, suppose R = D/G is a union of Y -pieces and for
any ε > 0, only a finite number are not ε -bounded (see Section 2 for definitions).
Following the terminology in [12], we shall say such a R “approximates a thrice
punctured sphere near infinity”.

Theorem 1.1 Suppose R = D/G approximates a thrice punctured sphere
at infinity. Then G is δ -stable.

In fact we will prove the stronger statement that for any quasi-Fuchsian de-
formation G′ of G , dim

(
Λe(G

′)
)

= 1. Then δ -stability follows because it is
known that if δ(G) = 1 then δ(G′) ≥ 1 for any quasi-Fuchsian deformation (see
Lemma 2.4). It is easy to see these examples may be taken to be either divergence
type or convergence type.

In order to build an example which is not δ -stable, we will take two bordered
Riemann surfaces, R1 with δ = 1 and R2 with δ < 1 and join them along a
boundary component. The deformation is chosen so the dilatation has support in
R2 which is at least distance d from R1 and we show that dim(Λe) > 1 + ε > 1
independent of d . Bounded geodesics which stay in R2 correspond to a piece of
the limit set with dimension < 1, which still has dimension < 1 if the deformation
has small L∞ norm. Geodesics which stay in R1 are far from the support of the
deformation and hence correspond to a part of the limit set whose dimension is
hardly changed if d is large enough. Combining these ideas gives:
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Theorem 1.2. There is a Fuchsian group G with δ = 1 which is not δ -stable.

As noted above, we require δ = 1 to avoid trivial examples where δ(G) 6=
dim

(
Λ(G)

)
. The example in Theorem 1.2 is a convergence type group and I do not

know of any divergence type examples. Is every divergence type group δ -stable?
I thank the referee for carefully reading the manuscript and numerous com-

ments and suggestions which improved it.
The rest of the paper is organized as follows. In Section 2 we recall some basic

definitions and results. In Section 3 we prove that a quasiconformal map with
Beltrami coefficient µ satisfies a pointwise Hölder type estimate with exponent
close to 1 far from the support of µ . In Section 4 we prove Theorem 1.1. In
Section 5 we prove Theorem 1.2.

2. Definitions and background

If A and B are quantities that depend on some parameter we write A . B
if the ratio B/A is bounded uniformly independent of the parameter. Similarly
for & . We write A ' B if both A . B and A & B hold and say A and B are
comparable.

The terms “dist” and “diam” will always refer to Euclidean distances in this
paper, except when we explicitly state otherwise (e.g., for a set on a Riemann
surface, diam(E) would refer to hyperbolic diameter).

Suppose ϕ is an increasing continuous function from [0,∞) to itself such that
ϕ(0) = 0. We define the Hausdorff content of a set E ⊂ R2 as

H ϕ
∞ = inf

{∑
ϕ(rj) : E ⊂ ⋃

j

D(xj , rj)

}
.

If ϕ(t) = tα we denote H ϕ by H α . The Hausdorff dimension of E is

dim(E) = inf
{
α : H α

∞(E) = 0
}
,

and the Hausdorff measure of E is

H ϕ(E) = lim
δ→0

[
inf

{∑
ϕ(rj) : E ⊂ ⋃

j

D(xj , rj), rj ≤ δ
}]
.

A discrete group G of isometries of the hyperbolic metric on Bd is called
a Kleinian group if d = 3 and Fuchsian if d = 2. A Kleinian group can also
be considered as a group of linear fractional transformations on S2 . G is called
elementary if it contains a finite index Abelian subgroup. In this paper we are only
concerned with non-elementary groups. For a non-elementary G , the accumulation
of any orbit in Bd ∪ Sd−1 is a closed set Λ ⊂ Sd−1 which is independent of the
particular orbit. This is the limit set. The conical limit set Λc is the set of points
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x ∈ Λ for which there is a sequence of orbit points of 0 converging to x within a
non-tangential cone in Bd . It is easy to see that x is a conical limit point if and
only if a geodesic ray in B ending at x projects to a geodesic in M = Bd/G which
returns to some compact set of M infinitely often. The set Λb ⊂ Λc denotes the
subset corresponding to geodesic rays that remain bounded. We define Λe = Λ\Λc
as the “escaping” part of the limit set. Points of Λe correspond to geodesic rays
which eventually leave every compact set.

A Fuchsian group G is called first kind if Λ = T and otherwise it is second
kind. It is called cocompact if R = D/G is compact and cofinite if R has finite
hyperbolic area. A Fuchsian group is called divergence type if

∑

g∈G
(1− |g(0)|) =∞,

and otherwise it is called convergence type. The latter occurs if and only if R =
D/G has a finite Green’s function, which is given by the series

GR(z, w) =
∑

g∈G
GD

(
x, g(y)

)
=
∑

g∈G
log

∣∣∣∣
x− g(y)

1− x̄g(y)

∣∣∣∣,

where x and y project to z and w respectively.
The Poincaré exponent (or critical exponent) of the group is

δ(G) = inf

{
s :
∑

G

exp
(
−s%

(
0, g(0)

))
<∞

}
,

where % is the hyperbolic metric in B3 . A result from [16] says that

Theorem 2.1. If the Fuchsian group G is a non-elementary Kleinian group
then δ(G) = dim

(
Λc(G)

)
.

For Fuchsian groups and geometrically finite Kleinian groups this was previ-
ously known, e.g., [31] and [33]. The proof given in [16] also shows

Corollary 2.2. If G is any non-elementary, discrete Möbius group, x ∈
M = D/G and ε > 0 then there is a R = R(ε, x) < ∞ such that the set of
directions (i.e., unit tangents at x) which correspond to geodesic rays starting at
x which never leave the ball of radius R around x has dimension ≥ δ(G) − ε =
dim

(
Λc(G)

)
− ε . In particular dim(Λb) = dim(Λc) = δ(G) .

For Fuchsian groups this is due to Fernández and Melián in [25].
If E ⊂ Rd is compact, let N(E, ε) be the minimal number of ε -balls needed

to cover E . The upper Minkowski dimension of E is

dimM (E) = lim sup
ε→0

logN(E, ε)

− log ε
.
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This is clearly an upper bound for the Hausdorff dimension of E . If E ⊂ T is
compact, let {In} be an enumeration of the complementary intervals, i.e., the
components of T \ E . The Besicovitch–Taylor index is defined as

inf

{
s :
∑

n

diam(In)s <∞
}
,

and is well known to equal the upper Minkowski dimension of E if E has zero
Lebesgue measure (e.g., [9], [35]). If G is a finitely generated Fuchsian group, it is
known that the upper Minkowski and Hausdorff dimensions of the limit set agree
and both agree with δ . These remarks give

Lemma 2.3. If Λ is the limit set of a finitely generated Fuchsian group G ,
δ is the critical exponent and {In} is an enumeration of the components of T \Λ
then

(1)
∑

n

diam(In)δ+ε ≤ C(ε,G) <∞,

for every ε > 0 .

The critical exponent δ also has a close relationship to λ0 , the base eigenvalue
of the Laplacian on the quotient manifold M which is defined as

λ0 = sup{λ : ∃f ∈ C∞(M) such that ∆f = −λf and f > 0}

= inf
f∈C∞0 (M)

∫
M
|∇f |2
|f |2 .

If G acts on hyperbolic n -space, then the Elstrodt–Patterson–Sullivan formula
says λ0 = δ(n− 1− δ) if δ ≥ 1

2 (n− 1) and λ0 = 1
4 (n− 1)2 if δ ≤ 1

2 (n− 1). See
Theorem 2.17 of [34].

The base eigenvalue, in turn, can be bounded by the geometry of M us-
ing Cheeger’s constant h(M) . This is defined as the infimum over all compact
n -submanifolds N of M of voln−1

(
∂(N)

)
/voln(N) . Cheeger [23] proved that

λ0(M) ≥ 1
4h(M)2 and Buser [21] showed that λ0 ≤ Ch(N) for manifolds of

bounded negative curvature (C depends on the dimension and a lower bound for
the curvature). See [22] for a different proof of Buser’s result. Combining these
comments, we see that a Fuchsian group G has λ0 = 0 (and hence δ = 1) if the
quotient surface R contains subregions Sn with l(∂Sn)/area(Sn)→ 0.

A homeomorphism of the plane is called K -quasiconformal if

lim sup
r→0

sup|y−x|=r |f(y)− f(x)|
inf |y−x|=r |f(y)− f(x)| ≤ K.
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Such maps are known (see [1]) to be differentiable almost everywhere and µ =
fz̄/fz is called the Beltrami coefficient of f and is in L∞ with norm

k = (K − 1)/(K + 1).

It is also true (see [1] again) that any quasiconformal map f is Hölder continuous
with an exponent α > 0 depending only on K . In particular, we will use the fact
that if f is K -quasiconformal and γ1 and γ2 are hyperbolic geodesics in the unit
disk such that γ1 separates 0 from γ2 then

(2)
diam

(
f(γ2)

)

diam
(
f(γ1)

) ≤ C
(

diam(γ1)

diam(γ2)

)α
,

for some α depending only on K and C depending on diam
(
f(γ2)

)
/diam

(
f(Ω)

)
,

where Ω ⊂ D is a region separated from 0 by γ1 .
If G is a Fuchsian group and µ is a bounded measurable function on the

unit disk, D , which satisfies ‖µ‖∞ < 1 and µ
(
g(z)

)
= µ(z)g′(z)/g′(z), for every

g ∈ G , then we say µ is a G -invariant Beltrami coefficient (or complex dilatation).
There is a corresponding quasiconformal mapping fµ which is analytic outside the
disk and which conjugates G to a quasi-Fuchsian group Gµ .

A conformal mapping f : D→ Ω is called a deformation of the Fuchsian group
G if for every g ∈ G , f ◦ g ◦ f−1 is Möbius transformation restricted to Ω. It
is called a quasiconformal deformation if f has a quasiconformal extension to the
whole plane.

Bowen’s theorem [18] says that if G is a cocompact Fuchsian group then for
any quasi-Fuchsian deformation G′ of G either Λ(G′) is a circle or dim

(
Λ(G′)

)
>

1. This was extended to all divergence type groups in [11] and is false for all
convergence type groups (see [3], [4], [5]). See [17], [19] and [32] for alternate
proofs of Bowen’s theorem.

It is easy to see that if G′ is a deformation of G then Λc(G
′) = f

(
Λc(G)

)

and Λe(G
′) = f

(
Λe(G)

)
. A theorem of Makarov [29] says that if E ⊂ T has

dim(E) = 1 then dim
(
f(E)

)
≥ 1 for any conformal map of the disk. Applying

this to E = Λc we see that

Lemma 2.4. If G is a Fuchsian group with δ(G) = 1 then δ(G′) ≥ 1 for
any deformation of G .

An alternate proof is described in [13]. Of course, the same result holds for
the escaping limit set as well. Indeed, by a result of Fernández and Melián in [26],
dim(Λe) = 1 for any infinitely generated Fuchsian group of the first kind. Thus

Lemma 2.5. If G is an infinitely generated Fuchsian group of the first kind
then dim

(
Λe(G

′)
)
≥ 1 for any deformation of G .
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A theorem of Astala [2] says that if f is a K -quasiconformal map then
dim

(
f(E)

)
≥ 2dim(E)/

(
2K + (1−K)dim(E)

)
. This is a sharper version of a

result of Gehring and Väisälä in [27].
A generalized Y -piece in a Riemann surface R is a region bounded by three

simple closed geodesics (or punctures) which is homeomorphic to a 2-sphere minus
three disks (or points). If all three boundary components have length ≤ L we say
the Y -piece is L -bounded (punctures count as zero length). We say that R has a
L -bounded Y -piece decomposition if it can be written as a union of L -bounded
Y -pieces with disjoint interiors. Let Γ be the union of all simple closed geodesics
which occur as boundary arcs in the Y -piece decomposition and let Γε ⊂ Γ denote
the union of all those with lengths ≥ ε . By the collar lemma (e.g., [28], [30]) there
is a C > 0 (depending only on L) so that the hyperbolic C -neighborhoods of
elements of Γ are pairwise disjoint.

The following is the result from [7] which we will use to prove Theorem 1.1.

Theorem 2.6 Given L,K < ∞ and η > 0 there are ε > 0 and r < ∞
so that the following holds. Suppose R = D/G is a Riemann surface which
has a decomposition into L -bounded Y -pieces. Suppose F : R → S is a K -
quasiconformal map with Beltrami coefficient µ and dist

(
supp(µ),Γε

)
> r (here

“dist” denotes hyperbolic distance on R). Then the corresponding quasi-Fuchsian
deformation of G has limit set of dimension ≤ 1 + η .

3. A Hölder type estimate

It is well known that quasiconformal maps satisfy a Hölder condition with
exponent that depends only on the quasiconformal constant (e.g. p. 47 of [1]). In
this section we wish to prove that they satisfy a pointwise Hölder type estimate
with exponent close to 1 if the support of the Beltrami coefficient µ is sufficiently
“thin” near the point.

Theorem 3.1. Suppose Ω is a K -quasidisk and µ is Beltrami coefficient
supported on Ω (hence zero outside Ω) with ‖µ‖∞ ≤ k < 1 . Let fµ be the
corresponding quasiconformal map of the plane fixing 0 , 1 and ∞ . Given ε > 0
there is a r = r(K, k, ε) < ∞ and a C = C(K, k, ε) < ∞ so that the following
holds. Suppose x ∈ ∂Ω , z ∈ Ω , s = dist(z, ∂Ω) and γ ⊂ Ω is a hyperbolic
geodesic connecting z to x . Suppose the hyperbolic distance (in Ω) from γ to
the support of µ is at least r . Then for any 0 < t < s ,

1

C

(
t

s

)1+ε

≤ diam
(
f
(
B(x, t)

))

diam
(
f
(
B(x, s)

)) ≤ C
(
t

s

)1−ε
.

Before giving the proof, we will recall a few facts which we will need. If
0 < a < b <∞ we let R(a, b) = {x ∈ Rn : a < |x| < b} . Let Lf denote the inner
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dilatation

Lf (x) =
Jf (x)

l
(
f ′(x)

)n ,

where l
(
f ′(x)

)
= inf |h|=1 |f ′(x)h| . For n = 2 (the only case we will use here) this

agrees with the usual dilatation of f . Let

Mf (r) = max
|x|=r

|f(x)|, mf (r) = min
|x|=r

|f(x)|.

Also let ωn−1 be the n − 1 measure of the unit sphere in Rn . The following
combines Corollaries 2.21 and 2.34 of [14].

Lemma 3.2. Suppose f : Rn → Rn is quasiconformal, f(0) = 0 and n ≥ 2 .
Then

log
b

a
− log

Mf (b)

mf (a)
≤ 1

ωn−1

∫

R(a,b)

Lf (x)− 1

|x|n dx

and

log
mf (b)

Mf (a)
− log

b

a
≤ 1

ωn−1

∫

R(a,b)

Lf (x)− 1

|x|n dx.

The following is an easy consequence of this.

Lemma 3.3. Given K < ∞ and ε > 0 there is a δ > 0 and C < ∞ so
that the following holds. Suppose f : R2 → R2 is a K -quasiconformal map with
Beltrami coefficient supported on a set E . Suppose that for 0 < r ≤ 1 , E satisfies
area

(
E ∩B(x, r)

)
≤ δr2 . Then

1

C
r1+ε ≤ diam

(
fµ
(
B(x, r)

))

diam
(
fµ
(
B(x, 1)

)) ≤ Cr1−ε.

Proof. Let N be the smallest integer such that 2−N ≤ r . Then

∫

R(r,1)

Lf (x)− 1

|x|2 dx ≤
N∑

n=0

∫

E∩R(2−n−1,2−n)

(K − 1)22n+2 dx

≤
N∑

n=0

(δ2−2n)(K − 1)22n+2

≤ 4δ(K − 1)
N∑

n=0

1 ≤ 4δ(K − 1)

(
log2

1

r
+ 1

)
.

Thus by Lemma 3.2,

Mf (1)

mf (r)
≥
(

1

r

)1−O(δ)

,
mf (1)

Mf (r)
≤
(

1

r

)1+O(δ)

.

For quasiconformal maps Mf (r) ' mf (r) ' diam
(
f
(
B(0, r)

))
, so this proves the

lemma.
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We also need a few easy facts about quasidisks. The proofs are included for
completeness, but the results are well known.

Lemma 3.4. Suppose Ω is a K -quasidisk and z0 ∈ B(x, r) ∩ Ω is a point
which satisfies dist(z0, ∂Ω) ≥Mr . Then there is a C <∞ and an a > 0 so that

{w ∈ Ω∩B(x, r) : %(w, z0) ≥ s} ⊂ {w ∈ Ω∩B(x, r) : dist(w, ∂Ω) ≤ Cr exp(−as)}.
Proof. By rescaling we may assume r = 1. Any point w0 in B(x, 1) ∩ Ω

which is distance d from the boundary can be joined to z0 be a path of length
at most C which satisfies dist(z, ∂Ω) ≥ c|z − w0| . The quasi-hyperbolic length
of such a path is at most C log(1/d) and hence the same is true of its hyperbolic
length. Thus %(z0, w0) ≤ C log(1/d) or d ≤ exp

(
−%(z0, w0)/C

)
, as desired.

Lemma 3.5. If Γ is a K -quasiarc then there is a α > 0 and C <∞ (both
depending only on K ) so that the ε -neighborhood of Γ has area ≤ Cεαdiam(Γ)2 .

Proof. This follows from the fact that quasicircles are porous, i.e., there is
an N (depending on K ), such that if we divide a square Q into N 2 disjoint
subsquares, then Γ misses at least one of them (this follows from the Ahlfors 3-
point condition, e.g., [1]). After dropping down k times, the squares of size εk =
N−k γ hits have area at most (1−N−2)k = εαk where α = − log(1−N−2)/ logN .
Tripling each square covers an ε -neighborhood of Γ and only increases the area
by a factor of 9.

The proof of Theorem 3.1 is immediate from the previous lemmas. We will
now deduce some consequences that we will need later. In what follows Ω will be
a bounded K -quasicircle with a fixed base point z0 which satisfies dist(z0, ∂Ω) '
diam(Ω). We will let W ⊂ Ω be a subdomain bounded by hyperbolic geodesics.
Moreover we assume there is an a > 0 so that any two geodesics in ∂W are at least
hyperbolic distance a apart. If W does not contain z0 then the component of
∂W which separates z0 from W will be called the “top edge” of W and the other
components will be called “bottom edges”. The following are easy consequences
of the results above.

Corollary 3.6. With notation as above, let γ denote the top edge of W and
let {γk} be an enumeration of the bottom edges. Let E = ∂W ∩ ∂Ω . Suppose µ
is a Beltrami coefficient supported on Ω with ‖µ‖∞ ≤ k < 1 . Then given η > 0
there is an r = r(K, k, η) so that if the support of µ is at least hyperbolic distance
r from W then

(3)
∑

k

(
diam

(
f(γk)

)

diam
(
f(γ)

)
)1+η

≤ C
∑

k

diam(γk)

diam(γ)
,

and

(4)
dim(E)

1 + η
≤ dim

(
f(E)

)
≤ (1 + η)dim(E).
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Corollary 3.7. Suppose µ and ν are two Beltrami coefficients on D with
disjoint supports and E ⊂ T is such that for every x ∈ E ,

lim inf
r→1

%
(
rx, supp(ν)

)
=∞.

Then dim
(
fµ(E)

)
= dim

(
fµ+ν(E)

)
.

4. Proof of Theorem 1.1

Suppose R = D/G is a Riemann surface which approximates the thrice punc-
tured sphere near infinity and suppose f is a K -quasiconformal deformation of G
to a quasi-Fuchsian group G′ . By Lemma 2.5, dim

(
Λe(G

′)
)

= dim
(
f
(
Λe(G)

))
≥

1, so we only have to prove the opposite inequality.
Fix some η > 0 and use Theorem 2.6 to choose ε and r . Let µ be the

Beltrami coefficient of f and write µ = µ1 + µ2 where each µi is G invariant,
they have disjoint supports, µ2 is supported on a finite union of Y -pieces and
%
(
supp(µ1),Γε

)
> r . Let f1 be the deformation of G to a quasi-Fuchsian group

G1 corresponding to µ1 . By Theorem 2.6, dim
(
f1(T)

)
≤ 1 + η .

Let E denote Λe(G) , minus the (at most countably many) parabolic fixed
points of G . Then each geodesic corresponding to a point of E moves arbitrarily
far from supp(µ2) . Thus by Corollary 3.7,

dim
(
Λe(G)

)
= dim

(
f(E)

)
= dim

(
fµ1(E)

)
≤ 1 + η.

Since this holds for every η > 0, we deduce dim
(
Λe(G

′)
)

= 1, as desired.

5. Proof of Theorem 1.2

Let Y0 be a Y -piece that has three equal length boundary components. Con-
struct an X -piece, X0 , by identifying two copies of Y0 , which we will denote Y1

and Y2 , along one boundary component of each. We will consider several Riemann
surfaces which are unions of copies of X0 with various boundary identifications.
The first is the compact, genus two Riemann surface R0 we obtain by identifying
the two remaining boundary components of Y1 and the two remaining boundary
components of Y2 (there are many ways to do this, but any choice will be sufficient
for our purposes). Let G0 be a Fuchsian group such that R0 = D/G0 . We will
think of R0 as being labeled by a multi-graph Γ0 with one vertex and two edges.
See Figure 1. Given any multigraph Γ which covers Γ0 we can define an asso-
ciated Riemann surface R = D/G which covers R0 and hence G is a subgroup
of G0 .

One such covering graph is Γ2 , the infinite regular, degree four tree. It is
easy to check that Cheeger’s constant for the corresponding surface R2 = D/G2

is positive and hence the corresponding critical exponent satisfies δ(G2) < 1. See
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Figure 1. The graphs Γ1 , Γ2 , Γ′2 and Γ3 .

also [20] and [24]. For future reference we will denote this number as δ2 = δ(G2) .
Since R2 has a finite upper bound for its injectivity radius, the limit set of G2 is
the whole circle and hence G2 is a Fuchsian group for which δ < dim(Λ).

The example in Theorem 1.2 is obtained by modifying R2 in order to make
δ = 1. Choose a vertex z0 ∈ Γ2 to be the root and let Γ′2 be the component
containing z0 when two of the four edges adjacent of z0 is removed (thus Γ′2 is a
union of two of the four “branches” which meet at z0 ). Let Γ3 be the multigraph
with vertex set N = {1, 2, 3, . . .} and such that vertex n is connected to n + 1
by exactly two edges. Define Γ1 to be the union of Γ′2 and Γ3 with z0 and {1}
joined by two edges.

Clearly Γ1 covers Γ0 and is covered by Γ2 . Thus the associated Riemann
surface R1 covers R0 and is covered by R2 and the corresponding Fuchsian groups
satisfy G2 ⊂ G1 ⊂ G0 . We claim that G1 has the properties claimed in Theo-
rem 1.2.

To prove this, we need to show δ1 = δ(G1) = 1 and to construct a G1 invari-
ant Beltrami coefficient µ so that the corresponding quasiconformal deformation
f satisfies dim

(
f
(
Λc(G1)

))
< dim

(
f
(
Λe(G1)

))
.

The first part is easy. Considering the part of R2 corresponding to Γ3 ⊂ Γ1 ,
one easily shows that the the Cheeger constant for R2 is zero. Thus δ1 = 1 as
desired by the Elstrodt–Patterson–Sullivan formula.

To prove the second part, we will actually construct a sequence of G1 -
invariant coefficients {µn} and show that the corresponding deformations {fn}
satisfy

(5) dim
(
fn(Λe)

)
≥ 1 + ε

for some ε independent of n and

(6) dim
(
fn(Λc)

)
→ 1
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as n→∞ . Together, these clearly imply the desired result if n is large enough.
We now define µn . Choose η1 so that δ2 < η1 < 1. By taking k > 0

small enough, we may assume that any map with Beltrami coefficient bounded
by k is Hölder of order η1 . Taking k smaller, if necessary, we may also assume
k ≤ 1− 1

2δ2 .
Since R0 is a compact surface, Bowen’s theorem says every deformation of

G0 gives a quasi-Fuchsian group whose limit set is either a circle or has critical
exponent δ > 1. Thus we can choose a non-trivial deformation G′0 of G0 so that
‖µ‖∞ ≤ k and an ε > 0 so that δ(G′0) > 1 + ε . Let f denote the corresponding
deformation of G0 . By Astala’s theorem and the fact that k < 1− 1

2δ2 ,

(7) dim(E) ≤ δ2 ⇒ dim
(
f(E)

)
< 1.

The G0 -invariant coefficient µ is also G2 -invariant (since G2 is a subgroup
of G0 ). Let G′2 be the corresponding quasi-Fuchsian deformation of G2 . Note
that

δ(G′2) = dim
(
Λc(G

′
2)
)

= dim
(
f(Λc(G2)

)
< 1

by (7). Thus

dim
(
Λe(G

′
2)
)

= dim
(
Λ(G′2)

)
= dim

(
f(T)

)
= 1 + ε.

Moreover, Λe(G2) breaks into four pieces depending on which branch (i.e.,
component of R2 \ X0 the corresponding geodesic ray eventually stays in). We
claim that the f -image of each of the four sets has dimension equal to dim

(
f(Λe)

)
.

Given one such piece E , there is clearly an element g ∈ G0 so that
⋃
n g

n(E) is
all of Λe(G2) except for one point (the attracting fixed point of g ). Since g is
conjugated to a Möbius transformation by f (since it is a deformation of G0 ),
this says that f(Λe) is the union of one point and a countable number of Möbius
images of f(E) . Thus dim

(
f(E)

)
= dim

(
f(Λe)

)
, as desired.

The coefficient µ is also G1 invariant (since G1 ⊂ G0 ) and the sequence {µn}
will be defined by restricting µ to certain subregions of the disk.

Label the vertices of Γ′2 by their distance to the root z0 . This gives a labeling
of the corresponding X -pieces in R2 and we will let S+

n ⊂ R2 be the union of all
X -pieces with labels ≥ n . Let Ω+

n ⊂ D be the preimage of Sn under the quotient
map. Similarly, let S−n = R2\S+

n and let Ω−n be the lift of S−n . Let Γn = ∂Ωn∩D .
Note that Γ is a union of infinite geodesics (each a lift of a boundary geodesic
of an X -piece) and that any two components are a uniform hyperbolic distance
apart. Note for future use that the hyperbolic distance from S−1 to S+

n is ≥ cn
for some fixed c > 0.

Let µn be the restriction of the Beltrami coefficient µ to Ω+

2n and let fn be
the corresponding quasiconformal map. We claim that (5) and (6) hold for these
maps.
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First we prove (5). Consider a component W of Ω+

0 and let E = Λe(G1) ∩
∂W . Then fn can be written as a composition of f with a quasiconformal map
whose dilatation is supported on f(D \ Ω2n) . Applying Corollary 3.7, we see
that dim

(
fn(E)

)
= dim

(
f(E)

)
. Since dim

(
f(E)

)
= dim

(
Λe(G

′
2)
)

= 1 + ε and

fn(E) ⊂ Λe(G
′
1) we clearly have dim

(
Λe(G

′
1)
)
≥ 1 + ε , as desired.

Next we prove (6). For any m <∞ , let Λmb ⊂ Λ(G1) denote the subset corre-
sponding to geodesic rays which never enter Ω+

m . Then Λb(G1) ⊂ ⋃∞m=1 Λmb and so
δ(G1) ≤ supm dim(Λmb ) by Theorem 2.1. Similarly, δ(G′1) = supm dim

(
fn(Λmb )

)
.

Thus it suffices to show that given η > 0 there is a n0 (independent of m) so that
dim

(
fn(Λmb )

)
≤ 1 + η for all n ≥ n0 .

Suppose x ∈ Λmb is a point corresponding to a geodesic γ . Then one of the
following must be hold for γ :

(1) γ eventually never leaves S+

1 ,

(2) γ eventually never leaves S−n or

(3) γ alternately leaves S+

1 and S−n infinitely often.

Let E1 , E2 and E3 denote the subsets of Λmb which correspond to each of
these possibilities. Note that E1 ⊂ ∂Ωn,m = ∂(Ω+

n ∩ Ω−m) . Moreover, if Ω is a
component of Ωn,m then ∂Ω ∩T is the limit set of a finitely generated Fuchsian

group G̃ corresponding to the Riemann surface obtained by attaching funnels to
boundary components of Sn,m = S+

n ∩ S−m . Since δ(Sn,m) ≤ δ(R1) = δ2 < 1 we
see that dim(∂Ω) ≤ δ2 . Since E1 is contained in a countable union of such sets,
its dimension is also ≤ δ2 . Hence dim

(
fn(E1)

)
≤ 1 by (7), independent of n

and m .

Next consider the set E2 = ∂Ω−n ∩ T . Since the hyperbolic distance from
Ω−n to the support of µn is at least cn (since µn is supported in Ω2n ), (4) of
Corollary 3.6 says that dim

(
f(E2)

)
< 1 + 1

2ε if n is large enough.

Finally, consider the set E3 . It is separated from 0 by infinitely many al-
ternating curves from Γ0 and Γn . Given a component γ ⊂ Γn the maximal
components of Γ0 separated from 0 by γ will be denoted {γk} . Since η1 > δ2 ,
by Lemma 2.3, they satisfy

∑

k

(
diam(γk)

diam(γ)

)η1

≤ C.

By our choice of µ , fn is η1 -Hölder, so we get for any η > 0

∑

k

(
diam

(
fn(γk)

)

diam
(
fn(γ)

)
)1+η

≤
∑

k

(
diam(γk)

diam(γ)

)η1(1+η)

≤ Ce−η1ηcn
∑

k

(
diam(γk)

diam(γ)

)η1

≤ Ce−η1ηcn.
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This is ≤ 1 if n is large enough.

On the other hand, if γ ⊂ Γ0 and {γj} are the maximal components of Γn
separated from 0 by γ then trivially

∑

j

diam(γj)

diam(γ)
≤ 1.

If we apply Theorem 3.1, with ε so small that (1 − ε)(1 + η) ≥ 1 + 1
2η , then we

see that if n is large enough

∑

j

[
diam

(
fn(γj)

)

diam
(
fn(γ)

)
]1+η

≤ C
(∑

j

diam(γj)

diam(γ)

)1+η/2

≤ Ce−ηcn/2
(∑

j

diam(γj)

diam(γ)

)

≤ Ce−ηcn,

which is ≤ 1 if n is large enough. Thus if n is large (depending on η ), there is a
cover of fn(E3) with (1+η)-Hausdorff sum bounded by 1. Taking η small enough
completes the proof that dim

(
fn(Λmb )

)
≤ 1+ 1

2ε if n is large enough (independent
of m) and hence finishes the proof of Theorem 1.2.
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[23] Gehring, F.W., and J. Väisälä: Hausdorff dimension and quasiconformal mappings. -
J. London Math. Soc. (2) 6, 1973, 504–512.

[24] Keen, L.: Collars on Riemann surfaces. - Ann. of Math. Studies 79, 1974, 263–268.

[25] Makarov, N.G.: Conformal mapping and Hausdorff measures. - Ark. Mat. 25, 1987,
41–89.

[26] Matelski, J.P.: A compactness theorem for Fuchsian groups of the second kind. - Duke
Math. J. 43, 1976, 829–840.

[27] Sullivan, D.: The density at infinity of a discrete group of hyperbolic motions. - Inst.
Hautes Études Sci. Publ. Math. 50, 1979, 172–202.

[28] Sullivan, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic
motions. - In: Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony
Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), Princeton Univ.
Press, Princeton, N.J., 1981, 465–496.

[29] Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically
finite Kleinian groups. - Acta. Math. 153, 1984, 259–277.

[30] Sullivan, D.: Related aspects of positivity in Riemannian geometry. - J. Differential
Geom. 25, 1987, 327–351.

Received 21 May 2002


