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Abstract. We study the finite representability of the operator T co:X∗∗/X −→ Y ∗∗/Y in
T :X −→ Y and its consequences in operator semigroup and operator ideal theory. The results
obtained involve a delicate study of the second conjugate T ∗∗ .

1. Introduction

For every operator T :X −→ Y acting between Banach spaces, we can asso-
ciate the operator T co:X∗∗/X −→ Y ∗∗/Y , defined by T co(x∗∗+X) := T ∗∗(x∗∗)+
Y . The operator T co , introduced by Yang [18], has been successfully applied in
the study of several operator semigroups related to the class of tauberian opera-
tors. Here, the notion of semigroup is considered in the sense of [1], where it has
been introduced as a natural counterpart to the notion of ideal of operators. Let
us list some fields where T co has been applied:

(a) exact sequences in Banach spaces and generalized Fredholm operators [18];
(b) asymmetry between tauberian operators and cotauberian operators [2];
(c) weak Calkin algebras [8];
(d) strongly tauberian operators [14];

application (c), developed by González, Saksman and Tylli, is remarkable because
it exhibits the rich interplay between operator ideals and operator semigroups. We
also recall that tauberian operators play an important role in Banach space theory
(see for instance [15]).

The purpose of our paper is the study of the finite representability of T co in T
and its consequences in ultrapower-stable semigroups and ideals. Those classes of
operators are interesting because they can be defined locally, in terms of the action
of their operators on finite-dimensional subspaces. Examples of ultrapower-stable
classes of operators are the ideal of uniformly convexifying operators [10], and the
semigroup of supertauberian operators, which was introduced by Tacon [17] in
order to obtain a class of tauberian operators stable under duality.
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Section 3 starts recalling the definitions of operator finite representability that
we need: local supportability (that generalizes Bellenot finite representability),
which presents good applications in semigroup theory, and local representabil-
ity (that generalizes Heinrich finite representability), which is applicable in ideal
theory. Both finite representabilities are independent [12]. The last section con-
tains the main results. Indeed, in Theorems 3.7 and 3.8 we prove that, given
any operator T , the Yang operator T co is both locally supportable and locally
representable in T . As a consequence, we prove in Proposition 3.9 that if S is
an ultrapower-stable semigroup which is either left-stable and injective, or right-
stable and surjective, then T co belongs to S provided T ∈ S . An analogous
result is obtained for ultrapower-stable, regular ideals. Those results are achieved
after giving in Theorem 3.4 a very strong result about finite representability of T ∗∗

in T . Actually, the fact that T ∗∗ is Heinrich and Bellenot finitely representable in
T is already known, but we obtain some additional properties which are essential
in the proof of Theorems 3.7 and 3.8.

In the following, capital letters X,Y, . . . stand for Banach spaces; BX is the
closed unit ball of X , and SX is the set of all norm-one elements of X . The
successive conjugate spaces of X are denoted X∗, X∗∗, X∗(3), X∗(4), . . . . The
action of f ∈ X∗ on x ∈ X is denoted 〈f, x〉 ; the linear subspace generated
by a subset A of X is denoted by span(A) , its norm closure is denoted by Ā ,
and its norm interior, by intA . Given a bounded linear map (operator in short)
T :X −→ Y , its kernel and range are respectively denoted by N(T ) and T (X) .
The class of all operators from X into Y is represented by L (X,Y ) . If E is a
closed subspace of X , IE represents the natural embeddings of E into both X
and X∗∗ . We say that P ∈ L (X,Y ) is a projection when Y is a closed subspace
of X , P |Y = IY and P 2 = P .

Given an ultrafilter U on I , the ultrapower X following U is the quotient
space l∞(I,X)/N , where N :=

{
(xi)i∈I ∈ l∞(I,X) : limU ‖xi‖ = 0

}
; [xi]i (or

[xi] if there is no confusion) denotes the element of XU whose representative
is (xi)i∈I ; its norm is limi→U ‖xi‖ (or limU ‖xi‖ for short). Given an operator
T ∈ L (X,Y ) , we denote by TU ∈ L (XU, YU) the operator that maps every [xi]
onto [T (xi)] . More details about ultraproducts may be found in [9]. An ultrafilter
U on I is said to be countably incomplete if there is a countable partition of I ,
{In}∞n=1 , disjoint with U ; that is, In /∈ U for all n . All ultrafilters throughout
this paper are countably incomplete.

Given d ≥ 1, an operator T ∈ L (X,Y ) is said to be a d-injection if d−1 ≤
‖T (x)‖ ≤ d for all x ∈ SX . An operator T ∈ L (X,Y ) is said to be a metric
injection (or isometric embedding) if T is a 1-injection; T is said to be a metric
surjection if T ∗ is a metric injection.

2. Background

In this paper we deal with two types of operator finite representability: lo-
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cal supportability (Definition 2.1(b)) introduced by the authors in [12], and local
representability (Definition 2.2(b)), introduced by Pietsch [13]. These types of fi-
nite representability respectively generalize Bellenot finite representability (Defini-
tion 2.1(a) and [5]) and Heinrich finite representability (Definition 2.2(a) and [10]).
It is important to bear in mind that Definitions 2.1 and 2.2 are mutually indepen-
dent, namely: Bellenot finite representability does not imply local representability,
and Heinrich finite representability does not imply local supportability [12]. We
note that the notions of mere local supportability and local representability ex-
tend the definition of crude finite representability for Banach spaces, introduced
by James.

Definition 2.1. Let T ∈ L (X,Y ) and S ∈ L (W,Z) be a pair of operators;

(a) T is said to be Bellenot finitely representable in S if for every finite
dimensional subspace E of X and every ε > 0 there is a (1 + ε)-injection L ∈
L (E,W ) satisfying

∣∣‖Tx‖−‖SLx‖
∣∣ ≤ ε‖x‖ for all x ∈ E ; equivalently, there are

(1 + ε)-injections U ∈ L (E,W ) , V ∈ L
(
T (E), Z

)
so that ‖SU − V T |E‖ ≤ ε ;

(b) given d ≥ 1, T is said to be locally d-supportable in S if for every
ε > 0 and every finite-dimensional subspace E of X there is a (d + ε)-injection
U ∈ L (E,W ) and an operator V ∈ L (T (E), Z) satisfying ‖V ‖ ≤ d + ε and
‖SU − V T |E‖ ≤ ε .

Definition 2.2. Let T ∈ L (X,Y ) and S ∈ L (W,Z) be a pair of operators;

(a) T is said to be Heinrich finitely representable in S ∈ L (W,Z) if for every
ε > 0, every finite-dimensional subspace E of X and every finite-codimensional
subspace F of Y there is a finite-dimensional subspace E1 of W , a finite-codimen-
sional subspace F1 of Z and a pair of surjective (1+ε)-injections U ∈ L (E,E1) ,
V ∈ L (Z/F1, Y/F ) so that ‖V QF1SU − QFT |E‖ ≤ ε , where QF and QF1 are
the natural quotient maps;

(b) given c > 0, T is said to be locally c-representable in S if for every ε > 0
and every pair of operators A ∈ L (E,X) , B ∈ L (Y, F ) with E and F finite-
dimensional spaces there is a pair of operators A1 ∈ L (E,W ) , B1 ∈ L (Z,F )
satisfying ‖A1‖ · ‖B1‖ ≤ (c+ ε)‖A‖ · ‖B‖ and BTA = B1SA1 .

When we do not need to specify parameters d or c in the above definitions,
we will just speak of local supportability or local representability.

3. Finite representability of the operators T ∗∗ and T co in T

There are several proofs and versions of the fact that, for every operator T ,
T ∗∗ is Bellenot finitely representable in T . The first is given by Bellenot, but
Basallote and Dı́az claim that it contains a gap, so they provide us with a second
demonstration [3]. Behrends [4, Corollary 5.4] gives another proof which yields
some additional exact conditions. Nevertheless, his proof is only valid when T is
tauberian, which is an important lack of generality from the point of view of our
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paper. In our Theorem 3.4, we improve the proofs mentioned above by showing
that T ∗∗ is Bellenot finitely representable in T for every operator T and obtaining
additional properties. In fact, we obtain the exact conditions (a) and (b), which are
essential in order to prove that T co is locally supportable and locally representable
in T , and also, we get the conditions (d) and (e), which play an important role
in part (b) of Proposition 3.9, where we study surjective, right-stable semigroups.
We start with a chain of lemmata.

Lemma 3.1. Let E be a finite-dimensional space with dimE = n and
let 0 < ε < n−1 . Then every ε -net in SE contains a basis whose coordinate
functionals are norm bounded by (1− nε)−1 .

Proof. Let E be an ε -net of SE . By Auerbach’s lemma, there is a biorthog-
onal system (ui, hi)

n
i=1 in SE × SE∗ . For every ui , we choose ei ∈ E such that

‖ui − ei‖ ≤ ε . We define the operator L ∈ L (E,E) by L(e) :=
∑n
i=1〈hi, e〉ei .

Note that L(ui) = ei and ‖IE − L‖ ≤ nε , so L is an isomorphism and {ei}ni=1

is a basis of E . Moreover, given e =
∑n
i=1 λiei ∈ SE and writing u := L−1(e) =∑n

i=1 λiui , we get ‖e − u‖ ≤ nε‖u‖ ; hence, for every i , |λi| = |〈hi, u〉| ≤
‖u‖ ≤ (1 − nε)−1 ; thus, the coordinate functionals associated to {ei}ni=1 are
norm bounded by (1− nε)−1 .

Lemma 3.2. Let E ⊂ X∗∗ be a finite-dimensional subspace with dimE = n ,
{ei}pi=1 an ε -net in SE with 0 < ε < (2n)−1 and V a weak∗ neighborhood of
0 ∈ X∗∗ . If (Lα)α is a net of operators from E into X∗∗ such that ‖Lα(ei)‖ ≤
(1 − nε)−1 and w∗ - limα Lα(ei) = ei for all 1 ≤ i ≤ p , then there is an α0 such
that Lα is a (1 − 2nε)−1 -injection and Lα(e) ∈ e + V for all e ∈ SE and all
α ≥ α0 .

Proof. By Lemma 3.1, we may assume that {ei}ni=1 is a basis of E whose
coordinate functionals are norm bounded by (1 − nε)−1 . Consequently, ‖Lα‖ ≤
(1 − nε)−1n for all α . Since w∗ - limα Lα(ei) = ei and (1 − nε)−1 < 2, we can
select β satisfying ‖Lαei‖ ≥ 1− nε

(
2− (1−nε)−1

)
for all 1 ≤ i ≤ p and α ≥ β ,

so Lα is a (1− 2nε)−1 -injection. Indeed, given e ∈ SE , by choosing ei such that
‖e− ei‖ ≤ ε , we obtain

‖Lα(e)‖ ≤ ‖Lα(ei)‖+ ‖Lα(e−ei)‖
≤ (1− nε)−1 + nε(1− nε)−1 ≤ (1− 2nε)−1 and

‖Lα(e)‖ ≥ ‖Lα(ei)‖ − ‖Lα(e−ei)‖
≥ 1− nε

(
2−(1−nε)−1

)
− nε(1−nε)−1 = 1−2nε,

which proves that Lα is a (1− 2nε)−1 -injection. Now, with no loss of generality,
we can assume that V is absolutely convex. By choosing α0 ≥ β and such that
Lα(ei) ∈ ei+n−1(1− nε)V for all 1 ≤ i ≤ n and α ≥ α0 , the proof is complete.



Finite representability of the Yang operator 173

Lemma 3.3 ([14, Lemma 23]). Let T ∈ L (X,Y ) , y ∈ Y , x∗∗ ∈ X∗∗ and
η > 0 such that ‖x∗∗‖ < 1 and ‖T ∗∗(x∗∗) + y‖ < η . Then x∗∗ belongs to the
σ(X∗∗, X∗) -closure of

{
x ∈ X : ‖x‖ < 1, ‖T (x) + y‖ < η

}
.

The following result includes the classical principle of local reflexivity for
Banach spaces.

Theorem 3.4. Let T ∈ L (X,Y ) be an operator, E a finite-dimensional sub-
space of X∗∗ and F a finite-dimensional subspace of Y ∗∗ satisfying F ∩T ∗∗(E) =
{0} . Let 0 < ε < 1 and a pair of weak∗ neighborhoods U of 0 ∈ X∗∗ and V of
0 ∈ Y ∗∗ be given. Then there is a pair of (1− ε)−1 -injections U ∈ L (E,X) and
V ∈ L

(
T ∗∗(E)⊕ F, Y

)
satisfying the following statements:

(a) U |E∩X = IE∩X ,

(b) V |(T∗∗E⊕F )∩Y = I(T∗∗E⊕F )∩Y ,

(c) ‖TU − V T ∗∗|E‖ < ε ,

(d) U(e) ∈ e+ U for all e ∈ SE ,

(e) V (f) ∈ f + V for all f ∈ ST∗∗(E)⊕F .

In particular, T ∗∗ is Bellenot finitely representable in T .

Proof. Without loss of generality, we may assume that ‖T‖ = 1. Let
{x1

i }pi=1 ∪ {x2
i }qi=1 ∪ {x3

i }ti=1 be a basis of E taken in intBE satisfying

{x1
i }pi=1 is a basis in E ∩X,

{x1
i }pi=r+1 spans N(T |E∩X),

{x1
i }pi=1 ∪ {x2

i }qi=1 is a basis in (T ∗∗|E)−1Y ,

{x1
i }pi=r+1 ∪ {x2

i }qi=s+1 spans N(T ∗∗|E).

We write yki := T ∗∗xki and also take a basis {y4
i }ui=1 ∪ {y5

i }vi=1 in intBF such
that {y4

i }ui=1 spans F ∩ Y . Let (hi)
q
i=1 be the coordinate functionals associated

with (x2
i )
q
i=1 and let H = (1− nε)−1

∑q
i=1 ‖hi‖ .

Pick 0 < δ < 2−1(p+q+t+u+v)−1ε and δ -nets (ej)
n
j=1 in SE and (fj)

m
j=1 in

ST∗∗(E)⊕F , and write ej =
∑
k,i λ

j
kix

k
i and fj =

∑
k,i µ

j
kiy

k
i for the appropriate k

and i in each case.
Define S: lq∞(X) ⊕∞ lt∞(X) ⊕∞ lv∞(Y ) −→ ln∞(X) ⊕∞ lm∞(Y ) ⊕∞ lq∞(Y ) by

S = (S1, S2, S3) , where

S1

(
(ai)

q
i=1, (bi)

t
i=1, (ci)

v
i=1

)
=

( q∑

i=1

λj2iai +
t∑

i=1

λj3ibi

)n

j=1

∈ ln∞(X),

S2

(
(ai)

q
i=1, (bi)

t
i=1, (ci)

v
i=1

)
=

( t∑

i=1

µj3iTbi +

v∑

i=1

µj5ici

)m

j=1

∈ lm∞(Y ),

S3

(
(ai)

q
i=1, (bi)

t
i=1, (ci)

v
i=1

)
= (ε−1H Tai)

q
i=1 ∈ lq∞(Y ),
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with ai ∈ X , bi ∈ X and ci ∈ Y for all i . Consider the element

z =

(( p∑

i=1

λj1ix
1
i

)n

j=1

,

( r∑

i=1

µj1iy
1
i +

s∑

i=1

µj2iy
2
i +

u∑

i=1

µj4iy
4
i

)m

j=1

, (−ε−1Hy2
i )qi=1

)
.

Then S
(
(ai)

q
i=1, (bi)

t
i=1, (ci)

v
i=1

)
+ z is equal to

(( p∑

i=1

λj1ix
1
i +

q∑

i=1

λj2iai +

t∑

i=1

λj3ibi

)n

j=1

,

( r∑

i=1

µj1iy
1
i +

s∑

i=1

µj2iy
2
i +

t∑

i=1

µj3iTbi +
u∑

i=1

µj4iy
4
i +

v∑

i=1

µj5ici

)m

j=1

,

(
ε−1H(T (ai)− y2

i )
)q
i=1

)
.

Besides, S∗∗
(
(x2
i )
q
i=1, (x

3
i )
t
i=1, (y

5
i )vi=1

)
+ z =

(
(ej)

n
j=1, (fj)

m
j=1, (0)qi=1

)
is norm-

one, so Lemma 3.3 provides us with a net
(
(aαi )qi=1, (b

α
i )ti=1, (c

α
i )vi=1

)
in

the unit ball of lq∞(X) ⊕∞ lt∞(X) ⊕∞ lv∞(Y ) which is weak* converging to(
(x2
i )
q
i=1, (x

3
i )
t
i=1, (y

5
i )vi=1

)
and such that

∥∥S
(
(aαi )qi=1, (b

α
i )ti=1, (c

α
i )vi=1

)
+ z

∥∥ <
(1− nδ)−1 ; in particular, ‖Taαi − y2

i ‖ ≤ εH−1(1− nε)−1 for all 1 ≤ i ≤ q .
Now we define Uα ∈ L (E,X) and Vα ∈ L (T ∗∗(E)⊕ F, Y ) by

Uα(x1
i ) := x1

i for all i ∈ {1, . . . , p},
Uα(x2

i ) := aαi for all i ∈ {1, . . . , q},
Uα(x3

i ) := bαi for all i ∈ {1, . . . , t},
Vα(y1

i ) := y1
i for all i ∈ {1, . . . , r},

Vα(y2
i ) := y2

i for all i ∈ {1, . . . , s},
Vα(y3

i ) := Tbαi for all i ∈ {1, . . . , t},
Vα(y4

i ) := y4
i for all i ∈ {1, . . . , u},

Vα(y5
i ) := cαi for all i ∈ {1, . . . , v}.

Note that Uα|E∩X = IE∩X and Vα|(T∗∗(E)⊕F )∩Y = I(T∗∗(E)⊕F )∩Y for all α , so
conditions (a) and (b) hold. Besides, for all e ∈ SE , ‖(TUα − VαT

∗∗)(e)‖ ≤∑q
i=1 |〈hi, e〉|‖Taαi − y2

i ‖ ≤ ε so ‖TUα − VαT ∗∗|E‖ ≤ ε , and part (c) is done.
In order to apply Lemma 3.2 to both Uα and Vα , note that dimE ≤

(p+q+t+u+v) and dim
(
T ∗∗(E) ⊕ F

)
≤ (p+q+t+u+v) ; moreover, ‖Uα(ej)‖ ≤

(1 − nδ)−1 and w∗ - limα Uα(ej) = ej for all 1 ≤ j ≤ n ; analogously, we have
‖Vα(fj)‖ ≤ (1 − nδ)−1 and w∗ - limα Vα(fj) = fj for all 1 ≤ j ≤ m , so it is
possible to choose α such that Uα and Vα are (1−ε)−1 -injections, and such that
conditions (d) and (e) hold, concluding the proof.
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Theorem 3.5. For every operator T ∈ L (X,Y ) there exists an ultrafilter
U and there are metric injections U ∈ L (X∗∗, XU) and V ∈ L (Y ∗∗, YU) , and
metric surjections P ∈ L (XU, X

∗∗) and Q ∈ L (YU, Y
∗∗) such that

(a) TU ◦ U = V ◦ T ∗∗ ,
(b) T ∗∗ ◦ P = Q ◦ TU ,
(c) T ∗∗ = Q ◦ TU ◦ U .

Moreover, U(x) = [x] and P ([x]) = x for all x ∈ X , and analogously, V (y) = [y]
and Q([y]) = y for all y ∈ Y .

Proof. Let J be the set of all tuples j ≡ (Ej , Fj , εj ,Uj ,Vj) where Ej and Fj
are finite-dimensional subspaces of X∗∗ and Y ∗∗ , respectively, εj ∈ (0, 1), Uj is
a weak∗ neighborhood of 0 ∈ X∗∗ , and Vj is a weak∗ neighborhood of 0 ∈ Y ∗∗ .
We define an order ¹ in J by i ¹ j if Ei ⊂ Ej , Fi ⊂ Fj , εi ≥ εj , Ui ⊃ Uj and
Vi ⊃ Vj . Let U be an ultrafilter refining the order filter on J .

For every j ∈ J , Theorem 3.4 yields a pair of (1 + εj)-injections Uj ∈
L (Ej , X) and Vj ∈ L

(
T ∗∗(Ej) + Fj , Y

)
such that

Uj(e) = e for all e ∈ Ej ∩X,
Vj(f) = f for all f ∈ (T ∗∗(Ej) + Fj) ∩ Y ,
‖(TUj − VjT ∗∗)(e)‖ < ε for all e ∈ SEj ,
Uj(e) ∈ e+ Uj for all e ∈ SEj ,
Vj(f) ∈ f + Vj for all f ∈ ST∗∗(Ej)+Fj .

The operators U , V , P and Q are defined as follows:

U(x∗∗) = [xj ] where xj := Uj(x
∗∗) if x∗∗ ∈ Ej , and xj := 0 otherwise;

V (y∗∗) = [yj ] where yj := Vj(y
∗∗) if y∗∗ ∈ T ∗∗(Ej) + Fj , and yj := 0 otherwise;

P ([xj ]) = w∗- lim
j→U

xj ∈ X∗∗;

Q([yj ]) = w∗- lim
j→U

yj ∈ Y ∗∗.

Fix x∗∗ ∈ SX∗∗ and δ > 0. Let us write U(x∗∗) = [xj ] as in the definition of U .
Take j0 ∈ J such that x∗∗ ∈ Ej0 and εj0 < δ . It follows that (1 + δ)−1 ≤
‖Uj(x∗∗)‖ ≤ 1 + δ for all j0 ¹ j , so limj→U ‖xj‖ = 1, which proves that U is a
metric injection. Analogously we prove that V is also a metric injection. The fact
that P is a metric surjection follows from P (BXU

) = BX∗∗ . The same applies
for Q .

To prove (a), we take x∗∗ ∈ SX∗∗ and δ > 0. Select j0 ∈ J such that εj ≤ δ
and x∗∗ ∈ Ej . Thus {j ∈ J : ‖(TUj − VjT ∗∗)(x∗∗)‖ ≤ δ} ⊃ {j ∈ J : j0 ¹ j} ∈ U
which shows that TUU − V T ∗∗ = 0. For statement (b), take [xj ] ∈ XU . Then

T ∗∗P ([xj ]) = T ∗∗
(
w∗- lim

j→U
xj

)
= w∗- lim

j→U
T (xj) = QTU([xj ]).
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Part (c) is achieved by using similar arguments. The facts that U(x) = [x] and
P ([x]) = x for all x ∈ X , and V (y) = [y] and P ([y]) = y for all y ∈ Y are
trivial.

It is proved in [10] that for every operator T , T ∗∗ is Heinrich finitely repre-
sentable in T . Part (b) in Theorem 3.5 leads to an alternative proof of the same
fact. In order to show that T co is locally supportable by T , we first establish the
following lemma based upon an argument in [11]. Note that we need Theorem 3.4
to get statement (b).

Lemma 3.6. Let X be a Banach space, R:X∗∗ −→ X∗∗/X the associated
quotient operator, M a finite-dimensional subspace of X∗∗/X and 0 < ε < 1 .
Write Z := R−1M , take any projection Q:Z −→ X and denote its kernel by G .
Then we have

(a) there is a finite-dimensional subspace F of X such that for each g ∈
(IZ −Q)BZ there is e ∈ F satisfying ‖g − e‖ ≤ 1 + ε;

(b) let L:F ⊕G −→ X be a (1 + ε) -injection satisfying L|F = IF and define
P := Q+ L(IZ −Q) ; then P :Z −→ X is a projection with ‖P‖ ≤ 3 + 4ε ;

(c) the operator U := R|N(P ) is a norm-one isomorphism onto M , ‖U−1‖ ≤
1 + ‖P‖ and U−1(g +X) = g − Lg for all g ∈ G .

Proof. (a) Since (IZ −Q)(BZ) is compact, we can choose a finite set {zi}ni=1

in BZ so that for gi := (IZ−Q)zi , the family {gi}ni=1 is an ε -net of (IZ−Q)(BZ) .
Let xi := Qzi for all 1 ≤ i ≤ n and prove that F := span{xi}ni=1 is the wanted
subspace. Indeed, given z ∈ BZ , we write g := (IZ−Q)z . Take gi so ‖g−gi‖ ≤ ε .
Thus

‖g + xi‖ ≤ ‖g − gi‖+ ‖gi + xi‖ ≤ ε+ 1.

(b) It is straightforward that P 2 = P , so P is a projection. To evaluate ‖P‖ ,
take z ∈ BZ and write g := (IZ − Q)z . By part (a) there is h ∈ F satisfying
‖g − h‖ ≤ 1 + ε . Thus

‖L(g)− h‖ = ‖L(g − h)‖ ≤ ‖L‖‖g − h‖ ≤ (1 + ε)2

and
‖Q(z) + h‖ ≤ ‖Q(z) + g‖+ ‖g − h‖ = ‖z‖+ ‖g − h‖ ≤ 2 + ε.

It follows that

‖Pz‖ = ‖Qz + Lg‖ ≤ ‖Qz + h‖+ ‖L(g)− h‖ ≤ 3 + 4ε.

(c) For every z ∈ N(P ) , we have

‖U(z)‖ = inf
x∈X
‖z + x‖ ≥ ‖IZ − P‖−1 inf

x∈X
‖(IZ − P )(z + x)‖ = ‖IZ − P‖−1‖z‖.

It follows that U is an isomorphism onto its image and ‖U−1‖ ≤ 1 + ‖P‖ . More-
over, for every g ∈ G , we have that g − L(g) ∈ N(P ) , so U

(
N(P )

)
= M and

U−1(g +X) = g − L(g) .
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Theorem 3.7. The Yang operator T co ∈ L (X∗∗/X, Y ∗∗/Y ) is locally sup-
portable in T for every T ∈ L (X,Y ) .

Proof. Let M0 be a finite-dimensional subspace of X∗∗/X and 0 < ε < 1
2 .

We denote by R0 ∈ L (X∗∗, X∗∗/X) and R1 ∈ L (Y ∗∗, Y ∗∗/Y ) the respective
quotient operators.

Let M1 := T co(M0) , Z0 := R−1
0 (M0) and Z1 := R−1

1 (M1) . We choose
a finite-dimensional subspace G0 of X∗∗ such that Z0 = X ⊕ G0 , and denote
K0 := ‖R0|−1

G0
‖ . We decompose T ∗∗(G0) as T ∗∗(G0) = H1 ⊕G1 , where H1 ⊂ Y

and G1 ∩ Y = {0} . Obviously Z1 = Y ⊕G1 .

Take the projections Q0 ∈ L (Z0, X) , Q1 ∈ L (Z1, Y ) whose respective ker-
nels are G0 and G1 . By Lemma 3.6(a), there are finite-dimensional subspaces
F0 ⊂ X , F1 ⊂ Y such that for every z0 ∈ BZ0 and z1 ∈ BZ1 there are e0 ∈ F0

and e1 ∈ F1 satisfying ‖(IZ0 −Q0)(z0)− e0‖ ≤ 3
2 and ‖(IZ1 −Q1)(z1)− e1‖ ≤ 3

2 .

By Theorem 3.4 there are 3
2 -injections L0:F0⊕G0 −→ X and L1: (H1+F1)⊕

G1 −→ Y satisfying ‖TL0 − L1T
∗∗|F0⊕G0‖ ≤ εK−1

0 . Lemma 3.6(b) enables us to
say that the operators P0 := Q0 +L0(IZ0 −Q0) and P1 := Q1 +L1(IZ1 −Q1) are
projections with norm equal or smaller than 5, so Lemma 3.6(c) shows that the
operators U0 := R0|N(P0) and U1 := R1|N(P1) are 6-injections. It only remains (cf.

Lemma 3.6(c)) to prove that ‖T ∗∗U−1
0 −U−1

1 T co|M0‖ ≤ ε . For, take g ∈ G0 . Note
that T ∗∗U−1

0 (g+X) = T ∗∗(g)−TL0(g) and U−1
1 T co(g+X) = T ∗∗(g)−L1T

∗∗(g) ,
so

‖(T ∗∗U−1
0 − U−1

1 T co)(g +X)‖ ≤ εK−1
0 ‖g‖ ≤ ε‖g +X‖.

Thus, T co is locally supportable in T ∗∗ , and so, in T .

Theorem 3.8. For every T ∈ L (X,Y ) , the Yang operator T co is locally
representable in T .

Proof. Let E and F be a pair of finite-dimensional spaces, A ∈ L (E,X∗∗/X)
and B ∈ L (Y ∗∗/Y, F ) a pair of operators, and 0 < ε < 1.

We denote RX ∈ L (X∗∗, X∗∗/X) and RY ∈ L (Y ∗∗, Y ∗∗/Y ) the natural
quotient operators. Let Z := R−1

X

(
A(E)

)
, take a projection Q ∈ L (Z,X) and

let G := N(Q) .

By Lemma 3.6(a) there is a finite-dimensional subspace F of X such that for
every z ∈ BZ there is e ∈ F so that ‖(IZ−Q)(z)−e‖ ≤ 3

2 . By Theorem 3.4 there
is a (1+ε)-injection L ∈ L (F⊕G,X) satisfying L|F := IF . Hence, Lemma 3.6(b)
shows that P := Q+ L(IZ −Q) is a projection with ‖P‖ ≤ 5, and part (c) says
that U := RX |N(P ) is a norm one isomorphism, its image is RX

(
N(P )

)
= A(E) ,

‖U−1‖ ≤ 6, and, moreover, U−1(g +X) = g − L(g) for all g ∈ G .

We define operators A1 := U−1A and B1 := BRY , and thus we get

B1T
∗∗A1 = BRY T

∗∗U−1A = BT coRXU
−1A = BT coA.
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Moreover,
‖A1‖ · ‖B1‖ ≤ ‖U−1‖ · ‖A‖ · ‖B‖ ≤ 6‖A‖ · ‖B‖,

and therefore T co is locally 6-representable in T ∗∗ and so in T .
A class A of operators is said to be ultrapower-stable if for every T ∈ A and

every ultrafilter U , the operator TU belongs to A (for definitions and facts about
ultrapowers of Banach spaces and operators, see [9]). Given a class A of operators
and any pair of Banach spaces X and Y , we denote A (X,Y ) := A ∩L (X,Y ) .

The following result is concerned with operator semigroups which are either
injective and left-stable or surjective and right-stable. We recall [1, Definition 2.1]
that an operator semigroup is a class of operators S satisfying the following three
properties:

(1) S contains all bijective operators;
(2) if S ∈ S (X,Y ) and T ∈ S (Y,Z) then TS ∈ S (X,Z) ;
(3) S ∈ S (U, V ) and T ∈ S (X,Y ) if and only if S⊕T ∈ S (U ⊕X,V ⊕Y ) .

An operator semigroup S is said to be left-stable (respectively right-stable)
if S ∈ S (T ∈ S ) whenever TS ∈ S [1, Definition 2.9]; S is said to be injective
(respectively surjective) if it contains all upper semi-Fredholm operators (all lower
semi-Fredholm operators) [1, Definition 2.13].

Proposition 3.9. Let S be an ultrapower-stable semigroup of operators
and T ∈ S (X,Y ) . Then T ∗∗ and T co belong to S if we have

(a) S is injective and left-stable; or
(b) S is surjective and right-stable.

Proof. (a) First we prove that T ∗∗ ∈ S . By Theorem 3.5(a), there exists an
ultrafilter U and a pair of metric injections U ∈ L (X∗∗, XU) and V ∈ L (Y ∗∗, YU)
such that V ◦T ∗∗ = TU ◦U . Since S is an injective, ultrapower-stable semigroup,
we have that TU ◦U ∈ S . So V ◦T ∗∗ ∈ S , and by left-stability, we get T ∗∗ ∈ S .

In order to prove that T co ∈ S , consider the set J of tuples j ≡ (Ej , εj)
where Ej runs over all finite-dimensional subspaces of X∗∗/X and εj does the
same over (0, 1). By Theorem 3.7, for each j ∈ J there exist two (6+εj)-injections
Uj ∈ L (Ej , X) and Vj ∈ L

(
T co(Ej), Y

)
such that ‖TUj − VjT co|Ej‖ ≤ εj . Let

¹ be an order on J defined by i ¹ j if Ei ⊂ Ej and εi ≥ εj . Take an ultrafilter
U on J refining the order filter. Now we define operators U ∈ L (X∗∗/X,X)
and V ∈ L

(
T co(X∗∗/X), YU

)
by U(x∗∗ + X) := [xj ] where xj := Uj(x

∗∗ + X)

if x∗∗ + X ∈ Ej and xj := 0 otherwise, and V
(
T ∗∗(x∗∗) + Y

)
= [yj ] , where

yj := Vj(T
∗∗(x∗∗) + Y ) if T ∗∗(x∗∗) + Y ∈ T co(Ej) and yj := 0 otherwise. Let

us decompose T co = JT̃ , where the operator T̃ ∈ L
(
X∗∗/X, T co(X∗∗/X)

)
maps

x∗∗ + X onto T co(x∗∗ + X) , and J is the natural embedding of T co(X∗∗/X)
into Y ∗∗/Y . Computations like those in Theorem 3.5 show that U and V are

isomorphisms and that V T̃ = TU . The same arguments as in the proof for T ∗∗

lead to T̃ ∈ S ; the injectivity of S yields that T co ∈ S .
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(b) By Theorem 3.5(b), there exists an ultrafilter U and metric surjections
P ∈ L (XU, X

∗∗) and Q ∈ L (YU, Y
∗∗) such that T ∗∗ ◦ P = Q ◦ TU . Arguing like

in part (a), surjectivity and right-stability show T ∗∗ ∈ S .
In order to prove that T co ∈ S , let us consider the natural quotient operators

P ∈ L (X∗∗, X∗∗/X) and Q ∈ L (Y ∗∗, Y ∗∗/Y ) . As T ∗∗ ∈ S and Q ◦ T ∗∗ =
T co ◦ P , we obtain that T co ∈ S .

Tacon ([16] and [17]) introduces the class Ψ+ of supertauberian operators
and proves that T ∗∗ is supertauberian whenever T is. Since Ψ+ is a semigroup
satisfying the hypothesis of statement (a) [6], Proposition 3.9 includes Tacon’s
result. More examples of ultrapower-stable semigroups can be found in [7].

The last result is concerned with ultrapower-stable operator ideals. We recall
that an operator ideal A is said to be regular if T ∈ A (X,Y ) whenever JT ∈
A (X,Y ∗∗) , where J stands for the canonical embedding of Y into Y ∗∗ .

Proposition 3.10. Let A be an ultrapower-stable ideal of operators and
T ∈ A (X,Y ) . Then T ∗∗ ∈ A . Moreover, if A is regular then T co ∈ A .

Proof. That T ∗∗ ∈ A is directly derived from Theorem 3.5(c) is clear. On
the other hand, we have shown in Theorem 3.8 that T co is locally representable
in T , so [13, 6.6] implies T co ∈ A .

References
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