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Abstract. We introduce a new Möbius invariant modulus for ring domains R in Rn which
coincides with the usual modulus whenever R is a Möbius annulus, i.e.,

f(R) = {x ∈ Rn : 1 < |x| < t}

for some Möbius transformation f of Rn and some t > 1 . We obtain a sharp upper bound for
the Möbius modulus of a ring R which separates two pairs {a, b} and {c, d} of distinct points
in Rn . Our result proves a conjecture made by M. Vuorinen in 1992 [14].

1. Introduction

Notation. We denote by Rn the n -dimensional Euclidean space and by
{e1, e2, . . . , en} its standard basis. The one-point compactification Rn ∪ {∞}
of Rn is denoted by R

n
. The open and closed balls of radius r > 0 and centered

at x ∈ Rn are denoted by Bn(x, r) and B
n
(x, r) , respectively. Sn−1(x, r) is a

sphere of radius r > 0 and centered at x ∈ Rn . The closed segment between
x ∈ Rn and y ∈ Rn is denoted by [x, y] . For x ∈ Rn , x 6= 0, we set

[x,∞] = {tx : t ≥ 1} ∪ {∞}.

The group of all Möbius transformations of R
n

is denoted by Möb(R
n
) .

A ring is a domain R ⊂ R
n

whose complement is the union of two disjoint
non-degenerate compact connected sets. A ring with complementary components
C1 and C2 is denoted by R(C1, C2) . A ring R(C1, C2) is said to separate the
sets E and F if E ⊂ C1 and F ⊂ C2 . Hence a ring R(C1, C2) separates the
complementary components of a ring R(E,F ) if E ⊂ C1 and F ⊂ C2 .

If R is a ring in R
2
, then R can be mapped conformally onto a circular

annulus
{z ∈ C : 1 < |z| < t}

and the modulus of R is defined to be log t .
In R

n
, n > 2, by Liouville’s theorem the Möbius transformations are the

only conformal mappings in R
n

. A ring R is said to be a Möbius annulus if

f(R) = {x ∈ Rn : 1 < |x| < t} for some f ∈ Möb(R
n
) and t > 1.
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The points f−1(0) and f−1(∞) are called relative centers of the Möbius annu-
lus R . The modulus of such a ring R is defined as log t .

In general, the modulus of a ring R = R(C1, C2) is defined as follows. Let Γ
be the family of all curves joining C1 and C2 in R and let F (Γ) be the set of all
non-negative Borel functions

%: Rn → R
1

such that
∫
γ
% ds ≥ 1

for every locally rectifiable curve γ ∈ Γ. Then the modulus of the curve family Γ
is defined as

M(Γ) = inf
%∈F (Γ)

∫

Rn

%n dm.

Observe that since C1 and C2 are non-degenerate, 0 < M(Γ) < ∞ by [13, 11.5
and 11.10]. The modulus of R is defined as

modR =

[
ωn−1

M(Γ)

]1/(n−1)

.

See, for instance, [1, 8.30]. Here ωn−1 is the surface area of the unit sphere in Rn .
The rings of Grötzsch and Teichmüller play an important role in the theory

of quasiconformal mappings. The complementary components of Grötzsch ring
RG(s) , s > 1, are B

n
(0, 1) and [se1,∞] while those of Teichmüller ring RT (t) ,

t > 0, are [−e1, 0] and [te1,∞] .
For the convenience of the reader we recall some properties of the modulus of

Grötzsch and Teichmüller rings. The following functional relation holds.

(1.1) modRT (t) = 2 modRG
(√
t+ 1

)
.

See [4] and [1, 8.32 and 8.37(1)]. The function

(1.2) modRT (t)− log(t+ 1)

is a nondecreasing function in (0,∞) and

(1.3) lim
t→∞

(
modRT (t)− log(t+ 1)

)
= log λ2

n <∞.

Here λn is a constant which depends only on n . See, for instance, [4] and [1,
8.38].

Our main focus in this paper is the following extremal problem of Teichmüller.
Let a , b , c , d be distinct points in R

n
. Among all the rings which separate the

sets {a, b} and {c, d} it is required to find one with the largest modulus.
For n = 2, this problem was considered by O. Teichmüller [12] in 1938 and

a complete solution was given by M. Schiffer [11] in 1946. In this case the points
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a , b , c , d can be normalized so that a = −1, b = 1, c = ξ , d = −ξ , where

ξ ∈ B 2
(0, 1) is a unique point with

c− a
c− b ·

d− b
d− a =

(
ξ + 1

ξ − 1

)2

.

If R(ξ) = R
(
C1(ξ), C2(ξ)

)
is an extremal ring, i.e., a ring with the largest modu-

lus, then
h1

(
C1(ξ)

)
= C1(ξ), h1

(
C2(ξ)

)
= C2(ξ)

and
h2

(
C1(ξ)

)
= C2(ξ), h2

(
C2(ξ)

)
= C1(ξ),

where

h1(z) = −z and h2(z) =
ξ

z
.

In particular,

(1.4) 0 ∈ C1(ξ) and ∞ ∈ C2(ξ).

See [8, pp. 199–200].
For n > 2, Teichmüller’s problem is solved only when the points a , b , c , d

lie on a circle or a line in this order. In this case the points a , b , c , d can be
normalized so that

a = −e1, b = 0, c = te1, d =∞, where t =
|b− c| |d− a|
|b− a| |d− c| .

Then by means of a spherical symmetrization one shows that Teichmüller’s ring
RT (t) is an extremal ring. See, for instance, [4], [10] and [1, Theorem 8.46].

When the points a , b , c , d do not lie on a circle or a line in this order, the
problem is still open. In general the points a , b , c , d can be normalized so that

a = 0, b = e1, c = x, d =∞ where x ∈ Rn and |x| = |a− c| |b− d||a− b| |c− d| .

M. Vuorinen has considered a ring R0 whose complementary components are some
circular arc joining the points 0 and e1 and some ray emanating from the point
x [14]. This ring coincides (up to a Möbius transformation) with Teichmüller’s
ring when the points a , b , c , d lie on a circle or a line in this order. It follows
from Theorem 3.16 [14] that there exists a Möbius annulus A separating the
complementary components of R0 and such that

modA = arccosh (|x|+ |x− e1|).
Due to the monotonicity of the modulus we then have

arccosh (|x|+ |x− e1|) = modA ≤ modR0.

In order to assure that arccosh (|x| + |x − e1|) is the sharpest lower bound for
modR0 obtained in this manner, Vuorinen was led to the following conjecture.
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Conjecture 1.5. For x ∈ Rn \ [0, e1] ,

max
A

modA = arccosh (|x|+ |x− e1|),
where the maximum is taken over all Möbius annuli A which separate the sets
{0, e1} and {x,∞} .

In this paper we consider a new measure for ring domains called the Möbius
modulus. Our main result, Theorem 3.8 below, shows that Teichmüller’s problem
has a complete solution when considered with respect to the Möbius modulus. As
a corollary to Theorem 3.8 we settle the conjecture of Vuorinen. After this paper
was submitted the referee pointed out that an alternative proof of the conjecture
was also given in [3].

2. Some results on the cross-ratio

The main result of this section is Theorem 2.16. The cross-ratio of a quadruple
a, b, c, d of points in R

n
with a 6= b and c 6= d is defined as follows. If a, b, c, d ∈

Rn , then

(2.1) |a, b, c, d| = |a− c| |b− d||a− b| |c− d| .

Otherwise we omit the terms containing ∞ . For example,

(2.2) |a, b, c,∞| = |a− c||a− b| .

A homeomorphism f : R
n → R

n
belongs to Möb(R

n
) if and only if

(2.3) |f(a), f(b), f(c), f(d)| = |a, b, c, d|
for all quadruples a, b, c, d in R

n
. See [2, Theorem 3.2.7]. For a quadruple a, b, c, d

in R
n

we put

(2.4) σ(a, b, c, d) = |a, b, c, d|+ |b, a, c, d|.
Hence

(2.5) σ(a, b, c, d) =
|a− c| |b− d|+ |a− d| |b− c|

|a− b| |c− d| ≥ 1

with equality if and only if the points a , c , b , d lie on a circle or a line in this
order. A simple computation shows that

(2.6) |a, b, c, d| = σ(a, b, c, d) + 1

σ(a, c, b, d) + 1
and σ(a, b, c, d) =

|a, d, c, b|+ 1

|d, a, c, b| .

It follows from (2.3) and (2.6) that a homeomorphism f : R
n → R

n
belongs

Möb(R
n
) if and only if

(2.7) σ
(
f(a), f(b), f(c), f(d)

)
= σ(a, b, c, d)

for all quadruples a, b, c, d in R
n

.

The following two lemmas are used in the proof of Theorem 2.16. The first
lemma is an immediate consequence of Corollary 7.25 [1].
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Lemma 2.8. Let a, b, c, d ∈ R
n

be distinct points. Let f be a Möbius
transformation such that

f(a) = −e1, f(b) = e1, f(c) = −w and f(d) = w

for some w ∈ Rn with |w| ≥ 1 . Then

|w| = p+
√
p2 − 1 , where p = σ(a, b, c, d).

Proof. Let g ∈ Möb(R
n
) be the inversion in Sn−1(0, 1). Then by applying

Corollary 7.25 [1] to the composition g ◦ f and using (2.6) we obtain

1

|w| =
|d, a, c, b|

1 + |a, d, c, b|+
√

(1 + |a, d, c, b|)2 − (|d, a, c, b|)2
=

1

p+
√
p2 − 1

as required.

The next lemma is an extension of a special case of Lemma 2.12 [6].

Lemma 2.9. If a1 , a2 , a3 , a4 are distinct points in Rn with

(2.10) |a1| = |a2| = s < t = |a3| = |a4|,

then

(2.11)
s2 + t2

2st
≤ σ(a1, a2, a3, a4).

Equality holds if and only if

(2.12) a1 + a2 = a3 + a4 = 0.

Proof. Define cij as the cosine of the angle ∠(ai0aj) and set

g(u) =
N(u)

D
, where D = (1− c12)1/2(1− c34)1/2

and

N(u) = (u− c13)1/2(u− c24)1/2 + (u− c14)1/2(u− c23)1/2.

Note that D ≤ 2 and that D = 2 if and only if (2.12) holds. Next

d

du

(
(u− cij)1/2(u− ckl)1/2

)
=

1

2

(
(u− ckl)1/2

(u− cij)1/2
+

(u− cij)1/2

(u− ckl)1/2

)
≥ 1,
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whence

(2.13) g′(u) =
N ′(u)

D
≥ 1 for u > 1.

Since

g(1) = σ

(
a1, a2,

s

t
a3,

s

t
a4

)
≥ 1,

we have

(2.14) g(u) =

∫ u

1

g′(r) dr + g(1) ≥ u for all u ≥ 1.

In particular,

(2.15) σ(a1, a2, a3, a4) = g

(
s2 + t2

2st

)
≥ s2 + t2

2st

which completes the proof of (2.11).
Assume next that (2.11) holds with equality and set

v =
s2 + t2

2st
.

Then (2.15) implies that g(v) = v . Using the differentiability of g along with
(2.14) we obtain

g′(v) = lim
u→v

g(v)− g(u)

v − u ≤ lim
u→v

v − u
v − u = 1

and hence using (2.13) we conclude that g′(v) = 1. Since N ′(v) ≥ 2 and D ≤ 2,
the equality g′(v) = 1 implies D = 2 which, as noted above, implies (2.12) as
required.

Finally, a simple computation shows that (2.12) implies that (2.11) holds with
equality.

Theorem 2.16. Let a, b, c, d ∈ R
n

be distinct points and p = σ(a, b, c, d) .

Then for all distinct pairs {u, v} of points in R
n \ {a, b, c, d}

(2.17) min
{
|u, a, c, v|, |u, a, d, v|, |u, b, c, v|, |u, b, d, v|

}
≤ p+

√
p2 − 1 .

Moreover, if p > 1 , then there exists a unique pair {u, v} for which the equality
holds.
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Proof. Let u, v ∈ R
n \ {a, b, c, d} be distinct points. Since (2.17) is invariant

under the elements of Möb(R
n
) , we can assume that u = 0 and v =∞ . Then

min
{
|u, a, c, v|, |u, a, d, v|, |u, b, c, v|, |u, b, d, v|

}
=

min{|c|, |d|}
max{|a|, |b|} =

t

s
.

Since p+
√
p2 − 1 ≥ 1, there is nothing to prove if s ≥ t . Hence we may assume

that s < t . Then (2.17) is equivalent to

(2.18)
s2 + t2

2st
≤ σ(a, b, c, d).

Let

Sn−1(v1, r1) ⊂ B n
(0, s) and Sn−1(v2, r2) ⊂ R

n \Bn(0, t)

be spheres such that a, b ∈ Sn−1(v1, r1) and c, d ∈ Sn−1(v2, r2) . Then we have
R1 ⊂ R2 , where

R1 = R
(
B
n
(0, s),R

n \Bn(0, t)
)

and
R2 = R

(
B
n
(v1, r1),R

n \Bn(v2, r2)
)
.

In particular,

(2.19) modR1 ≤ modR2.

Choose h ∈ Möb(R
n
) that maps Sn−1(v1, r1) and Sn−1(v2, r2) onto concentric

spheres Sn−1(0, s′) and Sn−1(0, t′) , respectively. Then

0 < |h(a)| = |h(b)| = s′ < t′ = |h(c)| = |h(d)|

and we have

(2.20) log
t

s
= modR1 ≤ modR2 = log

t′

s′
.

Using (2.11) we now have

s2 + t2

2st
≤ s′2 + t′2

2s′t′
≤ σ

(
h(a), h(b), h(c), h(d)

)
= σ(a, b, c, d)

which proves (2.18) and hence the first part of the theorem.
Notice that equality in (2.18) implies that |a| = |b| = s and |c| = |d| = t .
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To prove the second part of the theorem, we let f ∈ Möb(R
n
) be such that

f(a) = −e1, f(b) = e1, f(c) = −w and f(d) = w

for some w ∈ Rn with |w| ≥ 1. Since p > 1, we have |w| = p +
√
p2 − 1 > 1

by Lemma 2.8. Then the equality in (2.17) holds if we take u = f−1(0) and
v = f−1(∞) . This establishes the existence of the pair {u, v} .

To prove the uniqueness, we assume that {u1, v1} is another pair for which
the equality in (2.17) holds and show that u1 = u and v1 = v . Let g ∈ Möb(R

n
)

be such that
g(u1) = 0, g(v1) =∞ and g(a) = −e1.

By our assumption we have

min
{
|0,−e1, g(c),∞|,|0,−e1, g(d),∞|, |0, g(b), g(c),∞|, |0, g(b), g(d),∞|

}

=
min{|g(c)|, |g(d)|}
max{|g(a), |g(b)|} = p+

√
p2 − 1 .

Hence
|g(a)| = |g(b)| < |g(c)| = |g(d)|

as we have noted above. Then using (2.12) we have

g(a) + g(b) = g(c) + g(d) = 0.

Hence
g(a) = −e1, g(b) = e1, g(c) = −z and g(d) = z

for some z ∈ Rn and by Lemma 2.8 we have |z| = p+
√
p2 − 1 = |w| . Since

|f(a), f(b), f(c), f(d)| = |a, b, c, d| = |g(a), g(b), g(c), g(d)|
and

|f(b), f(a), f(c), f(d)| = |b, a, c, d| = |g(b), g(a), g(c), g(d)|,
we have

|w − e1| = |z − e1| and |w + e1| = |z + e1|.
Hence the angle ∠(w0e1) is equal to the angle ∠(z0e1) . By means of a preliminary
rotation about the e1 -axis if necessary, we can assume that w = z . Hence f−1

and g−1 agree on a set {−e1, e1,−w,w} and consequently they agree on a 2-
dimensional (1-dimensional, if w lies on the e1 -axis) subspace of Rn containing
these points. In particular,

u = f−1(0) = g−1(0) = u1 and v = f−1(∞) = g−1(∞) = v1

as required.

Remark 2.21. The hypothesis p > 1 in the uniqueness part of Theorem 2.16
cannot be removed. We now show that if p = 1 the uniqueness part fails.

Indeed, if a = −e1 , b = te1 , c = −te1 , d = e1 for some 0 < t < 1, then
σ(a, b, c, d) = 1. But equality in (2.17) holds for all points {u, v} with

|u− a| = |v− a|, |u− b| = |v− b| and |u− c| = |v− c|, |u− d| = |v− d|.
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3. Möbius modulus of ring domains

In this section we define the Möbius modulus of rings. Our main result is The-
orem 3.8 which gives a solution to Teichmüller’s extremal problem for the Möbius
modulus. As a corollary to Theorem 3.8 we settle the conjecture of Vuorinen.
We will then establish a relationship between the usual and the Möbius moduli of
rings and compute the Möbius modulus of Grötzsch and Teichmüller rings.

Definition 3.1. Let R = R(C1, C2) be a ring in R
n

. The quantity

(3.2) modMR = max
u,v∈R

n
min

x∈C1, y∈C2

∣∣∣∣log
|u− y| |x− v|
|u− x| |y − v|

∣∣∣∣

is called the Möbius modulus of R .

Observe that if R is any ring and A is a Möbius annulus separating the
complementary components of R , then

(3.3) modMR ≥ modA > 0.

Indeed, we can assume that

A = Bn(0, t) \B n
(0, 1)

for some t > 1. Then

modMR ≥ min
x∈C1, y∈C2

∣∣∣∣log
|0− y| |x−∞|
|0− x| |y −∞|

∣∣∣∣ = min
x∈C1, y∈C2

∣∣∣∣log
|y|
|x|

∣∣∣∣ ≥ modA.

On the other hand, if modMR > 0, then there exists a Möbius annulus A
separating the complementary components of R such that

(3.4) modA = modMR.

Indeed, let u, v ∈ R
n

be a pair with

modMR = min
x∈C1, y∈C2

∣∣∣∣log
|u− y| |x− v|
|u− x| |y − v|

∣∣∣∣ > 0.

We can assume that u = 0 and v =∞ . Then

modMR = min
x∈C1, y∈C2

∣∣∣∣log
|y|
|x|

∣∣∣∣ = log
s

t
,

where
s = min{|x| : x ∈ C2} and t = max{|x| : x ∈ C1}.

Then the ring
A = {x ∈ Rn : t < |x| < s}

is the required Möbius annulus.
Thus we have the following remark to Definition 3.1.
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Remark 3.5. Let R be any ring with modMR > 0. Then

(3.6) modMR = max
A

modA,

where the maximum is taken over all Möbius annuli A which separate the com-
plementary components of R . In particular, if R is a Möbius annulus, then

(3.7) modMR = modR.

Ring domains with separating euclidean or Möbius annuli were studied in [7]
(n = 2) and [14] (n ≥ 2), respectively.

Theorem 3.8. Let a, b, c, d ∈ R
n

be distinct points. Then

(3.9) max
R

modMR = arccosh
(
σ(a, b, c, d)

)
,

where the maximum is taken over all rings R which separate the sets {a, b} and
{c, d} .

Proof. Let R = R(C1, C2) be a ring with a, b ∈ C1 and c, d ∈ C2 and assume
that modMR > 0. Let u, v ∈ R

n
and x0 ∈ C1 , y0 ∈ C2 be such that

modMR =
∣∣log |u, x0, y0, v|

∣∣.
By performing a preliminary Möbius transformation we can assume that u =
0, v =∞ and |x0| < |y0| . Then the Möbius annulus

A = Bn(0, |y0|) \B
n
(0, |x0|)

separates C1 and C2 . In particular, we have

max{|a|, |b|} ≤ |x0| < |y0| ≤ min{|c|, |d|}.
Hence by Theorem 2.16 we have

modMR = log
|y0|
|x0|
≤ log

(
min

{ |c|
|a| ,
|d|
|a| ,
|c|
|b| ,
|d|
|b|

})
≤ arccosh

(
σ(a, b, c, d)

)
.

The equality holds for the ring R0 = R(C1, C2) where

C1 = f−1
(
[−w,∞] ∪ [w,∞]

)
and C2 = f−1

(
[−e1, e1]

)

and f is a Möbius transformation such that

f(a) = w, f(b) = −w, f(c) = e1 and f(d) = −e1

for some w ∈ Rn with |w| ≥ 1. Indeed, for u = f−1(∞) and v = f−1(0) we have

modMR0 = modMf(R0) ≥ min
{∣∣log |∞, x, y, 0|

∣∣ : x ∈ C1, y ∈ C2

}

= log |w| = arccosh
(
σ(a, b, c, d)

)

using Lemma 2.8. Hence

modMR0 = arccosh
(
σ(a, b, c, d)

)
.

completing the proof.
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Next we have the following two corollaries of Theorem 3.8. The first one
settles the conjecture of Vuorinen.

Corollary 3.10. For x ∈ Rn \ [0, e1] ,

(3.11) max
A

modA = arccosh (|x|+ |x− e1|),

where the maximum is taken over all Möbius annuli A which separate the sets
{0, e1} and {x,∞} .

Proof. Since
|x|+ |x− e1| = σ(0, e1, x,∞),

Theorem 3.8 along with (3.6) imply that

max
A

modA = modMR0 = arccosh
(
σ(0, e1, x,∞)

)
= arccosh (|x|+ |x− e1|),

where R0 = R
(
[0, e1], [x,∞]

)
.

The next corollary gives a characterization of Möbius transformations of R
n

in terms of the Möbius modulus of rings. A similar type of characterization in
terms of the modulus of rings is given in [5].

Corollary 3.12. A homeomorphism f : R
n → R

n
belongs to Möb(R

n
) if

and only if
modMf(R) = modMR

for all rings R in R
n

.

Proof. The necessity part follows from (2.3) and Definition 3.1. For the
sufficiency part it is enough to show that

σ
(
f(a), f(b), f(c), f(d)

)
= σ(a, b, c, d)

for all quadruples a, b, c, d ∈ R
n

. Given a, b, c, d , we let R = R(C1, C2) be a
maximal ring, i.e., a ring with

modMR = arccosh
(
σ(a, b, c, d)

)
.

Then using Theorem 3.8 and the fact that f(a), f(b) ∈ f(C1) and f(c), f(d) ∈
f(C2) we get

arccosh
(
σ(a, b, c, d)

)
= modMR

(
f(C1), f(C2)

)

≤ arccosh
(
σ
(
f(a), f(b), f(c), f(d)

))

which implies
σ(a, b, c, d) ≤ σ

(
f(a), f(b), f(c), f(d)

)
.

By applying the same argument to f−1 we get

σ
(
f(a), f(b), f(c), f(d)

)
≤ σ(a, b, c, d)

as required.
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We have the following relation between the modulus and the Möbius modulus
of a ring R .

Lemma 3.13. For any ring R = R(C1, C2) in R
n

we have

(3.14) modMR ≤ modR ≤ modMR+ c(n),

where c(n) is a constant depending only on n .

Proof. It follows from (1.2) and (1.3) that

modRT (t) ≤ log
(
λ2
n(t+ 1)

)
for all t > 0.

The first inequality in (3.14) follows from the monotonicity of the modulus along
with Corollary 3.5. To show the second inequality in (3.14), let log |x, u, v, y| =
modMR and

log |x′, u′, v′, y′| = max
u∈C1, v∈C2

min
x∈C1, y∈C2

∣∣∣∣log
|u− y| |x− v|
|u− x| |y − v|

∣∣∣∣.

Then |x′, u′, v′, y′| ≤ |x, u, v, y| and by Theorem 8.46 [1] we have

modR ≤ modRT (|x′, u′, v′, y′|) ≤ modRT (|x, u, v, y|)
≤ log(2λ2

n|x, u, v, y|) = modMR+ log(2λ2
n).

Hence the lemma holds with c(n) = log(2λ2
n) .

Finally, we compute the Möbius modulus of Grötzsch and Teichmüller rings.

Example 3.15. For s > 1

modMRG(s) = arccosh (s).

Proof. Since −e1, e1 ∈ B
n
(0, 1) and se1,∞ ∈ [se1,∞] , Theorem 3.8 implies

that

modMRG(s) ≤ arccosh (s).

Equality holds for

u0 =
(
s−

√
s2 − 1

)
e1 and v0 =

(
s+

√
s2 − 1

)
e1.

See (3.2).
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Example 3.16. For t > 0

modMRT (t) = arccosh (2t+ 1).

Proof. Since −e1, 0 ∈ [−e1, 0] and te1,∞ ∈ [te1,∞] , Theorem 3.8 implies
that

modMRT (t) ≤ arccosh (2t+ 1).

Equality holds for

u0 =
(
−
√
t(t+ 1) + t

)
e1 and v0 =

(√
t(t+ 1) + t

)
e1.

See (3.2).

Remark 3.17. We have the same relation between the Möbius modulus of
Grötzsch and Teichmüller rings as in (1.1), namely

(3.18) modMRT (t) = 2modMRG
(√
t+ 1

)
.
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