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Abstract. We introduce a new Mobius invariant modulus for ring domains R in R™ which
coincides with the usual modulus whenever R is a Mobius annulus, i.e.,

f(R)={zeR": 1< |z| <t}

for some Mobius transformation f of R™ and some ¢t > 1. We obtain a sharp upper bound for
the Mobius modulus of a ring R which separates two pairs {a,b} and {c,d} of distinct points
in R™. Our result proves a conjecture made by M. Vuorinen in 1992 [14].

1. Introduction

Notation. We denote by R™ the n-dimensional Euclidean space and by
{e1,e2,...,e,} its standard basis. The one-point compactification R™ U {00}
of R™ is denoted by R". The open and closed balls of radius r > 0 and centered
at & € R™ are denoted by B"(z,r) and B" (z,7), respectively. S 1(z,r) is a
sphere of radius r > 0 and centered at x € R"™. The closed segment between
x € R™ and y € R" is denoted by [z,y]. For z € R™, x # 0, we set

[x,00] = {tx : t > 1} U {oo}.

The group of all Mébius transformations of R" is denoted by M&b(R").

A ring is a domain R € R" whose complement is the union of two disjoint
non-degenerate compact connected sets. A ring with complementary components
Cy and Cy is denoted by R(Cy,C53). A ring R(Cq,C5) is said to separate the
sets F and F if £ C C; and F C Cy. Hence a ring R(Cy,C5) separates the
complementary components of a ring R(E, F) if E C Cy and F C Cs.

If R is a ring in E2, then R can be mapped conformally onto a circular
annulus

{zeC:1<|z] <t}

and the modulus of R is defined to be logt.
In R", n> 2, by Liouville’s theorem the Mobius transformations are the

only conformal mappings in R". A ring R is said to be a Mdbius annulus if

f(R)={zeR":1< |z| <t} forsome f e Mob(R") and ¢t > 1.
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The points f~1(0) and f~1(co) are called relative centers of the Mobius annu-
lus R. The modulus of such a ring R is defined as logt.

In general, the modulus of a ring R = R(C7,C5) is defined as follows. Let T
be the family of all curves joining C7 and C3 in R and let F(I") be the set of all
non-negative Borel functions

o: R" — R' such that f7 ods >1

for every locally rectifiable curve v € I'. Then the modulus of the curve family T’
is defined as
M) = inf ™ dm.
() el () Jr ¢

Observe that since C7 and Cs are non-degenerate, 0 < M(I") < oo by [13, 11.5
and 11.10]. The modulus of R is defined as

Wn—1

M(T)

1/(n—1)
mod R = [ }

See, for instance, [1, 8.30]. Here w,,_; is the surface area of the unit sphere in R™.
The rings of Grotzsch and Teichmiiller play an important role in the theory
of quasiconformal mappings. The complementary components of Grétzsch ring
Ra(s), s > 1, are B"(0,1) and [se;,00] while those of Teichmiiller ring Ry (t),
t >0, are [—e1,0] and [tey, 00].
For the convenience of the reader we recall some properties of the modulus of
Grotzsch and Teichmiiller rings. The following functional relation holds.

(1.1) mod Rr(t) = 2mod R (Vt+1).
See [4] and [1, 8.32 and 8.37(1)]. The function

(1.2) mod Rp(t) — log(t + 1)

is a nondecreasing function in (0,00) and

(1.3) tlim (mod Ry (t) —log(t + 1)) =log A2 < oo.
Here )\, is a constant which depends only on n. See, for instance, [4] and [1,
8.38].

Our main focus in this paper is the followmg extremal problem of Teichmiiller.
Let a, b, ¢, d be distinct points in R". Among all the rings which separate the
sets {a, b} and {¢,d} it is required to ﬁnd one with the largest modulus.

For n = 2, this problem was considered by O. Teichmiiller [12] in 1938 and
a complete solution was given by M. Schiffer [11] in 1946. In this case the points
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a, b, ¢, d can be normalized so that a = —1, b =1, ¢ =&, d = =&, where
£ e EQ(O, 1) is a unique point with

c—a d—b [E+1)\°

c—b d—a \6—-1)°

If Z(€) = R(C1(£),C2(€)) is an extremal ring, i.e., a ring with the largest modu-
lus, then

hi(C1(§)) = C1(€), h1(C2(€)) = C2(€)
and

ha(C1(§)) = Ca2(8), ha(C2(€)) = C1(8),
¢

where

hi(z) = —z and ha(z) =
In particular,

(1.4) 0 e 01(5) and o0 € Cg(f)

See [8, pp. 199-200].

For n > 2, Teichmiiller’s problem is solved only when the points a, b, ¢, d
lie on a circle or a line in this order. In this case the points a, b, ¢, d can be
normalized so that
b —c||d — a
b—alld—c|

Then by means of a spherical symmetrization one shows that Teichmiiller’s ring

Ryp(t) is an extremal ring. See, for instance, [4], [10] and [1, Theorem 8.46].
When the points a, b, ¢, d do not lie on a circle or a line in this order, the

problem is still open. In general the points a, b, ¢, d can be normalized so that

B la —c||b—d|
" a—b||c—d|

M. Vuorinen has considered a ring Ry whose complementary components are some
circular arc joining the points 0 and e; and some ray emanating from the point
x [14]. This ring coincides (up to a Mdbius transformation) with Teichmiiller’s
ring when the points a, b, ¢, d lie on a circle or a line in this order. It follows
from Theorem 3.16 [14] that there exists a Mobius annulus A separating the
complementary components of Ry and such that

a=—ey, b=0, c=tey, d= o0, where t =

a=0,b=e, c=x,d=ococ wherexz € R" and |z

mod A = arccosh (|z| + |z — e1]).
Due to the monotonicity of the modulus we then have
arccosh (|z| + |z — e1|) = mod A < mod Ry.

In order to assure that arccosh (|z| + |z — e1]) is the sharpest lower bound for
mod Ry obtained in this manner, Vuorinen was led to the following conjecture.
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Conjecture 1.5. For x € R"\ [0,¢4],

mgxmodA = arccosh (|z| + |z — e1]),

where the maximum is taken over all Mébius annuli A which separate the sets
{0,e1} and {z,00}.

In this paper we consider a new measure for ring domains called the Mobius
modulus. Our main result, Theorem 3.8 below, shows that Teichmiiller’s problem
has a complete solution when considered with respect to the Mobius modulus. As
a corollary to Theorem 3.8 we settle the conjecture of Vuorinen. After this paper
was submitted the referee pointed out that an alternative proof of the conjecture
was also given in [3].

2. Some results on the cross-ratio

The main result of this section is Theorem 2.16. The cross-ratio of a quadruple
a,b,c,d of points in R" with a # b and ¢ # d is defined as follows. If a,b,¢,d €
R"™, then

la —c||b—d|

2.1 b,c,d| = —————.
Otherwise we omit the terms containing oco. For example,

la — ¢
2.2 b = .
(22) ab,¢00] = (2=
A homeomorphism f: R" — R" belongs to Méb(R") if and only if
(2.3) | f(a), £(b), f(e), f(d)| = |a,b,c,d|

for all quadruples a,b,c,d in R". See [2, Theorem 3.2.7]. For a quadruple a, b, ¢, d
in R" we put

(2.4) o(a,b,e,d) =la,b,c,d| + |b,a,c,d|.
Hence
(25) a(a,b,c,d):’a_c||b_d|+’a_d”b_c‘>1

la — b |c—d| -
with equality if and only if the points a, ¢, b, d lie on a circle or a line in this
order. A simple computation shows that

o(a,b,c,d) +1 la,d,c,b| + 1

d b,c,d) = ——"———
o(a,c,b,d) +1 an ola;b,¢,d) |d,a,c, b
It follows from (2.3) and (2.6) that a homeomorphism f: R" — R" belongs
Mob(R") if and only if
(2.7) a(f(a), f(b), f(c), f(d)) = o(a,b,c,d)
for all quadruples a,b,c,d in R".

(26)  a,b,c.d| =

The following two lemmas are used in the proof of Theorem 2.16. The first
lemma is an immediate consequence of Corollary 7.25 [1].



Mébius modulus of ring domains in R" 197

Lemma 2.8. Let a,b,c,d € R" be distinct points. Let f be a Mobius
transformation such that

f(a) = —e1, f(b) =e1, f(c)=—w and f(d)=w

for some w € R™ with |w| > 1. Then

|w|=p+ \/p27_1, WherepZU(a,b,Cad>-

Proof. Let g € M6b(R") be the inversion in $"~1(0,1). Then by applying
Corollary 7.25 [1] to the composition g o f and using (2.6) we obtain

1 |d,a,c,b 1

w1+ a,d,e,b] + /(1 +|a,d,c,0)% — (I, a, ¢, 0))2  p+/p? — L

as required. o
The next lemma is an extension of a special case of Lemma 2.12 [6].

Lemma 2.9. If aq, as, a3, a4 are distinct points in R™ with

(2.10) la1]| = |az| = s < t = |as| = |aal,
then

s2 4+ t2
(211) 9t < U(al,ag,a3,a4).
Equality holds if and only if
(2.12) a1 +as = a3z +ayg =0.

Proof. Define ¢;; as the cosine of the angle Z(a;0a;) and set

where D = (1 — 012)1/2(1 — 034)1/2

and
N(u) = (u—c13)"?(u — c20)Y? + (u — c14) (1 — c93) /2.

Note that D < 2 and that D = 2 if and only if (2.12) holds. Next

d 1/2 1/2 1 (U_Ckl)l/2 (U_Cij)1/2
du((u cij) (u —e)'?) 2\ (u— i)/ - (w—cp)/2) =
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whence
N/
(2.13) g (u) = lgu) >1  foru>1.
Since
s s

g(1) = 0<a1,a2, 7935 ZM) > 1,
we have
(2.14) g(u) = / g (r)dr+g(1)>u for all uw > 1.

1

In particular,

2 2 2 2
s+t>>s +t

2.15 =
(2.15) olaranasan) =9 (5 ) = 5

which completes the proof of (2.11).
Assume next that (2.11) holds with equality and set

s2 + 2
2st

v =

Then (2.15) implies that g(v) = v. Using the differentiability of ¢g along with
(2.14) we obtain

g'(v):hmwghmv_uzl

uU—v V—Uu u—v Y — U

and hence using (2.13) we conclude that ¢’(v) = 1. Since N'(v) > 2 and D < 2,
the equality ¢’(v) = 1 implies D = 2 which, as noted above, implies (2.12) as
required.

Finally, a simple computation shows that (2.12) implies that (2.11) holds with
equality. o

Theorem 2.16. Let a,b,c,d € R" be distinct points and p = o(a,b,c,d).
Then for all distinct pairs {u,v} of points in R" \ {a,b, ¢, d}

(2.17) min{]u,a,c,v|, lu, a,d,vl, |u,b,c,vl, |u,b, d,v\} <p++p?-—1.

Moreover, if p > 1, then there exists a unique pair {u,v} for which the equality
holds.
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Proof. Let u,v € R"\ {a,b,¢,d} be distinct points. Since (2.17) is invariant
under the elements of Mob(R"), we can assume that u = 0 and v = co. Then

) min{|c|, |d t
m1n{|u7a,c7v|, lu, a,d,vl, |u,b,c,vl|, |u,b, d,v|} = % =
)

Since p + v/p%? — 1 > 1, there is nothing to prove if s > ¢. Hence we may assume
that s < ¢t. Then (2.17) is equivalent to

82+t2

(2.18) <o(a,b,cd).

Let
S"Y(vy,r) c B"(0,5) and S (v, r5) c R™\ B™(0,¢)

be spheres such that a,b € S" 1(vy,r;) and ¢,d € S" (vy,75). Then we have
Ry C Ry, where B B
Ry =R(B"(0,5),R"\ B"(0,1))

and B _
Ry = R(B (Ul,Tl),Rn \ B"(vg,rg)).

In particular,
(219) mod R1 S mod RQ.

Choose h € Méb(R") that maps S™'(v1,r1) and S™ '(vy,73) onto concentric
spheres S"1(0,s’) and S™71(0,t'), respectively. Then

0 < [h(a)] = [h(b)] = s" <t = [h(c)| = |h(d)]
and we have

t t
(2.20) log .= mod R; < mod Ry = log e

Using (2.11) we now have

s2 + t2 < P
2st  —  2s't

< o(h(a),h(b), h(c), h(d)) = o(a,b,c,d)

which proves (2.18) and hence the first part of the theorem.
Notice that equality in (2.18) implies that |a| = |b] = s and |c| = |d| = t.
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To prove the second part of the theorem, we let f € Méb(f_{n) be such that
f(a’) = —€1, f(b) = €1, f(C) = —w and f(d) =w

for some w € R™ with |w| > 1. Since p > 1, we have |w| =p+ /p?>—1 > 1
by Lemma 2.8. Then the equality in (2.17) holds if we take u = f~1(0) and
v = f~1(c0). This establishes the existence of the pair {u,v}.

To prove the uniqueness, we assume that {u;,v;} is another pair for WEiCh
the equality in (2.17) holds and show that u; = u and v; = v. Let g € Mob(R")
be such that

gur) =0, g(vi)=oc and g(a) = —es.
By our assumption we have

mln{|07 —€1, 9(6)7 OOMO? _elvg(d)a OO|7 |07 g(b)u g(C), OO|7 |O7g(b)7 g(d)v OO|}

_ min{lg(c), lg(d)|} _

= max{lg(a).Jg@)) P TV L

Hence

l9(a)| = [g()] < lg(c)| = lg(d)]
as we have noted above. Then using (2.12) we have

g(a) +g(b) = g(c) + g(d) = 0.
Hence

gla) = —e1, g(b)=e1, g(c)=—z and g(d) ==z
for some z € R™ and by Lemma 2.8 we have |z| =p+ /p? — 1 = |w|. Since
£(a), £(b), £(c), F(d)| = |a,b, ¢, d] = |g(a), g(b), 9(c), g(d)]

and
£ (b), f(a), f(c), f(d)| = |b,a, c,d] = |g(b), g(a), g(c), g(d)],
we have
lw—e1] = |z — eq] and lw+e1]| = |z + eq].
Hence the angle Z(w0e;) is equal to the angle Z(20e;1). By means of a preliminary
rotation about the e;-axis if necessary, we can assume that w = z. Hence f~!
and g~ agree on a set {—ej,e;, —w,w} and consequently they agree on a 2-

dimensional (1-dimensional, if w lies on the e;-axis) subspace of R™ containing
these points. In particular,

u=f"10)=g""0)=u1 and v=f""(c0) =g '(o0) =1
as required. o

Remark 2.21. The hypothesis p > 1 in the uniqueness part of Theorem 2.16
cannot be removed. We now show that if p = 1 the uniqueness part fails.

Indeed, if a = —ey, b = tey, ¢ = —tey, d = e for some 0 < t < 1, then
o(a,b,c,d) =1. But equality in (2.17) holds for all points {u,v} with

lu—al =|v—al, |u—>bl=|v-1| and lu—c|=v—c¢|, |u—d|=|v—d|.
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3. Mobius modulus of ring domains

In this section we define the Mobius modulus of rings. Our main result is The-
orem 3.8 which gives a solution to Teichmiiller’s extremal problem for the Mobius
modulus. As a corollary to Theorem 3.8 we settle the conjecture of Vuorinen.
We will then establish a relationship between the usual and the Moébius moduli of
rings and compute the Mobius modulus of Grotzsch and Teichmiiller rings.

Definition 3.1. Let R = R(C;,C5) be a ring in R". The quantity

(32) mod; R = max min _ |log w
uweR" 2€C1, yeCs |u — ZIZ" ’y — ,Ul

is called the Mdédbius modulus of R.

Observe that if R is any ring and A is a Md&bius annulus separating the
complementary components of R, then

(3.3) mod s R > mod A > 0.
Indeed, we can assume that

A= B"(0,t)\ B"(0,1)
for some ¢ > 1. Then

|y
log m

0 = ylfz —oof| _ > mod A.

ody R > i lo = '
Hodm i = mGCI?,I??GCQ & |0 — z| |y — oo :ceCI’?,lg?eCQ

On the other hand, if mody; R > 0, then there exists a Mobius annulus A
separating the complementary components of R such that

(3.4) mod A = mod R.
Indeed, let u,v € R" be a pair with

mody R —  min logw

zeCq,yeCs

lu — [y — v
We can assume that v = 0 and v = co. Then

log M

= log *,
||

mody; R = min "

zeC1,yeCs

where
s =min{|z| : x € Cy} and t = max{|z| : z € C1}.

Then the ring
A={zeR":t < |z| < s}

is the required Mobius annulus.
Thus we have the following remark to Definition 3.1.
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Remark 3.5. Let R be any ring with mod;R > 0. Then
(3.6) mody R = max mod A,
where the maximum is taken over all Mobius annuli A which separate the com-
plementary components of R. In particular, if R is a Mobius annulus, then
(3.7) mod s R = mod R.

Ring domains with separating euclidean or Mobius annuli were studied in [7]
(n=2) and [14] (n > 2), respectively.

Theorem 3.8. Let a,b,¢,d € R" be distinct points. Then
(3.9) max mod s R = arccosh (o(a, b, ¢, d)),
where the maximum is taken over all rings R which separate the sets {a,b} and
{c,d}.

Proof. Let R = R(C1, Cg)_be a ring with a,b € C7 and ¢,d € Cy and assume
that mody, R > 0. Let u,v € R" and z € C1, yo € Cy be such that

mody R = |log|u,.¢c0,yo,v|‘.

By performing a preliminary Mobius transformation we can assume that u =
0, v =00 and |zg| < |yo|. Then the M&bius annulus

A= B"(0,lyo)) \ B"(0,]xo])
separates C'; and (5. In particular, we have
max{|al, [b[} < |zo| < |yo| < min{]c], |d]}.
Hence by Theorem 2.16 we have
mod ;R = log % <log (min{%, %, %, %‘}) < arccosh (U(a, b, c, d))
The equality holds for the ring Ry = R(C1,C3) where
C, = f_l([—w, oo] U [w, 00]) and Csy = f_l([—el,el])
and f is a Mobius transformation such that
fla) =w, f(b)=—-w, [f(c)=e1 and f[f(d)=—es
for some w € R™ with |w| > 1. Indeed, for u = f~!(cc) and v = f~1(0) we have
mod s Ry = mod s f(Rg) > min{‘log |oo,x,y,0|‘ cxeCy, ye C’g}
= log |w| = arccosh (U(a, b, c, d))
using Lemma 2.8. Hence
mod s Ry = arccosh (U(a, b, c, d))

completing the proof. o
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Next we have the following two corollaries of Theorem 3.8. The first one
settles the conjecture of Vuorinen.

Corollary 3.10. For z € R™\ [0, e4],
(3.11) mjxxmodA = arccosh (|z| + |z — e1]),
where the maximum is taken over all Mobius annuli A which separate the sets
{0,e1} and {z,00}.

Proof. Since
’.CL'| + "T - 61’ = U(Oa €1,7, OO),

Theorem 3.8 along with (3.6) imply that

max mod A = mod Ry = arccosh (0(0, €1, x,00)) = arccosh (|z] + |z — e1]),

where Ry = R([0,e1],[z,00]). o

The next corollary gives a characterization of Mobius transformations of R
in terms of the Mobius modulus of rings. A similar type of characterization in
terms of the modulus of rings is given in [5].

Corollary 3.12. A homeomorphism f: R" — R" belongs to Mob(R") if
and only if

for all rings R in R" .

Proof. The necessity part follows from (2.3) and Definition 3.1. For the
sufficiency part it is enough to show that

o(f(a), f(b), f(c), f(d)) = o(a,b,c,d)
for all quadruples a,b,c,d € R". Given a,b,c,d, we let R = R(C1,C2) be a

maximal ring, i.e., a ring with
mod s R = arccosh (a(a, b, c, d))

Then using Theorem 3.8 and the fact that f(a), f(b) € f(C1) and f(c), f(d) €
F(Cs) we get

arccosh (o(a,b,¢,d)) = moda R(f(Ch), f(C2))
< arccosh (a(f(a),f(b),f(c),f(d)))
which implies
o(a,b,c,d) < o(f(a), f(b), f(c), f(d)).
By applying the same argument to f~! we get
a(f(a), f(b), f(c), f(d)) < o(a,b,c,d)

as required. o
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We have the following relation between the modulus and the Mobius modulus
of aring R.

Lemma 3.13. For any ring R = R(C1,C2) in R" we have
(3.14) modj; R < mod R < mody, R + ¢(n),

where c(n) is a constant depending only on n.

Proof. It follows from (1.2) and (1.3) that
mod Rr(t) <log(A2(t+1))  forall t > 0.

The first inequality in (3.14) follows from the monotonicity of the modulus along
with Corollary 3.5. To show the second inequality in (3.14), let log |z, u,v,y| =
mod s R and

log |z/,u/,v",y/| = max min logw )
u€EC,vEC, ECY, y€Cs lu — x| |y — |

Then |2/ ,u/,v",y'| < |z, u,v,y| and by Theorem 8.46 [1] we have

mod R < mod Ry (|2’,u',v',y'|) < mod Ry (|x, u,v,y|)
< log(2X\2 |z, u,v,y|) = mody R + log(2)2).

Hence the lemma holds with ¢(n) = log(2A2). o
Finally, we compute the M&bius modulus of Grotzsch and Teichmiiller rings.

Example 3.15. For s > 1
mod s R (s) = arccosh (s).
Proof. Since —eq,e1 € E”(o, 1) and sej, 00 € [seq, 0], Theorem 3.8 implies

that
mod s R (s) < arccosh (s).

Equality holds for

uoz(s— 82—1)61 and UQZ(S+\/32—1)61.

See (3.2). o
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Example 3.16. For t > 0
mod s R (t) = arccosh (2t + 1).

Proof. Since —eq,0 € [—e1,0] and te;, 00 € [ter, 00|, Theorem 3.8 implies
that
mod s Rp(t) < arccosh (2¢ + 1).

Equality holds for

up = (=t +1) +t)es and vo = (Vt(t+1) +t)er.

See (3.2). o

Remark 3.17. We have the same relation between the Mobius modulus of
Grotzsch and Teichmiiller rings as in (1.1), namely

(3.18) mod Ry (t) = 2mody Re (Vi +1).
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