MÖBIUS MODULUS OF RING DOMAINS IN $\overline{\mathbf{R}}^n$

Zair Ibragimov

University of Michigan, Department of Mathematics Ann Arbor, MI 48109, U.S.A.; ibragim@umich.edu

Abstract. We introduce a new Möbius invariant modulus for ring domains R in $\overline{\mathbf{R}}^n$ which coincides with the usual modulus whenever R is a Möbius annulus, i.e.,

$$
f(R) = \{x \in \mathbf{R}^n : 1 < |x| < t\}
$$

for some Möbius transformation f of $\overline{\mathbf{R}}^n$ and some $t > 1$. We obtain a sharp upper bound for the Möbius modulus of a ring R which separates two pairs $\{a, b\}$ and $\{c, d\}$ of distinct points in $\mathbf{\bar{R}}^n$. Our result proves a conjecture made by M. Vuorinen in 1992 [14].

1. Introduction

Notation. We denote by \mathbb{R}^n the *n*-dimensional Euclidean space and by $\{e_1, e_2, \ldots, e_n\}$ its standard basis. The one-point compactification $\mathbb{R}^n \cup \{\infty\}$ of \mathbb{R}^n is denoted by $\overline{\mathbb{R}}^n$. The open and closed balls of radius $r > 0$ and centered at $x \in \mathbb{R}^n$ are denoted by $B^n(x,r)$ and $\overline{B}^n(x,r)$, respectively. $S^{n-1}(x,r)$ is a sphere of radius $r > 0$ and centered at $x \in \mathbb{R}^n$. The closed segment between $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ is denoted by $[x, y]$. For $x \in \mathbb{R}^n$, $x \neq 0$, we set

$$
[x,\infty]=\{tx:t\geq 1\}\cup\{\infty\}.
$$

The group of all Möbius transformations of \overline{R}^n is denoted by $M\ddot{\mathrm{o}}\mathrm{b}(\overline{R}^n)$.

A *ring* is a domain $R \subset \overline{\mathbf{R}}^n$ whose complement is the union of two disjoint non-degenerate compact connected sets. A ring with complementary components C_1 and C_2 is denoted by $R(C_1, C_2)$. A ring $R(C_1, C_2)$ is said to separate the sets E and F if $E \subset C_1$ and $F \subset C_2$. Hence a ring $R(C_1, C_2)$ separates the complementary components of a ring $R(E, F)$ if $E \subset C_1$ and $F \subset C_2$.

If R is a ring in \overline{R}^2 , then R can be mapped conformally onto a circular annulus

$$
\{z \in \mathbf{C} : 1 < |z| < t\}
$$

and the modulus of R is defined to be $\log t$.

In \overline{R}^n , $n > 2$, by Liouville's theorem the Möbius transformations are the only conformal mappings in \overline{R}^n . A ring R is said to be a *Möbius annulus* if

$$
f(R) = \{x \in \mathbf{R}^n : 1 < |x| < t\} \quad \text{for some } f \in \text{M\"ob}(\mathbf{\overline{R}}^n) \text{ and } t > 1.
$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 30C35; Secondary 30C75.

The points $f^{-1}(0)$ and $f^{-1}(\infty)$ are called *relative centers* of the Möbius annulus R. The modulus of such a ring R is defined as $\log t$.

In general, the modulus of a ring $R = R(C_1, C_2)$ is defined as follows. Let Γ be the family of all curves joining C_1 and C_2 in R and let $F(\Gamma)$ be the set of all non-negative Borel functions

$$
\varrho\colon \mathbf{R}^n \to \overline{\mathbf{R}}^1 \qquad \text{such that } \int_{\gamma} \varrho \, ds \ge 1
$$

for every locally rectifiable curve $\gamma \in \Gamma$. Then the modulus of the curve family Γ is defined as

$$
M(\Gamma) = \inf_{\varrho \in F(\Gamma)} \int_{\mathbf{R}^n} \varrho^n \, dm.
$$

Observe that since C_1 and C_2 are non-degenerate, $0 < M(\Gamma) < \infty$ by [13, 11.5] and 11.10. The modulus of R is defined as

$$
\operatorname{mod} R = \left[\frac{\omega_{n-1}}{M(\Gamma)}\right]^{1/(n-1)}
$$

.

See, for instance, [1, 8.30]. Here ω_{n-1} is the surface area of the unit sphere in \mathbb{R}^n .

The rings of Grötzsch and Teichmüller play an important role in the theory of quasiconformal mappings. The complementary components of Grötzsch ring $R_G(s)$, $s > 1$, are $\overline{B}^{n}(0,1)$ and $[s_{e_1}, \infty]$ while those of Teichmüller ring $R_T(t)$, $t > 0$, are $[-e_1, 0]$ and $[te_1, \infty]$.

For the convenience of the reader we recall some properties of the modulus of Grötzsch and Teichmüller rings. The following functional relation holds.

(1.1)
$$
\mod R_T(t) = 2 \mod R_G(\sqrt{t+1}).
$$

See [4] and [1, 8.32 and 8.37(1)]. The function

$$
(1.2)\qquad \qquad \mod R_T(t) - \log(t+1)
$$

is a nondecreasing function in $(0, \infty)$ and

(1.3)
$$
\lim_{t \to \infty} (\text{mod } R_T(t) - \log(t+1)) = \log \lambda_n^2 < \infty.
$$

Here λ_n is a constant which depends only on n. See, for instance, [4] and [1, 8.38].

Our main focus in this paper is the following extremal problem of Teichmüller. Let a, b, c, d be distinct points in \overline{R}^n . Among all the rings which separate the sets $\{a, b\}$ and $\{c, d\}$ it is required to find one with the largest modulus.

For $n = 2$, this problem was considered by O. Teichmüller [12] in 1938 and a complete solution was given by M. Schiffer [11] in 1946. In this case the points

a, b, c, d can be normalized so that $a = -1$, $b = 1$, $c = \xi$, $d = -\xi$, where $\xi \in \overline{B}^2(0,1)$ is a unique point with

$$
\frac{c-a}{c-b} \cdot \frac{d-b}{d-a} = \left(\frac{\xi+1}{\xi-1}\right)^2.
$$

If $\mathscr{R}(\xi) = R(C_1(\xi), C_2(\xi))$ is an extremal ring, i.e., a ring with the largest modulus, then

$$
h_1(C_1(\xi)) = C_1(\xi), \qquad h_1(C_2(\xi)) = C_2(\xi)
$$

and

$$
h_2(C_1(\xi)) = C_2(\xi), \qquad h_2(C_2(\xi)) = C_1(\xi),
$$

where

$$
h_1(z) = -z
$$
 and $h_2(z) = \frac{\xi}{z}$.

In particular,

(1.4)
$$
0 \in C_1(\xi) \quad \text{and} \quad \infty \in C_2(\xi).
$$

See [8, pp. 199–200].

For $n > 2$, Teichmüller's problem is solved only when the points a, b, c, d lie on a circle or a line in this order. In this case the points a, b, c, d can be normalized so that

$$
a = -e_1
$$
, $b = 0$, $c = te_1$, $d = \infty$, where $t = \frac{|b - c| |d - a|}{|b - a| |d - c|}$.

Then by means of a spherical symmetrization one shows that Teichmüller's ring $R_T(t)$ is an extremal ring. See, for instance, [4], [10] and [1, Theorem 8.46].

When the points a, b, c, d do not lie on a circle or a line in this order, the problem is still open. In general the points a, b, c, d can be normalized so that

$$
a = 0, b = e_1, c = x, d = \infty
$$
 where $x \in \mathbb{R}^n$ and $|x| = \frac{|a - c| |b - d|}{|a - b| |c - d|}$.

M. Vuorinen has considered a ring R_0 whose complementary components are some circular arc joining the points 0 and e_1 and some ray emanating from the point x [14]. This ring coincides (up to a Möbius transformation) with Teichmüller's ring when the points a, b, c, d lie on a circle or a line in this order. It follows from Theorem 3.16 [14] that there exists a Möbius annulus A separating the complementary components of R_0 and such that

$$
\operatorname{mod} A = \operatorname{arccosh} (|x| + |x - e_1|).
$$

Due to the monotonicity of the modulus we then have

$$
\operatorname{arccosh}(|x|+|x-e_1|) = \operatorname{mod} A \le \operatorname{mod} R_0.
$$

In order to assure that $arccosh(|x| + |x - e_1|)$ is the sharpest lower bound for $mod R_0$ obtained in this manner, Vuorinen was led to the following conjecture.

Conjecture 1.5. For $x \in \mathbb{R}^n \setminus [0, e_1]$, $\max_{A} \text{mod } A = \text{arccosh } (|x| + |x - e_1|),$

where the maximum is taken over all Möbius annuli A which separate the sets $\{0, e_1\}$ and $\{x, \infty\}$.

In this paper we consider a new measure for ring domains called the Möbius modulus. Our main result, Theorem 3.8 below, shows that Teichmüller's problem has a complete solution when considered with respect to the Möbius modulus. As a corollary to Theorem 3.8 we settle the conjecture of Vuorinen. After this paper was submitted the referee pointed out that an alternative proof of the conjecture was also given in [3].

2. Some results on the cross-ratio

The main result of this section is Theorem 2.16. The cross-ratio of a quadruple a, b, c, d of points in $\overline{\mathbf{R}}^n$ with $a \neq b$ and $c \neq d$ is defined as follows. If $a, b, c, d \in$ \mathbf{R}^n , then

(2.1)
$$
|a, b, c, d| = \frac{|a - c| |b - d|}{|a - b| |c - d|}.
$$

Otherwise we omit the terms containing ∞ . For example,

(2.2)
$$
|a, b, c, \infty| = \frac{|a - c|}{|a - b|}.
$$

A homeomorphism $f: \overline{R}^n \to \overline{R}^n$ belongs to $M\ddot{\mathrm{o}}\mathrm{b}(\overline{R}^n)$ if and only if

(2.3)
$$
|f(a), f(b), f(c), f(d)| = |a, b, c, d|
$$

for all quadruples a, b, c, d in \overline{R}^n . See [2, Theorem 3.2.7]. For a quadruple a, b, c, d in $\overline{\mathbf{R}}^n$ we put

(2.4)
$$
\sigma(a, b, c, d) = |a, b, c, d| + |b, a, c, d|.
$$

Hence

(2.5)
$$
\sigma(a, b, c, d) = \frac{|a - c| |b - d| + |a - d| |b - c|}{|a - b| |c - d|} \ge 1
$$

with equality if and only if the points a, c, b, d lie on a circle or a line in this order. A simple computation shows that

(2.6)
$$
|a, b, c, d| = \frac{\sigma(a, b, c, d) + 1}{\sigma(a, c, b, d) + 1}
$$
 and $\sigma(a, b, c, d) = \frac{|a, d, c, b| + 1}{|d, a, c, b|}$.

It follows from (2.3) and (2.6) that a homeomorphism $f: \overline{\mathbf{R}}^n \to \overline{\mathbf{R}}^n$ belongs $M\ddot{\mathrm{o}}\mathrm{b}(\overline{\mathbf{R}}^n)$ if and only if

(2.7)
$$
\sigma(f(a), f(b), f(c), f(d)) = \sigma(a, b, c, d)
$$

for all quadruples a, b, c, d in $\overline{\mathbf{R}}^n$.

The following two lemmas are used in the proof of Theorem 2.16. The first lemma is an immediate consequence of Corollary 7.25 [1].

Lemma 2.8. Let $a, b, c, d \in \mathbf{\overline{R}}^n$ be distinct points. Let f be a Möbius transformation such that

$$
f(a) = -e_1
$$
, $f(b) = e_1$, $f(c) = -w$ and $f(d) = w$

for some $w \in \mathbb{R}^n$ with $|w| \geq 1$. Then

$$
|w| = p + \sqrt{p^2 - 1}
$$
, where $p = \sigma(a, b, c, d)$.

Proof. Let $g \in \text{M\"ob}(\mathbf{\overline{R}}^n)$ be the inversion in $S^{n-1}(0,1)$. Then by applying Corollary 7.25 [1] to the composition $g \circ f$ and using (2.6) we obtain

$$
\frac{1}{|w|} = \frac{|d, a, c, b|}{1 + |a, d, c, b| + \sqrt{(1 + |a, d, c, b|)^2 - (|d, a, c, b|)^2}} = \frac{1}{p + \sqrt{p^2 - 1}}
$$

as required. \Box

The next lemma is an extension of a special case of Lemma 2.12 [6].

Lemma 2.9. If a_1 , a_2 , a_3 , a_4 are distinct points in \mathbb{R}^n with

(2.10)
$$
|a_1| = |a_2| = s < t = |a_3| = |a_4|,
$$

then

(2.11)
$$
\frac{s^2 + t^2}{2st} \le \sigma(a_1, a_2, a_3, a_4).
$$

Equality holds if and only if

$$
(2.12) \t\t\t a_1 + a_2 = a_3 + a_4 = 0.
$$

Proof. Define c_{ij} as the cosine of the angle $\angle (a_i 0 a_j)$ and set

$$
g(u) = \frac{N(u)}{D}
$$
, where $D = (1 - c_{12})^{1/2} (1 - c_{34})^{1/2}$

and

$$
N(u) = (u - c_{13})^{1/2} (u - c_{24})^{1/2} + (u - c_{14})^{1/2} (u - c_{23})^{1/2}.
$$

Note that $D \leq 2$ and that $D = 2$ if and only if (2.12) holds. Next

$$
\frac{d}{du}\left((u-c_{ij})^{1/2}(u-c_{kl})^{1/2}\right)=\frac{1}{2}\left(\frac{(u-c_{kl})^{1/2}}{(u-c_{ij})^{1/2}}+\frac{(u-c_{ij})^{1/2}}{(u-c_{kl})^{1/2}}\right)\geq 1,
$$

whence

(2.13)
$$
g'(u) = \frac{N'(u)}{D} \ge 1 \quad \text{for } u > 1.
$$

Since

$$
g(1) = \sigma\left(a_1, a_2, \frac{s}{t}a_3, \frac{s}{t}a_4\right) \ge 1,
$$

we have

(2.14)
$$
g(u) = \int_1^u g'(r) dr + g(1) \ge u \quad \text{for all } u \ge 1.
$$

In particular,

(2.15)
$$
\sigma(a_1, a_2, a_3, a_4) = g\left(\frac{s^2 + t^2}{2st}\right) \ge \frac{s^2 + t^2}{2st}
$$

which completes the proof of (2.11) .

Assume next that (2.11) holds with equality and set

$$
v = \frac{s^2 + t^2}{2st}.
$$

Then (2.15) implies that $q(v) = v$. Using the differentiability of q along with (2.14) we obtain

$$
g'(v) = \lim_{u \to v} \frac{g(v) - g(u)}{v - u} \le \lim_{u \to v} \frac{v - u}{v - u} = 1
$$

and hence using (2.13) we conclude that $g'(v) = 1$. Since $N'(v) \ge 2$ and $D \le 2$, the equality $g'(v) = 1$ implies $D = 2$ which, as noted above, implies (2.12) as required.

Finally, a simple computation shows that (2.12) implies that (2.11) holds with equality. □

Theorem 2.16. Let $a, b, c, d \in \overline{\mathbf{R}}^n$ be distinct points and $p = \sigma(a, b, c, d)$. Then for all distinct pairs $\{u, v\}$ of points in $\overline{\mathbf{R}}^n \setminus \{a, b, c, d\}$

(2.17)
$$
\min\{|u,a,c,v|,|u,a,d,v|,|u,b,c,v|,|u,b,d,v|\} \leq p + \sqrt{p^2 - 1}.
$$

Moreover, if $p > 1$, then there exists a unique pair $\{u, v\}$ for which the equality holds.

Proof. Let $u, v \in \mathbf{\overline{R}}^n \setminus \{a, b, c, d\}$ be distinct points. Since (2.17) is invariant under the elements of $\text{M\"ob}(\mathbf{\bar{R}}^n)$, we can assume that $u = 0$ and $v = \infty$. Then

$$
\min\{|u,a,c,v|, |u,a,d,v|, |u,b,c,v|, |u,b,d,v|\} = \frac{\min\{|c|, |d|\}}{\max\{|a|, |b|\}} = \frac{t}{s}.
$$

Since $p + \sqrt{p^2 - 1} \ge 1$, there is nothing to prove if $s \ge t$. Hence we may assume that $s < t$. Then (2.17) is equivalent to

(2.18)
$$
\frac{s^2+t^2}{2st} \leq \sigma(a,b,c,d).
$$

Let

$$
S^{n-1}(v_1,r_1) \subset \overline{B}^n(0,s) \quad \text{and} \quad S^{n-1}(v_2,r_2) \subset \overline{\mathbf{R}}^n \setminus B^n(0,t)
$$

be spheres such that $a, b \in S^{n-1}(v_1, r_1)$ and $c, d \in S^{n-1}(v_2, r_2)$. Then we have $R_1 \subset R_2$, where n n

$$
R_1 = R(\overline{B}^n(0, s), \overline{\mathbf{R}}^n \setminus B^n(0, t))
$$

and

$$
R_2 = R(\overline{B}^n(v_1,r_1), \overline{\mathbf{R}}^n \setminus B^n(v_2,r_2)).
$$

In particular,

$$
(2.19) \tmod R_1 \leq \text{mod } R_2.
$$

Choose $h \in \text{M\"ob}(\mathbf{\overline{R}}^n)$ that maps $S^{n-1}(v_1, r_1)$ and $S^{n-1}(v_2, r_2)$ onto concentric spheres $S^{n-1}(0, s')$ and $S^{n-1}(0, t')$, respectively. Then

$$
0 < |h(a)| = |h(b)| = s' < t' = |h(c)| = |h(d)|
$$

and we have

(2.20)
$$
\log \frac{t}{s} = \text{mod } R_1 \le \text{mod } R_2 = \log \frac{t'}{s'}.
$$

Using (2.11) we now have

$$
\frac{s^2 + t^2}{2st} \le \frac{{s'}^2 + {t'}^2}{2s't'} \le \sigma(h(a), h(b), h(c), h(d)) = \sigma(a, b, c, d)
$$

which proves (2.18) and hence the first part of the theorem.

Notice that equality in (2.18) implies that $|a| = |b| = s$ and $|c| = |d| = t$.

To prove the second part of the theorem, we let $f \in \text{M\"ob}(\mathbf{\overline{R}}^n)$ be such that

$$
f(a) = -e_1
$$
, $f(b) = e_1$, $f(c) = -w$ and $f(d) = w$

for some $w \in \mathbb{R}^n$ with $|w| \ge 1$. Since $p > 1$, we have $|w| = p + \sqrt{p^2 - 1} > 1$ by Lemma 2.8. Then the equality in (2.17) holds if we take $u = f^{-1}(0)$ and $v = f^{-1}(\infty)$. This establishes the existence of the pair $\{u, v\}$.

To prove the uniqueness, we assume that $\{u_1, v_1\}$ is another pair for which the equality in (2.17) holds and show that $u_1 = u$ and $v_1 = v$. Let $g \in \text{M\"ob}(\mathbf{\overline{R}}^n)$ be such that

$$
g(u_1) = 0
$$
, $g(v_1) = \infty$ and $g(a) = -e_1$.

By our assumption we have

$$
\min\left\{|0, -e_1, g(c), \infty|, |0, -e_1, g(d), \infty|, |0, g(b), g(c), \infty|, |0, g(b), g(d), \infty|\right\}
$$

$$
= \frac{\min\{|g(c)|, |g(d)|\}}{\max\{|g(a), |g(b)|\}} = p + \sqrt{p^2 - 1}.
$$

Hence

$$
|g(a)| = |g(b)| < |g(c)| = |g(d)|
$$

as we have noted above. Then using (2.12) we have

$$
g(a) + g(b) = g(c) + g(d) = 0.
$$

Hence

$$
g(a) = -e_1
$$
, $g(b) = e_1$, $g(c) = -z$ and $g(d) = z$

for some $z \in \mathbb{R}^n$ and by Lemma 2.8 we have $|z| = p + \sqrt{p^2 - 1} = |w|$. Since

$$
|f(a), f(b), f(c), f(d)| = |a, b, c, d| = |g(a), g(b), g(c), g(d)|
$$

and

$$
|f(b), f(a), f(c), f(d)| = |b, a, c, d| = |g(b), g(a), g(c), g(d)|,
$$

we have

$$
|w - e_1| = |z - e_1|
$$
 and $|w + e_1| = |z + e_1|$.

Hence the angle $\angle(w0e_1)$ is equal to the angle $\angle(z0e_1)$. By means of a preliminary rotation about the e_1 -axis if necessary, we can assume that $w = z$. Hence f^{-1} and g^{-1} agree on a set $\{-e_1, e_1, -w, w\}$ and consequently they agree on a 2dimensional (1-dimensional, if w lies on the e_1 -axis) subspace of \mathbb{R}^n containing these points. In particular,

 $u = f^{-1}(0) = g^{-1}(0) = u_1$ and $v = f^{-1}(\infty) = g^{-1}(\infty) = v_1$

as required.

Remark 2.21. The hypothesis $p > 1$ in the uniqueness part of Theorem 2.16 cannot be removed. We now show that if $p = 1$ the uniqueness part fails.

Indeed, if $a = -e_1$, $b = te_1$, $c = -te_1$, $d = e_1$ for some $0 < t < 1$, then $\sigma(a, b, c, d) = 1$. But equality in (2.17) holds for all points $\{u, v\}$ with

$$
|u-a|=|v-a|
$$
, $|u-b|=|v-b|$ and $|u-c|=|v-c|$, $|u-d|=|v-d|$.

3. Möbius modulus of ring domains

In this section we define the Möbius modulus of rings. Our main result is Theorem 3.8 which gives a solution to Teichmüller's extremal problem for the Möbius modulus. As a corollary to Theorem 3.8 we settle the conjecture of Vuorinen. We will then establish a relationship between the usual and the Möbius moduli of rings and compute the Möbius modulus of Grötzsch and Teichmüller rings.

Definition 3.1. Let $R = R(C_1, C_2)$ be a ring in \overline{R}^n . The quantity

(3.2)
$$
\text{mod}_{M} R = \max_{u,v \in \mathbf{R}^{n}} \min_{x \in C_{1}, y \in C_{2}} \left| \log \frac{|u - y| |x - v|}{|u - x| |y - v|} \right|
$$

is called the *Möbius modulus* of R .

Observe that if R is any ring and A is a Möbius annulus separating the complementary components of R , then

(3.3)
$$
\mod M R \geq \mod A > 0.
$$

Indeed, we can assume that

$$
A=B^{n}(0,t)\setminus \overline{B}^{n}(0,1)
$$

for some $t > 1$. Then

$$
{\rm mod}_{M} R \geq \min_{x \in C_1, y \in C_2} \left| \log \frac{|0-y| \, |x-\infty|}{|0-x| \, |y-\infty|} \right| = \min_{x \in C_1, y \in C_2} \left| \log \frac{|y|}{|x|} \right| \geq {\rm mod} \, A.
$$

On the other hand, if $mod_M R > 0$, then there exists a Möbius annulus A separating the complementary components of R such that

$$
(3.4) \tmod A = mod_M R.
$$

Indeed, let $u, v \in \mathbf{\overline{R}}^n$ be a pair with

$$
\text{mod}_{M} R = \min_{x \in C_1, y \in C_2} \left| \log \frac{|u - y| |x - v|}{|u - x| |y - v|} \right| > 0.
$$

We can assume that $u = 0$ and $v = \infty$. Then

$$
\mathrm{mod}_{M} R = \min_{x \in C_1, y \in C_2} \left| \log \frac{|y|}{|x|} \right| = \log \frac{s}{t},
$$

where

$$
s = \min\{|x| : x \in C_2\}
$$
 and $t = \max\{|x| : x \in C_1\}.$

Then the ring

$$
A = \{x \in \mathbf{R}^n : t < |x| < s\}
$$

is the required Möbius annulus.

Thus we have the following remark to Definition 3.1.

Remark 3.5. Let R be any ring with $\text{mod}_M R > 0$. Then

(3.6)
$$
\operatorname{mod}_{M} R = \max_{A} \operatorname{mod} A,
$$

where the maximum is taken over all Möbius annuli Λ which separate the complementary components of R . In particular, if R is a Möbius annulus, then

$$
(3.7) \tmod_M R = \text{mod } R.
$$

Ring domains with separating euclidean or Möbius annuli were studied in [7] $(n = 2)$ and [14] $(n \ge 2)$, respectively.

Theorem 3.8. Let
$$
a, b, c, d \in \overline{\mathbf{R}}^n
$$
 be distinct points. Then

(3.9)
$$
\max_{R} \text{mod}_{M} R = \text{arccosh} \left(\sigma(a, b, c, d) \right),
$$

where the maximum is taken over all rings R which separate the sets $\{a, b\}$ and ${c, d}.$

Proof. Let $R = R(C_1, C_2)$ be a ring with $a, b \in C_1$ and $c, d \in C_2$ and assume that $\text{mod}_M R > 0$. Let $u, v \in \mathbf{\overline{R}}^n$ and $x_0 \in C_1$, $y_0 \in C_2$ be such that

$$
\mathrm{mod}_{M} R = \bigl|\log|u,x_0,y_0,v|\bigr|.
$$

By performing a preliminary Möbius transformation we can assume that $u =$ 0, $v = \infty$ and $|x_0| < |y_0|$. Then the Möbius annulus

$$
A = Bn(0, |y_0|) \setminus \overline{B}n(0, |x_0|)
$$

separates C_1 and C_2 . In particular, we have

$$
\max\{|a|, |b|\} \le |x_0| < |y_0| \le \min\{|c|, |d|\}.
$$

Hence by Theorem 2.16 we have

$$
\mathrm{mod}_{M} R = \log \frac{|y_0|}{|x_0|} \le \log \left(\mathrm{min} \left\{ \frac{|c|}{|a|}, \frac{|d|}{|a|}, \frac{|c|}{|b|}, \frac{|d|}{|b|} \right\} \right) \le \mathrm{arccosh} \left(\sigma(a, b, c, d) \right).
$$

The equality holds for the ring $R_0 = R(C_1, C_2)$ where

$$
C_1 = f^{-1}([-w, \infty] \cup [w, \infty])
$$
 and $C_2 = f^{-1}([-e_1, e_1])$

and f is a Möbius transformation such that

$$
f(a) = w
$$
, $f(b) = -w$, $f(c) = e_1$ and $f(d) = -e_1$

for some $w \in \mathbb{R}^n$ with $|w| \ge 1$. Indeed, for $u = f^{-1}(\infty)$ and $v = f^{-1}(0)$ we have

$$
mod_M R_0 = mod_M f(R_0) \ge min\{|log |\infty, x, y, 0| | : x \in C_1, y \in C_2\}
$$

$$
= \log |w| = \operatorname{arccosh} (\sigma(a, b, c, d))
$$

using Lemma 2.8. Hence

$$
modMR0 = arccosh (\sigma(a, b, c, d)).
$$

completing the proof.

Next we have the following two corollaries of Theorem 3.8. The first one settles the conjecture of Vuorinen.

Corollary 3.10. For $x \in \mathbb{R}^n \setminus [0, e_1]$,

(3.11)
$$
\max_{A} \operatorname{mod} A = \operatorname{arccosh} (|x| + |x - e_1|),
$$

where the maximum is taken over all Möbius annuli A which separate the sets $\{0, e_1\}$ and $\{x, \infty\}$.

Proof. Since

$$
|x| + |x - e_1| = \sigma(0, e_1, x, \infty),
$$

Theorem 3.8 along with (3.6) imply that

$$
\max_{A} \text{mod } A = \text{mod}_{M} R_0 = \text{arccosh } (\sigma(0, e_1, x, \infty)) = \text{arccosh } (|x| + |x - e_1|),
$$

where $R_0 = R([0, e_1], [x, \infty])$.

The next corollary gives a characterization of Möbius transformations of \overline{R}^n in terms of the Möbius modulus of rings. A similar type of characterization in terms of the modulus of rings is given in [5].

Corollary 3.12. A homeomorphism $f: \overline{\mathbf{R}}^n \to \overline{\mathbf{R}}^n$ belongs to $\text{M\"ob}(\overline{\mathbf{R}}^n)$ if and only if

$$
{\rm mod}_M f(R)={\rm mod}_M R
$$

for all rings R in \overline{R}^n .

Proof. The necessity part follows from (2.3) and Definition 3.1. For the sufficiency part it is enough to show that

$$
\sigma(f(a), f(b), f(c), f(d)) = \sigma(a, b, c, d)
$$

for all quadruples $a, b, c, d \in \mathbf{\overline{R}}^n$. Given a, b, c, d , we let $R = R(C_1, C_2)$ be a maximal ring, i.e., a ring with

$$
\mathrm{mod}_{M}R=\mathrm{arccosh}\big(\sigma(a,b,c,d)\big).
$$

Then using Theorem 3.8 and the fact that $f(a), f(b) \in f(C_1)$ and $f(c), f(d) \in$ $f(C_2)$ we get

$$
\operatorname{arccosh} (\sigma(a, b, c, d)) = \operatorname{mod}_{M} R(f(C_1), f(C_2))
$$

$$
\leq \operatorname{arccosh} (\sigma(f(a), f(b), f(c), f(d)))
$$

which implies

$$
\sigma(a, b, c, d) \le \sigma(f(a), f(b), f(c), f(d)).
$$

By applying the same argument to f^{-1} we get

$$
\sigma\big(f(a),f(b),f(c),f(d)\big)\leq \sigma(a,b,c,d)
$$

as required. \Box

We have the following relation between the modulus and the Möbius modulus of a ring R .

Lemma 3.13. For any ring $R = R(C_1, C_2)$ in \overline{R}^n we have

(3.14)
$$
\operatorname{mod}_{M} R \le \operatorname{mod} R \le \operatorname{mod}_{M} R + c(n),
$$

where $c(n)$ is a constant depending only on n.

Proof. It follows from (1.2) and (1.3) that

$$
\operatorname{mod} R_T(t) \le \log \left(\lambda_n^2(t+1)\right) \qquad \text{for all } t > 0.
$$

The first inequality in (3.14) follows from the monotonicity of the modulus along with Corollary 3.5. To show the second inequality in (3.14), let $\log |x, u, v, y| =$ mod_MR and

$$
\log |x', u', v', y'| = \max_{u \in C_1, v \in C_2} \min_{x \in C_1, y \in C_2} \left| \log \frac{|u - y| |x - v|}{|u - x| |y - v|} \right|.
$$

Then $|x', u', v', y'| \leq |x, u, v, y|$ and by Theorem 8.46 [1] we have

$$
\text{mod } R \le \text{mod } R_T(|x', u', v', y'|) \le \text{mod } R_T(|x, u, v, y|)
$$

\$\le \log(2\lambda_n^2 | x, u, v, y|) = \text{mod}_M R + \log(2\lambda_n^2).

Hence the lemma holds with $c(n) = \log(2\lambda_n^2)$.

Finally, we compute the Möbius modulus of Grötzsch and Teichmüller rings.

Example 3.15. For $s > 1$

$$
mod_M R_G(s) = \operatorname{arccosh}(s).
$$

Proof. Since $-e_1, e_1 \in \overline{B}^n(0,1)$ and $se_1, \infty \in [se_1, \infty]$, Theorem 3.8 implies that

$$
mod_M R_G(s) \leq \operatorname{arccosh}(s).
$$

Equality holds for

 $u_0 = (s - \sqrt{s^2 - 1})e_1$ and $v_0 = (s + \sqrt{s^2 - 1})e_1$.

 $See (3.2)$. \Box

Example 3.16. For $t > 0$

$$
mod_M R_T(t) = \operatorname{arccosh}(2t+1).
$$

Proof. Since $-e_1, 0 \in [-e_1, 0]$ and $te_1, \infty \in [te_1, \infty]$, Theorem 3.8 implies that

$$
\text{mod}_M R_T(t) \le \text{arccosh}\,(2t+1).
$$

Equality holds for

$$
u_0 = (-\sqrt{t(t+1)} + t)e_1
$$
 and $v_0 = (\sqrt{t(t+1)} + t)e_1$.

 $See (3.2)$. \Box

Remark 3.17. We have the same relation between the Möbius modulus of Grötzsch and Teichmüller rings as in (1.1) , namely

(3.18)
$$
\operatorname{mod}_{M} R_{T}(t) = 2 \operatorname{mod}_{M} R_{G}(\sqrt{t+1}).
$$

Acknowledgements. I would like to thank my advisor Frederick Gehring for discussions and suggestions on this paper. I also would like to acknowledge many valuable comments of the referee.

References

- [1] Anderson, G., M. Vamanamurthy, and M. Vuorinen: Conformal Invariants, Inequalities, and Quasiconformal Maps. - Wiley-Interscience, 1997.
- [2] Beardon, A.F.: The Geometry of Discrete Groups. Grad. Texts in Math., Springer-Verlag, 1991.
- [3] BETSAKOS, D.: On separating conformal annuli and Mori's ring domain in \mathbb{R}^n . Israel J. Math. (to appear).
- [4] Gehring, F.W.: Symmetrization of rings in space. Trans. Amer. Math. Soc. 101, 1961, 499–519.
- [5] Gehring, F.W.: Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103, 1962, 353–393.
- [6] Gehring, F.W., and K. Hag: The Apollonian metric and quasiconformal mappings. Contemp. Math. 256, 2000, 143–163.
- [7] HERRON, D., X. LIU, and D. MINDA: Ring domains with separating circles or separating annuli. - J. Anal. Math. 53, 1989, 233–252.
- [8] Kuz'MINA, G.V.: Moduli of Families of Curves and Quadratic Differentials. Proc. Steklov Inst. Math. 1, 1982 (Russian original: Tom 139, 1980).
- [9] Lehto, O., and K.I. Virtanen: Quasiconformal Mappings in the Plane. Springer-Verlag, New York, 1973.
- [10] Sarvas, J.: Symmetrization of condensers in n-space. Ann. Acad. Sci. Fenn. Ser. A I Math. 522, 1972, 7–44.
- [11] Schiffer, M.: On the modulus of doubly-connected domains. Quart. J. Math. Oxford Ser. (2) 17, 1946, 197–213.

- [12] TEICHMÜLLER, O.: Untersuchungen über konforme und quasikonforme Abbildung. Deutsche Math. 3, 1938, 621–678.
- [13] VÄISÄLÄ, J.: Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math., Springer-Verlag, New York, 1971.
- [14] VUORINEN, M.: Conformally invariant extremal problems and Quasiconformal Maps. -Quart. J. Math. Oxford (2) 43, 1992, 501–514.

Received 10 June 2002