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Abstract. We consider Sobolev—Dirichlet problems as well as Dirichlet problems in the
PWB-method for quasi-linear second order elliptic differential equations on a euclidean domain. We
discuss boundedness of solutions of these problems and convergence of solutions under perturbation
of the 0-th order term.

Introduction

In the previous papers [MO1] and [MO2], we developed a potential theory
and discussed Dirichlet problems for elliptic quasi-linear equations of the form

(Ew.2) —div o (z, Vu(z)) + B (z,u(z)) =0

on a domain Q in RY (N > 2), where & (x,£): @ x RY — R¥ satisfies weighted
structure conditions of p-th order with a weight w(x) and %A(z,t): Q x R - R
is nondecreasing in t (see Section 1 below for more details).

The purpose of the present paper is to investigate how the solution of a
Dirichlet problem varies under perturbation of the term £.

As in [MO1] and [MO2], we consider the space ZP(;u) of bounded con-
tinuous functions with finite (p, p)-Dirichlet integrals on © (dy = wdx) and its
subspace 2} (2; ) consisting of f € ZP(€; ) which are uniformly bounded limits
of v, € C§°() such that Vy,, — Vf in LP(Q; ). Throughout this paper we
assume that Q is (p, p)-hyperbolic, namely 1 ¢ 25 (Q;p). Given 0 € 2P(Q; ),
the solution u of (E o 4) satifying v — 6 € 25(; 1) may be called the solution
of the Sobolev—-Dirichlet problem with the boundary data 6 and is denoted by
U(ot ,B,6) -

We first introduce a class of L!-functions on 2, and using functions in this
class, we present a condition on % (condition (B.4) in Section 3) which assures
the boundedness of u(. 2,0)-
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As our main theorem (Theorem 4.1), we shall show that if %4,, n=1,2,...
satisfy (B.4) with the same data, they are uniformly bounded in a certain sense
and if sup_pz, << as, [P (2, 1) —B(x, )] — 0 in L1(Q), then w(y s, 0) — U, 2.0
locally uniformly on €2, where M; and M, are constants determined by the
data given in (B.4) and 6. We shall also give the convergence of Vu(y 4, o)
to Vu(y gz in LP(; 1) (Theorem 4.2).

In [MO1], we have studied Dirichlet problems in the PWB-method with re-
spect to a Royden type ideal boundary for our equation (E . ). In Section 5,
under the same conditions as in Theorem 4.1, we give local uniform convergence
of such Dirichlet solutions.

1. Preliminaries

As in [MO1] and [MO2] we assume that «7: Qx RY — RY and 4: QxR —

R satisfy the following conditions for 1 < p < oo and a weight w which is p-
admissible in the sense of [HKM]:

(A1) o — o (x,€) is measurable on Q for every £ € RY and & — o/ (x,§) is

continuous for a.e. x € Q;
(A.2) o (x,€) & > ajw(@)|EP for all ¢ € RY and a.e. z €  with a constant

a; > 0;

(A.3) | (x,8)] < avw(x)|€P~t for all £ € RY and a.e. z € Q with a constant
as > 0;

(Ad) (o (2,&)— A (x,&)) - (& — &) >0 whenever &,& € RY | & # &, for ae.
x € €

(B.1) x — H(x,t) is measurable on Q for every ¢t € R and t — %(z,t) is contin-

uous for a.e. z € Q;

(B.2) For any open set D € (2, there is a constant a3(D) > 0 such that |Z(z,t)| <

az(D)w(z)(Jt|P~t +1) for all t € R and a.e. z € D;

(B.3) t+— HB(z,t) is nondecreasing on R for a.e. x € Q.

For the nonnegative measure p : du(x) = w(a:? dxr and an open set D, we
consider the weighted Sobolev spaces H'?(D; ), Hy?(D;p) and Hllo’f(D; 1) (see
[HKM] for details).

Let D be an open subset of 2. Then u € Hllo’f(D; p) is said to be a (weak)
solution of (E ) in D if

/d(m,Vu)-Vgpdw—f—/@(w,u)cpdx:0
D D

for all ¢ € C°(D). u € H-P(D;p) is said to be a supersolution (respectively

loc

subsolution) of (E o %) in D if

/ o (x,Vu) - Vodr + / B(x,u)pdr >0 (respectively < 0)
D D
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for all nonnegative ¢ € C§°(D) .

A continuous solution of (E./ ) in an open set D C  is called (o7, %)-
harmonic in D.

We say that an open set D in Q is (&, %B)-regular, ift D € Q and for any

NS Hllo’f (€; ) which is continuous at each point of 0D, there exists a unique

h € C(D)NHYP(D;p) such that h =0 on D and h is (&, %)-harmonic in D.

Proposition A ([MO1; Theorem 1.4] and [HKM; Theorem 6.31]). Any ball
B e Q is (o, B)-regular.

A function u: D — R U {oo} is said to be (&, A)-superharmonic in D if it
is lower semicontinuous, finite on a dense set in D and, for each open set G € D

and for h € C(G) which is (&7, %)-harmonic in G, v > h on G implies u > h
in G. (&7, A)-subharmonic functions are similarly defined. Note that a continuous
supersolution of (E . &) is (&7, %)-superharmonic (cf. [MO1; Section 2]).

We recall the following two spaces which are defined in [MO1] (cf. Introduc-
tion):

PP(p)={f¢€ Hllo’f(Q;,u) | [V f| € LP(Q; ), f is bounded continuous},
P8 Q) = {f € 2°(Q; ) | there exist ¢, € C;°(2) such that ¢, — f a.e.,
{¢n} is uniformly bounded, Vi, — V f in L (Q; )}
Note that Hy™?(Q; u) N 2P (% 1) € 28 (Q; 1) and the inclusion becomes equal-
ity if  is bounded.

Lemma 1.1. Suppose % satisfies
(B.5) / |%(x,t)|de < oo  for any t € R.
Q

For w e 9P(Q; u), if u is a solution (respectively supersolution, subsolution)
of (Eg %), then

/ A (x,Vu) - Vedr +/ B(x,u)pdr =0 (respectively >0, <0)
Q Q

for all p € P8 (4 1) (respectively for all nonnegative ¢ € 2§ (Q; u)).

Proof. Choose ¢, € C3°(2) such that ¢, — ¢ a.e., {p,} is uniformly
bounded and V¢, — Vi in LP(Q;u) (respectively and further ¢, > 0). Since u
is a solution (respectively supersolution, subsolution) in €, we have

(1.1) / o (x,Vu) - Vo, da:—}—/ B(x,u)p,dr =0 (respectively >0, <0).
Q Q
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Then by (A.3)
/ o (x,Vu) - Vo, dr — / o (x,Vu) - Veodx
Q Q

(cf. the proof of [HKM; Lemma 3.11]). By (B.3) and (B.5), [, |%(z,u)|dz < .
Hence, by Lebesgue’s convergence theorem

/%(w,u)gpndfnﬂ/%(m,u)gpdw.
Q Q

Therefore, letting n — oo in (1.1), we have
/ o (x,Vu) - Vedz +/ B(x,u)pdr =0 (respectively >0, <0).
Q Q

We have the following variant of the comparison principle (cf. [MO1; Propo-
sition 1.1]):

Lemma 1.2. Suppose Q) is (p, u)-hyperbolic and % satisfies (B.5). For u,
ve PP(Qu), if uis a supersolution of (E o ), v is a subsolution of (E . %)
and min(u — v,0) € Z§(Q; p), then w > v on Q.

Proof. Set n = min(u —v,0). Since n € Z{(Q;u) and n <0, by Lemma 1.1
we have

/%(x,Vu)-Vnd:c+/%(m,u)ndxg()
) Q

and

/ o (x,Vv) - Vndx +/ PB(x,v)ndx > 0.
Q Q
By (A.4) and (B.3),
/Q(sz%(:z:,Vv) — o (z,Vu)) - Vndz
= —/{ < }(%(m,Vv) — d (z,Vu)) - (Vv — Vu) dx
<0

and

/ (B(z,v) — B(z,u))nde = —/ (B(z,v) — B(x,u))(v—u)dr <0.
Q

{u<v}
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Thus
0< (/ %(m,Vv)-Vndx—}—/ %’(w,v)ndm)
Q Q

- (/Q ﬂ(z,Vu)~vndx+/SZ%(:c,u)nd:c>

<0

— Y

and hence
/ (o (x,Vv) — o (z,Vu)) - (Vv — Vu) dz = 0.
{u<v}

Therefore again by (A.4), Vv — Vu = 0 a.e. on {u < v}. Thus Vi = 0 a.e,,
so that n = ¢. Since 2 is (p, u)-hyperbolic, we see that ¢ = 0, and the lemma
follows.

The next lemma will be used in the proof of Theorem 3.2.

Lemma 1.3. Suppose K; and K, are constants such that K1 < Ky. Given
0c2°(Qu), let 0 = max(min(@,Kg),Kl). Ifu—0¢e 25(Q;p) and K1 <u <
Ky in Q, then u—6* € 25(Q; ).

Proof. Choose ¢,, € C§°(Q2) such that ¢, — u — 6 a.e., {¢,} is uniformly
bounded and Vy,, — V(u —0) in LP(; p). Setting

oy = max(min(gpn,u —Kq),u— Kg),

we have ¢ — max(min(u —0,u— Ky),u— KQ) = u — 0* a.e. in Q. Also, by
[HKM; Lemma 1.2.2], V! — V(u — 0*) in LP(Q;u). Since u — K; > 0 and
u— Ko < 0, suppy;, is compact in Q for each n. Thus, considering mollified
functions, we obtain approximating functions for v — 6*.

We recall the following condition, which has been considered in [MO1] and
[MO2] for the discussion of resolutivity and harmonizability.

(C1) There exist a bounded supersolution of (E . ) in € and a bounded subso-
lution of (E o ) in Q.

The following theorem which asserts the existence and uniqueness of the
Sobolev—Dirichlet problem is shown by [MO2; Theorem 2.2 and Proposition 1.5].

Theorem A. Suppose that § is (p,u)-hyperbolic and suppose that condi-
tions (Cy) and (B.5) are satisfied. If § € PP (); ), then there exists a unique
(4, PB)-harmonic function (e g9y on 0 such that iy g9y —0 € D5 ).
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2. A class of L!-functions on

Hereafter, we always assume that Q is (p, u) -hyperbolic, namely, 1 ¢ 25 (Q; ).
Note that any bounded domain is (p, u)-hyperbolic.

We consider the following function spaces:
F () ={fe€L'(Q)] f/w is locally bounded in Q and
— div./(x, Vu) = f has a solution in 2§ (% u) }
FH()={fe F()| >0} and F ()= {fec F()|f<0}.
For f € Z(&), the solution of —dive/(xz,Vu) = f in Z§(Q;p) will be

denoted by Uf. Obviously, 0 € .# (/) and U° = 0. If f € L'(Q), f/w is locally
bounded on 2 and (C ) is satisfied for (E _y), then f € F and U = u(y ;.-

Proposition 2.1. If f, fo € (&) and f, < fa, then Ut <U/2.

Proof. Since U/? is a supersolution of (E o7 4, ), U/? is a solution of (E oy, )
and min(U”2 — U/t 0) € 98 (Q; 1), the proposition follows from Lemma 1.2.

Corollary 2.1. U/ >0 for f € F+(a/) and Uf <0 for f € F~ ().
We can easily show

Proposition 2.2. If o/ satisfies the homogeneity condition
(A.5) A (2, \6) = MNP 2o/ (2,€) for any X\ € R,
then, \f € F (&) for f € F() and A € R, and UN = \|\|@=P/p=Dy ],

Proposition 2.3. If f is measurable and g1 < f < gy for some g1 € .~ (<)
and go € F (), then f € F(H).

Proof. Since U9' is a bounded subsolution of (E ;s _f) and U9? is a bounded
supersolution of (E./, _y), Theorem A asserts the existence of w(s ¢y, which
is UT.

Proposition 2.4. In case 2 is bounded, any measurable function f satisfy-
ing 0 < f(x) < pw(z) (respectively —pw(x) < f(z) < 0) for some 3 > 0 belongs
to F () (respectively F~()).

Proof. By the above proposition, it is enough to show that fw € .7 (<)
and —fBw € .Z(&). We consider #: R x RN — RY defined by

(2,8, x €,
(.0 ={ Cilh2e, 2ERNM 0

and take an open ball B D . By Proposition A, there exists u € C(B) N
HY(B;u) such that u =0 on B and u is (4, —Bw)-harmonic in B. Then u
is bounded and (., —Bw)-harmonic in Q. It follows from Theorem A that UPv
exists and hence pw € .F*(&7). Similarly, we see that —fw € .7~ ().
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Example 2.1. Let Q = B(0,R) = {|z| < R} for 0 < R < 00, w(z) = |z[°
with § > —N and & (z,€) = |z|°|£[P~2¢. Let g be a non-negative L!-function
on [0, R) which is bounded on [0, g] for any 0 < ¢ < R and let f(z) = |z|°g(|z|).
Then f € . (&/) and

R/ 4 AN
Uf(x)=/ <m/0 gtV dt) dr.

||
If we take g(t) =1, i.e., f(z) = |z|°, then
Ul () = (N +6)7/ @0y (R — o),

where 1/p+1/p’ = 1.
We can take unbounded f, e.g., f(z) = |z|°(R — |z|)~ with 0 < a < 1.
Example 2.2. Let Q = RV, w(z) = |z|° with p < N+ and & (z,&) =
|z|°|¢[P~2¢. Note that Q is (p, u)-hyperbolic (see [MO1; p. 570]). Let g be a

non-negative function on [0,00) which is bounded on [0, 9] for any 0 < ¢ < o
and for which [~ g(¢)tV 71 dt < co. Then f(z) = |z[°g(|z|) belongs to .F* ()

and
oo 1 r 1/(p—-1)
| r 0

x|

Proof of Examples 2.1 and 2.2. Obviously, f > 0 and f/|z|° is locally
bounded on €. Also, it is easily verified that f € L*(£2). Set

. R, 1/(p—1)
G(r) = / g)tN 1 dt and  u(z) = / (mG(T’)> dr,
0 |

x|

where we set R = oo for Example 2.2. Then G(r) is bounded for 0 < r < R and
G(r) < c,rVF for 0 < r < 9, 0 < R. From these it follows that u(x) € C1(Q)
and

T 1 1/(p—1)

||
In case R < oo, since |Vu(z)| is bounded, [, |Vu(z)[P|z]°dz < co. In case

R = o0, since

/ \Vu(z)|P|z|’ de < c/ ||~ (PN FO=2)/(P=1) gy
lz[=1

|lz[>1

and p < N + 4, we have [, |[Vu(z)|P|z]° dv < co. Moreover, if |z| — R, then
u(x) — 0. Thus, setting ¢, (z) = max(u(z)—1/n,0), we have ¢,, € 2P (Q; |z|° dz)
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and suppy,, is compact. Since {¢,} is uniformly bounded, ¢, — u in Q and
Vn — Vu in LP(Q;|z]° dz), it follows that u € Z5(2;|z|° dz). Finally, we have

—div (|x|5|Vu(x)|p_2Vu(x)) = div (z|z| N G(|=]))
= —Nlz["VG(J2]) + [2|°g(|z]) + Nlz|~ G(|])
= |z|°g(|z]) = f(=),

in the weak sense, so that w is a solution of —div (|z|?|Vu[P~2Vu) = f.

3. Boundedness of solutions of Sobolev—Dirichlet problems

In addition to (B.1), (B.2) and (B.3), we shall always assume that % satisfies
condition (B.5). Further we consider the following condition on #:

(B.4) There exist nonnegative numbers T3, Ts, functions f; € F (&) and fo €
F () such that

B (x,Th) < fi(zr) and BT (x,—Tz) < —fa(z) a.e. in Q.

Example 3.1. Let ((¢) be a nondecreasing continuous function on R such
that [C(t)| < c|t|P~ for [t] > 1 and ((tg) = 0 for some tq € R. We set B(z,t) =
b(z)¢(t) with b € LY(Q) such that b > 0 and b/w is locally bounded on €. Then
A satisfies (B.4) with T1 =t§, To =t5 and f1 = fo =0.

If % satisfies (B.4), then Ty + U/t is a supersolution and —T, + U/2 is a
subsolution of (E o ). Thus, condition (C1) is satisfied.

For 6 € 2P(Q; u), we define
supf = inf{k | (§—k)" € Z5(Q; 1)} and iaanH =sup{k | (0—k)" € 25 (Q;n)}.
o

Theorem 3.1. Suppose % satisfies (B.4). Then for any 6 € PP (§; ), there
exists a unique (7, %) -harmonic function u(y 49y on §2 such that w( . g0 —0 €
D5 (Q; ). Further it satisfies

min(—Tg, inf 9) + U (2) < u(y.z0) (x) < max (Tl, sup 9) + U (2)

on (2.

Proof. Since condition (B.4) implies condition (C1), the existence and the
uniqueness follow from Theorem A, we show only the inequalities. Fix ¢ > 0 and
let v = max (7}, supyq 0) +U” +¢. Since Z(z,v) > B(x,T1) > —f1 by (B.4), v is
a supersolution of (E 5). Also, since v > supyq 6+-¢, we see that max(6—v,0) €
2§ (Q; 1), and hence that min(v — u(y, %.),0) € Z¢(Q; ). Hence by Lemma 1.2,
V > U, ) in . Since € > 0 is arbitrary, max(77,supyg 0) + Uuh > U( et ,3,0)
in Q. The other inequality follows similarly.
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In view of Example 3.1, we can state

Corollary 3.1. Let #(z,t) = b(x)((t) be as in Example 3.1. Then

min(—ta,inf 9) < Ui, ,0)(T) < max(tar, sup 0>
oN Y 90

on €.
In view of Propositions 2.4 and 2.2, we also have

Corollary 3.2. Suppose 2 is bounded, </ satisfies (A.5) (in Proposition 2.2)
and |#(z,0)| < pw(z) a.e. in Q. Then

min(ianﬂfe, O) — 61/@_1)U“’(m) < U, ,0)(T) < max(sup 0, 0) + ﬁl/(p_l)Uw(w)
o0

on ().

Given nonnegative numbers Ty, Ty, functions f; € FH (), fo € F ()
and given 6 € 2P(; ), let

M™*(Th, f1,0) = max(Tl,sup9> +supU't,
oQ Q

_ _ . . fo
M~ (T, f2,0) max(Tg, 18an 9) 11(12fU :

Theorem 3.1 asserts that
—M~ (T3, f2,0) < U(w,z9) < M (11, f1,0).

Theorem 3.2. Suppose A satisties (B.4). Then for 6 € 2P(Q; 1),

P 052 p pM *
/\VU(M,@,G)(CB)‘ dp < | — /|V9(93)|pdﬂ+—/ | B (x,0% ()] d,
Q (03] Q a1 Jo

where

M =M"(T1, f1,0) + M~ (12, f2,0)

and
0* = max(min(@, M+<T1, fl, 9)), —Mi(Tl, fl, 0))

Proof. Since u(y g9y — 0 € Z5(2; 1) by Lemma 1.3, we have
/Qﬂf(iﬁ, Ve, 2,0)) (Vi .z — V) dr

+/Q=%'($,U(w,@,9))(u(w,£,9) —0")dx

=0.
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By Theorem 3.1, |u(o 2,9 — 0| < M. Hence, using (A.2), (A.3) and (B.3), we
have

al/ V(e z.0)|" dp < Oé2/ V(o 0" VO | du
Q Q
—/Q%(x,u(ﬂ,@,e))(u(w,@,e) —0%)dx
< /Q Vit(ur, 500"~V 0 dp

- [ B0 im0 =0 o

(p—1)/p 1/p
<ol [ Wuwamalran) ([ 1vopan)
Q Q
+M/ | % (x,0%)|dx,
Q
where in the last inequality we have used Holder’s inequality. An application of

Young’s inequality yields that X < AX®-1/P + C implies X < AP + pC for
X >0, A>0 and C > 0. Hence, from (3.1) we obtain the desired estimate.

Theorem 3.3. Suppose %A1 and P, satisty (B.4) with the same Ty, Ty, fi
and fa. Let 0 € PP(Q; ) and set uj = (., 2,9), j = 1,2. Then

/9(527(33, Vuy) — o (x, Vuz)) - (Vuy — Vug) dz

SM sup ‘%1(x7t)_%2($7t>}d$7
Q —My<t<M;

where M1 = M+(T1,f1,9), MQ = Mi(TQ,fQ,g) and M = M1 +M2
Proof. Since uy —us € 28 (1),

/Q(ﬂ(ﬁl], vul) - c/%(5137 vu2)) : (vul — VUQ) dx

+ A(%l(x,U1) — Ba(x,uz2)) (w1 — uz) dw = 0.

Hence using (B.3) we have

[ (0. 901) = 72, 2) - (Vs = V)

< /Q(%]_(.CE,UQ) —%2(33’,112))(1112 —uy) dz.

Since —My <wuj; < My, j = 1,2, by Theorem 3.1, we obtain the desired estimate.
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4. Convergence theorems
The following lemma can be shown in the same manner as [MO1; Lemma 5.1].

Lemma 4.1. Let {u,} be a uniformly bounded sequence of functions in
25 (Q; p) such that { [, |Vu,|Pdu} is bounded and u, — u a.e. in Q. If u is
continuous, then u € 2§ (Q; ).

The next lemma will be used to show Theorem 4.1.

Lemma 4.2 ([O; Theorem 4.7]). Let u be an (&, %)-harmonic function in
2 and z¢ be any point of Q. If 0 < R < oo is such that B(xo,R) C Q and if
|lu| < L in B(zg, R), then there are constants ¢ and 0 < A < 1 such that

A
sup u — inf u§c<£> ,
B(zo,o)  B(@0.0) R

whenever 0 < p < R. Here c and A depend only on N, p, oy, s, as (B(a;o, R)),
w, R and L.

Theorem 4.1. Suppose B,,, n=1,2,..., and £ all satisfy (B.4) with the
same T, Ty, f1 € (), fo € F (). Let 0 € PP(Q; ). Assume further
that there exists a nonnegative function b on € such that b/w is locally bounded
in Q and

(4.1) B (x, My) + B, (x,—Ms) < b(x) a.e. on

for all n, where My, M5 are as in Theorem 3.3. If

(4.2) / sup | Bn(z,t) — %(:E,t)| dr — 0 (n— o0),
Q —Ma<t<M;

then u(y g, 6) — U 2,60 as n — oo locally uniformly on (2.

Proof. If we set

@n(xaMl)a 13 Z M17
B (x,t) = ¢ Bp(z,t), —Msy <t < My,
:@n(.T,_MQ), tS —Mg,

then (e 2, 6) is a solution of (E o % ), and hence u( 2, 9) = U(w 2+ 9)- Thus
by (4.1), we may assume that |%,(x,t)] < b(z) (n = 1,2,...) for any t € R.
Then, for any D € 2, we can take as(D) = supp b/w in (B.2) for 4, for all n.

Let u, = U(w 2,0 and u = Uiy 50). By Theorem 3.1, {u,} is uniformly
bounded in 2. Hence, by Lemma 4.2, we see that {u,} is equi-continuous at each
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point of €2. Hence it follows from Ascoli-Arzela’s theorem that any subsequence
of {u,} has a locally uniformly convergent subsequence.

Let {un,} be any subsequence of {u,} which converges locally uniformly
to u*. Since {sup_j;,<i<ns [Zn(a,t)|} is bounded in L'(Q) by (4.2), Theo-
rem 3.2 yields that {Vu,} is bounded in LP(;u). Thus, by Lemma 4.1 and
[HMK; Lemma 1.3.3], we see that v* —u € Z§(; 1) and Vu,, — Vu* weakly
in LP(Q;p). On the other hand, by Theorem 3.3 and [HKM; Lemma 3.73],
Vu, — Vu weakly in LP(Q; ), and hence Vu* = Vu. Since Q is (p,p)-
hyperbolic, it follows that u* = w. Therefore, u,, — u locally uniformly in €.

In view of Example 3.1, we can state

Corollary 4.1. Let ((t) be as in Example 3.1 and b,,, n = 1,2,..., and b
be nonnegative measurable functions such that

(4.3) bn(x) < bg(z) a.e. on

for some function by such that by/w is locally bounded in Q and

(4.4) /Q |bn(z) — b(x)|de — 0 (n — o0).

Then, for %, (x,t) = b, (x)((t), n =1,2,..., and B(x,t) = b(x)((t), U(w 2, 0) —
U(er,,0) locally uniformly on ).

The following example shows that we cannot assert the uniform convergence
on {2 in the above theorem and corollary:

Example 4.1. Let @ = B(0,1), 1 < p < N, w(z) =1 and & (z,§) =
|€|P~2¢. Let {a,} be a sequence of points in B(0,1) such that |a,| — 1 and
set b,(z) = 2_”7“;NXB(QMT”)($) with 0 < r, < 1—|ay|, n =1,2,.... For a
nondecreasing continuous function ¢ on R such that ¢(0) = 0, (1) > 0 and
IC()] < c|t|P~! for [t| > 1, we set

B(x,t) = bp(x)C(t) and Blz,t) =Y bu(x)((1).
k=1 n=1

Then, for § =1, %, and % satisfy the conditions in Theorem 4.1. If we choose
{rn} suitably, then {u(s g, 1)} does not converge uniformly on B(0,1).

Proof. Let B, = B(an,1 — |a,|) and v, be the solution of the equation
—div.#/(z,Vu) = b, on B,, which belongs to 2} (By;dz). By Lemma 1.2, we see
that 0 < v, < U% in B, . Noting that &/ (z,¢) = |£|P~2¢ is translation invariant,
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by Example 2.1 we have

Th 1 r 1/(p—1)
wntan) = @ [ (o [oa) e
17|an| 1 Tn N—1 1/(]3—1)
+ / (TN_l / " dt) dr}
Tn 0

1 1—|an|) .
onN)/A=-N)J1 . — 4 L ifp=N

n

(an)1/(1_p){N(p — 1)T7(1P—N)/(P—1) _ u(l _ |an|)(p—N)/(p—1)}
p(N —p) N-—p
if p < N.

Thus, U (a,) > v,(a,) > 1 for sufficiently small 7,,.

Let un, = Uy, 3,,1) and u = u(y 4,1y for simplicity. By considering the
extension of %, by 0 outside B(0,1) and using Proposition A, we see that
un(z) — 1 as |z| — 1.

Now suppose that {u,} converges to u uniformly on B(0,1). Then u(z) — 1
as |x| — 1. Choose € > 0 such that e?P~! < ((1 — ). Then there is ro < 1 such
that u(z) > 1—¢ for |z| > ro. For large n, B(an,r,) N B(0,r9) = and

—div (|[V(1 — u)[P72V(1 — u)) = div(|Vu[P~*Vu)

M

bn(2)¢ (u(z)) = C(1 = &)bn(2).

1

S
Il

Thus, by Lemma 1.2, 1 —u > ((1 — )/ ®=DUb» 5o that
w(an) <1—C(1 =)V Dyb(q,) <1—¢

for large n. This contradicts our assumption that u(xz) > 1 —¢ for |z| > r¢.

Theorem 4.2. Suppose B,,, n=1,2,..., and £ all satisfy (B.4) with the
same Ty, Ty, f1 € FT(), fo € F (). Let 0 € PP(Q; ). Assume further
that of satisfies

(A.ds) (o (2,&1) — o (2,8)) - (&1 — &) > asw(@)(|&] + |&L)P3é — &

with ag > 0. If (4.2) holds, then Vu(y g, ¢y — V(o s in LP(Q;p); further
U(et,B,,,0) — W(et,B,0) I HYP(Q; 1) in case Q is bounded.
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Proof. If p > 2, the first assertion is obvious from Theorem 3.3. In case
1 <p< 2, we have

/ \Vu, — Vul|P du
Q

Z/{(!Vunl + V)P 2|V, — Vul? Y (V| + [Vul)PE/2 4y
Q

p/2
< ( (19l + 909 = du)
Q

(2—p)/2
< ([0l + 1vupran)
Q

Hence the first assertion in this case also follows from Theorems 3.2 and 3.3.
The second assertion follows from the first assertion and the Poincaré inequal-

ity.
5. Boundedness and convergence of solutions for Dirichlet problems

Given a compactification Q* of 2 and a bounded function ¢ on 9*Q = Q*\Q,
let
Uy = {u : (&7, AB)-superharmonic in 2 and

lim inf u(z) > 4(€) for all € € a*Q}

and
Ly = {v : (&, #)-subharmonic in © and
limsupv(z) < (&) for all £ € Q*Q}.
rz—&

If both %, and .Z; are nonempty, then
H (4; Q%) = H P (4, Q) := inf %,

and
H(1p; Q%) = HP) (4, Q") := sup %

are (7, 98)-harmonic in Q and H(y;Q*) <H (1; 2*) ([MO1; Theorem 3.1]). We
say that ¢ is (&7, #)-resolutive if both %, and £, are nonempty and H (¢; 2*) =
H (¢;Q*). In this case we write H(y;Q*) = HP)(y; Q%) for H(); Q*) =
H (;Q%). QF is said to be an (&, B)-resolutive compactification if every 1) €
C(0*Q) is (o, A )-resolutive.

In the proof of [MO1; Proposition 3.1] we have shown
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Lemma 5.1. If ¢ and 19 are (<7, )-resolutive functions on 0*Q), then
[ H (4p1; Q%) — H(1h2; Q%) < sup |11 — o

Theorem 5.1. Let Q* be a compactification of Q. If % satisfies (B.4) and
if ¢ is a bounded function on 0*(), then both %, and £, are nonempty and

min(—Tz, inf ¢) + U < HY P (; Q%) <H P (4, Q)
< max(Tl,sup¢> + U’
9*Q
Proof. By (B.4) we see that

max(Tl,sup@D) + U € Uy,
0*Q
and

min(—Tg,énsf)w> + U e Zy.
Thus the theorem follows.

Like Corollaries 3.1 and 3.2, we have the following two corollaries.
Corollary 5.1. Let #(x,t) = b(z)((t) be as in Example 3.1. If ¢ is a
bounded function on 0%}, then both %, and £, are nonempty and
min(—ta,éngf; w> < H %) (1; 27) gf_](d"@)(d}; ") < max(tg,sup ¢>
" 0*Q

Corollary 5.2. Suppose € is bounded and let Q* be a compactification
of Q. If of satisfies (A.5) and if |#(x,0)| < pw(z) for a.e. x € Q, then

|H ) (4, 0%)| < sup [¢p] + /@Dy
o0*Q

for any bounded (<, #) -resolutive function ¢ on 0*(.

We recall ([MO1; Theorem 3.2]) that under conditions (C;) and (B.5), the
Q-compactification QF, of Q (see [CC]) is an (&7, %)-resolutive compactification
if Q C 2°(Q ).

Theorem 5.2. Let Q C PP(Q;pu), Qf be the Q-compactification of €2,
['=05\Q and let ¢ € C(T'). Suppose %,,, n=1,2,..., and £ all satisfy (B.4)
with the same Ty, Ty, f1 € F1 (), fo € F (). Set

MlzmaX(Tl,mFaLXQb)—i—suprl and MgzmaX(Tg,—mFinz/J)—ingfQ.
Q

Assume further that there exists a nonnegative function b(x) on Q such that
b(x)/w(x) is locally bounded in ) and A, satisfy (4.1) for all n. If (4.2) holds,
then H(%n)(y); Q5) — H( %) (4); Q%)) locally uniformly on .
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Proof. Since the set of continuous extensions of functions in @ is dense in
C(T') with respect to the uniform convergence, given ¢ > 0 there exists 0 € Q
such that supgcr [07(§) — ¥(§)| < e and infyp < 0* < suptp on I', where 0" is
the continuous extension of § to I'. Note that ¢ and 6* are (&7, %)-resolutive
as well as (o7, %,,)-resolutive for all n ([MO1; Theorem 3.2]). For simplicity, let
H, () = H 2 (4;Q8), Ha(0) = HZ2)(0%,Q8), H(y) = HZ 2 (9;Q5)
and H(0*) = H(”“@)(G*;Q*Q). By Lemma 5.1, we see that |H(6*) — H(¢)| < ¢
and |H, (0*)—H,(¢)| < ¢ for all n. On the other hand, by [MO2; Proposition 2.2],
H,(0") = Ui a3, 0 and H(0") = uy 26y . Also, since B (ac,M*(Tl,fl,G)) <
By (x, M) and B, (x,—M~ (T, f2,0)) < B, (x,—M,), by Theorem 4.1, for any
open G € €2, there is ng such that

Sgp|u(g¢,@n,e) — U, z0)| < €
for n > ng. Thus, for n > ng
sup [Ha () = H(¥)|
< sgp{!Hn(w) — Hy(07)| + |Ha(07) — H(07)| + [H(07) — H(¥)|}

< 3e.
Hence the theorem follows.

Like Corollary 4.1, we obtain

Corollary 5.3. Let Qf and I' be as in Theorem 5.2 and let %, (x,t) =
by (x)((t) and HB(x,t) = b(x)((t) with nonnegative measurable functions b,,, b on
Q and ¢ as in Example 3.1. If (4.3) and (4.4) are satisfied then H(<>%n) (1) Q5) —

H(Z %) (4 Qg) Iocally uniformly on €2 for any 1 € C(T').
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