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Abstract. We give continuity conditions on the exponent function p(x) which are suffi-
cient for the Hardy–Littlewood maximal operator to be bounded on the variable Lebesgue space
Lp(x)(Ω) , where Ω is any open subset of Rn . Further, our conditions are necessary on R . Our
result extends the recent work of Pick and Růžička [20], Diening [3] and Nekvinda [19]. We also
show that under much weaker assumptions on p(x) , the maximal operator satisfies a weak-type
modular inequality.

1. Introduction

Given an open set Ω ⊂ Rn , and a measurable function p: Ω → [1,∞) , let
Lp(x)(Ω) denote the Banach function space of measurable functions f on Ω such
that for some λ > 0, ∫

Ω

|f(x)/λ|p(x) dx <∞,

with norm

‖f‖p(x),Ω = inf

{
λ > 0 :

∫

Ω

( |f(x)|
λ

)p(x)

dx ≤ 1

}
.

These spaces are a special case of the Musielak–Orlicz spaces (cf. Musielak [18]).
When p(x) = p0 is constant, Lp(x)(Ω) becomes the standard Lebesgue space
Lp0(Ω).
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of their work on this problem.



224 D. Cruz-Uribe, A. Fiorenza, and C.J. Neugebauer

Functions in these spaces and the associated Sobolev spaces W k,p(x)(Ω) have
been considered by a number of authors: see, for example, [1], [6]–[9], [11]–[17],
[21], [22] and [24]. They appear in the study of variational integrals and partial
differential equations with non-standard growth conditions.

Some of the properties of the Lebesgue spaces readily generalize to the spaces
Lp(x)(Ω): see, for example, Kováčik and Rákosńık [15]. On the other hand, ele-
mentary properties, such as the continuity of translation, often fail to hold (see [15]
or [10]), and for applications it is an important and open problem to determine
which results from harmonic analysis remain true in the variable exponent setting.

In this paper we consider the Hardy–Littlewood maximal operator,

(1.1) Mf(x) = sup
B3x

1

|B|

∫

B∩Ω

|f(y)| dy,

where the supremum is taken over all balls B which contain x and for which
|B ∩Ω| > 0. It is well known (cf. Duoandikoetxea [5]) that the maximal operator
satisfies the following weak and strong-type inequalities:

|{x ∈ Ω : Mf(x) > t}| ≤ C

tp

∫

Ω

|f(y)|p dy, 1 ≤ p <∞,
∫

Ω

Mf(y)p dy ≤ C
∫

Ω

|f(y)|p dy, 1 < p <∞.

We prove analogous inequalities for functions in Lp(x)(Ω).
Strong-type inequalities have been studied recently by several authors. Pick

and Růžička [20] constructed examples which showed that the following uniform
continuity condition on p(x) is necessary (in some sense) for the maximal operator
to be bounded on Lp(x)(Ω):

(1.2) |p(x)− p(y)| ≤ C

− log |x− y| , x, y ∈ Ω, |x− y| < 1
2 .

This condition appears to be natural in the study of variable Lp spaces; see [1],
[20] and the references contained therein.

Diening [3] has shown that this condition is sufficient on bounded domains.
To state his result, let p∗ = inf{p(y) : y ∈ Ω} , p∗ = sup{p(y) : y ∈ Ω} .

Theorem 1.1 (Diening). Let Ω ⊂ Rn be an open, bounded domain, and let
p: Ω→ [1,∞) satisfy (1.2) and be such that 1 < p∗ ≤ p∗ <∞ . Then the maximal
operator is bounded on Lp(x)(Ω) : ‖Mf‖p(x),Ω ≤ C(p(x),Ω)‖f‖p(x),Ω .

Remark 1.2. As stated by Diening, this result is for the centered maximal
operator, i.e., where the supremum in (1.1) is restricted to balls centered at x .
However, his proof can be readily adapted to the larger, “uncentered” maximal
operator. Also, the assumption that p∗ < ∞ holds automatically since Ω is
bounded and p(x) is uniformly continuous.
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Very recently, Diening [4] has extended Theorem 1.1 to all of Rn with the
additional assumption that p(x) is constant outside of a fixed ball. Further,
Nekvinda [19] has shown that this hypothesis can be weakened as follows.

Theorem 1.3 (Nekvinda). Let p: Rn → [1,∞) satisfy (1.2) and be such
that 1 < p∗ ≤ p∗ < ∞ . Suppose further that there is a constant p∞ > 1 such
that p(x) = p∞ + φ(x) , where there exists R > 0 such that φ(x) ≥ 0 if |x| > R ,
and β > 0 such that

(1.3)

∫

{x∈Rn:φ(x)>0}
φ(x)β1/φ(x) dx <∞.

Then the maximal operator is bounded on Lp(x)(Rn) .

Remark 1.4 (Added in proof). We have learned that Nekvinda has improved
this result by removing the requirement that φ be nonnegative.

Note that together, conditions (1.2) and (1.3) imply φ(x)→ 0 as |x| → ∞ .
Our first result is the following theorem; it is similar to Theorem 1.3 since it

is for exponent functions p(x) of the same form (though φ need not be positive).
Further, it gives a pointwise characterization of how quickly φ(x) must converge
to zero at infinity.

Theorem 1.5. Given an open set Ω ⊂ Rn , let p: Ω → [1,∞) be such that
1 < p∗ ≤ p∗ <∞ . Suppose that p(x) satisfies (1.2) and

(1.4) |p(x)− p(y)| ≤ C

log(e+ |x|) , x, y ∈ Ω, |y| ≥ |x|.

Then the Hardy–Littlewood maximal operator is bounded on Lp(x)(Ω) .

Condition (1.4) is the natural analogue of (1.2) at infinity. It implies that
there is some number p∞ such that p(x)→ p∞ as |x| → ∞ , and this limit holds
uniformly in all directions. It is also necessary (in some sense) on R , as the next
example shows.

Theorem 1.6. Fix p∞ , 1 < p∞ < ∞ , and let φ: [0,∞) → [0, p∞ − 1) be
such that φ(0) = 0 , φ is decreasing on [1,∞) , φ(x)→ 0 as x→∞ , and

(1.5) lim
x→∞

φ(x) log(x) =∞.

Define the function p: R→ [1,∞) by

p(x) =

{
p∞, x ≤ 0,
p∞ − φ(x), x > 0;

then the maximal operator is not bounded on Lp(x)(R) .
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The assumption in Theorem 1.5 that p∗ < ∞ again holds automatically: it
follows from (1.4). However, the assumption that p∗ > 1 is necessary, as the
following example shows.

Theorem 1.7. Let Ω ⊂ Rn be open, and let p: Ω→ [1,∞) be upper semi-
continuous. If p∗ = 1 then the maximal operator is not bounded on Lp(x)(Ω) .

In passing, we note that an immediate application of Theorem 1.5 has been
given by Diening [4]: he has shown that if ∂Ω is Lipschitz, and the maximal
operator is bounded on Lp(x)(Ω), then C∞(Ω) is dense in W 1,p(x)(Ω).

Unlike the case of the strong-type inequalities, we appear to be the first au-
thors to prove an analogue of the weak (p, p) inequality for the maximal operator.
Our weak-type result is somewhat surprising, since it requires no continuity as-
sumptions on p(x) , and it is satisfied by unbounded functions. To state it, we
need a definition. Given a non-negative, locally integrable function u on Rn , we
say that u ∈ RH∞ if there exists a constant C such that for every ball B ,

u(x) ≤ C

|B|

∫

B

u(y) dy a.e. x ∈ B.

Denote the smallest constant C such that this inequality holds by RH∞(u) . The
RH∞ condition is satisfied by a variety of functions u : for instance, if there exist
positive constants A and B such that A ≤ u(x) ≤ B for all x . More generally,
u ∈ RH∞ if u(x) = |x|a , a > 0, or if there exists r > 0 such that u−r is in the
Muckenhoupt class A1 . For further information about RH∞ , see Cruz-Uribe and
Neugebauer [2].

Theorem 1.8. Given an open set Ω , suppose the function p: Ω → [1,∞)
can be extended to Rn in such a way that 1/p ∈ RH∞ . Then for all f ∈ Lp(x)(Ω)
and t > 0 ,

(1.6) |{x ∈ Ω : Mf(x) > t}| ≤ C
∫

Ω

( |f(y)|
t

)p(y)

dy.

Remark 1.9. Since p∗ ≥ 1, 1/p is automatically in RH∞ if p∗ <∞ . But,
as the above remarks show, this condition is not necessary.

Remark 1.10. We can give an alternative version of Theorem 1.8 which
does not require extending p(x) to all of Rn , but to do so we must replace the
assumption that 1/p ∈ RH∞ with the following condition: given any ball B ,
|B ∩ Ω| > 0, and x ∈ B ∩ Ω,

1/p(x) ≤ C

|B|

∫

B∩Ω

dy

p(y)
.

Note, however, that this condition need not hold if p(x) is constant, and so we do
not recapture the classical result. We leave the details of the proof to the reader.
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Remark 1.11. In the case of the Lebesgue spaces, the strong-type inequal-
ity is deduced from the weak-type inequality via the Marcinkiewicz interpolation
theorem. It would be interesting to generalize this approach to use Theorem 1.8
to prove Theorem 1.5.

We prove Theorem 1.5 in Section 2, Theorems 1.6 and 1.7 in Section 3, and
Theorem 1.8 in Section 4. Throughout the proofs, notation will be standard
or defined as needed. In order to emphasize that we are dealing with variable
exponents, we will always write p(x) instead of p to denote an exponent function.
Given an open set Ω and function p(x) , 1 ≤ p(x) ≤ ∞ , define the conjugate
function q(x) to satisfy 1/p(x) + 1/q(x) = 1, where we take 1/∞ = 0. Given a
set E , let |E| denote its Lebesgue measure, and let p∗(E) = inf{p(y) : y ∈ E}
and p∗(E) = sup{p(y) : y ∈ E} . For brevity, let p∗ = p∗(Ω) and p∗ = p∗(Ω).
Given a function f , let

|f |p(x),Ω =

∫

Ω

|f(y)|p(y) dy.

Finally, C and c will denote positive constants which will depend only on the
dimension n , the underlying set Ω and the exponent function p(x) , but whose
value may change at each appearance.

2. Proof of Theorem 1.5

The proof of Theorem 1.5 requires a series of lemmas. Throughout this sec-
tion, let α(x) = (e+ |x|)−n .

The first lemma is due to Diening [3, Lemma 3.1]. For completeness we include
its short proof.

Lemma 2.1. Given an open set Ω and a function p: Ω → [1,∞) which
satisfies (1.2), then for any ball B such that |B ∩ Ω| > 0 ,

|B|p∗(B∩Ω)−p∗(B∩Ω) ≤ C.

Proof. Since p∗(B ∩ Ω) − p∗(B ∩ Ω) ≤ 0, we may assume that if r is the
radius of B , then r < 1

4 . But in that case, (1.2) implies that

p∗(B ∩ Ω)− p∗(B ∩ Ω) ≤ C

log(1/2r)
.

Therefore,

|B|p∗(B∩Ω)−p∗(B∩Ω) ≤ cr−n(p∗(B∩Ω)−p∗(B∩Ω)) ≤ cr−nC/ log(1/2r) ≤ C.

Though our proof of the following lemma is not directly dependent on Nek-
vinda [19], our understanding of it was greatly enhanced by a close reading of his
work, and we are grateful to him for sharing it with us.
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Lemma 2.2. Given a set G and two non-negative functions r(x) and s(x) ,
suppose that for each x ∈ G ,

0 ≤ s(x)− r(x) ≤ C

log(e+ |x|) .

Then for every function f ,

∫

G

|f(x)|r(x) dx ≤ C
∫

G

|f(x)|s(x) dx+

∫

G

α(x)r∗(G) dx.

Proof. Let Gα = {x ∈ G : |f(x)| ≥ α(x)} . Then

∫

G

|f(x)|r(x) dx =

∫

Gα
|f(x)|r(x) dx+

∫

G\Gα
|f(x)|r(x) dx,

and we estimate each integral separately. First, since α(x) ≤ 1,

∫

G\Gα
|f(x)|r(x) dx ≤

∫

G\Gα
α(x)r(x) dx ≤

∫

G

α(x)r∗(G) dx.

On the other hand, if x ∈ Gα , then

|f(x)|r(x) = |f(x)|s(x)|f(x)|r(x)−s(x) ≤ |f(x)|s(x)α(x)−C/ log(e+|x|) ≤ C|f(x)|s(x).

The desired inequality now follows immediately.

The next two lemmas generalize the key step in Diening’s proof of Theorem 1.1
(see [3, Lemma 3.2]).

Lemma 2.3. Given Ω and p as in the statement of Theorem 1.5, suppose
that |f |p(x),Ω ≤ 1 , and |f(x)| ≥ 1 or f(x) = 0 , x ∈ Ω . Then for all x ∈ Ω ,

(2.1) Mf(x)p(x) ≤ CM(|f( · )|p( · )/p∗)(x)p∗ + Cα(x)p∗ ,

where α(x) = (e+ |x|)−n .

Proof. Without loss of generality, we may assume that f is non-negative. Fix
x ∈ Ω, and fix a ball B of radius r > 0 containing x such that |B ∩ Ω| > 0.
Let BΩ = B ∩ Ω. It will suffice to show that (2.1) holds with the left-hand side
replaced by (

1

|B|

∫

BΩ

f(y) dy

)p(x)

,

and with a constant independent of B . We will consider three cases.
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Case 1: r < |x|/4. Define p̄(x) = p(x)/p∗ . Then p̄(x) ≥ 1, and (1.4) holds
with p replaced by p̄ . In particular, by our assumption on r , if y ∈ BΩ ,

(2.2) 0 ≤ p̄(y)− p̄∗(BΩ) ≤ C

log(e+ |y|) .

Therefore, by Hölder’s inequality and by Lemma 2.2 with r(x) replaced by
the constant p̄∗(BΩ) and s(x) by p̄(y) , we have that

(
1

|B|

∫

BΩ

f(y) dy

)p(x)

≤
(

1

|B|

∫

BΩ

f(y)p̄∗(BΩ) dy

)p(x)/p̄∗(BΩ)

≤
(
C

|B|

∫

BΩ

f(y)p̄(y) dy +
1

|B|

∫

BΩ

α(y)p̄∗(BΩ) dy

)p(x)/p̄∗(BΩ)

;

since r < |x|/4 and p(x)/p̄∗(BΩ) ≤ p∗ <∞,

≤
(
C

|B|

∫

BΩ

f(y)p̄(y) dy + Cα(x)p̄∗(BΩ)

)p(x)/p̄∗(BΩ)

≤ 2p
∗
C

(
1

|B|

∫

BΩ

f(y)p̄(y) dy

)p(x)/p̄∗(BΩ)

+ 2p
∗
Cα(x)p(x).

If |B| ≥ 1, then by Hölder’s inequality and since |f |p(x),Ω ≤ 1,

1

|B|

∫

BΩ

f(y)p̄(y) dy ≤
(

1

|B|

∫

BΩ

f(y)p(y) dy

)1/p∗

≤
(∫

BΩ

f(y)p(y) dy

)1/p∗

≤ 1.

Hence, since p(x)/p̄∗(BΩ) ≥ p∗ and α(x) ≤ 1, we have that

(
1

|B|

∫

BΩ

f(y) dy

)p(x)

≤ C
(

1

|B|

∫

BΩ

f(y)p̄(y) dy

)p∗
+ Cα(x)p∗

≤ CM(f( · )p̄( · ))(x)p∗ + Cα(x)p∗ .

If, on the other hand, |B| ≤ 1, then, again since |f |p(x),Ω ≤ 1,

∫

BΩ

f(y)p̄(y) dy ≤ |BΩ|1/p
′
∗

(∫

BΩ

f(y)p(y) dy

)1/p∗

≤ 1.

Therefore,

(
1

|B|

∫

BΩ

f(y) dy

)p(x)

≤ C|B|−p(x)/p̄∗(BΩ)

(∫

BΩ

f(y)p̄(y) dy

)p(x)/p̄∗(BΩ)

+ Cα(x)p∗

≤ C|B|−p(x)/p̄∗(BΩ)+p∗

(
1

|B|

∫

BΩ

f(y)p̄(y) dy

)p∗
+ Cα(x)p∗ .
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Since |B| ≤ 1, and since

−p(x)/p̄∗(BΩ) + p∗ =
(
p∗/p∗(BΩ)

)(
p∗(BΩ)− p(x)

)

≥
(
p∗/p∗(BΩ)

)(
p∗(BΩ)− p∗(BΩ)

)
,

by Lemma 2.1,

≤ C
(

1

|B|

∫

BΩ

f(y)p̄(y) dy

)p∗
+ Cα(x)p∗ ≤ CM

(
f( · )p̄( · )

)
(x)p∗ + Cα(x)p∗ .

This is precisely what we wanted to prove.

Case 2: |x| ≤ 1 and r ≥ |x|/4. The proof is essentially the same as in the
previous case: since |x| ≤ 1, α(x) ≈ 1, so inequality (2.2) and the subsequent
argument still hold.

Case 3: |x| ≥ 1 and r ≥ |x|/4. Since f(x) ≥ 1, p∗ ≥ 1 and |f |p(x),Ω ≤ 1,

(
1

|B|

∫

BΩ

f(y) dy

)p(x)

≤ |B|−p(x)

(∫

BΩ

f(y)p(y) dy

)p(x)

≤ Cr−np(x)|f |p(x)
p(x),Ω ≤ C|x|−np∗ ≤ Cα(x)p∗

≤ CM
(
f( · )p̄( · )

)
(x)p∗ + Cα(x)p∗ .

This completes the proof.

Definition 2.4. Given a function f on Ω, we define the Hardy operator H
by

Hf(x) = |B|x|(0)|−1

∫

B|x|(0)∩Ω

|f(y)| dy.

Lemma 2.5. Given Ω and p as in the statement of Theorem 1.5, suppose
that |f |p(x),Ω ≤ 1 , and |f(x)| ≤ 1 , x ∈ Ω . Then for all x ∈ Ω ,

(2.3) Mf(x)p(x) ≤ CM
(
|f( · )|p( · )/p∗

)
(x)p∗ + Cα(x)p∗ + CHf(x)p(x),

where α(x) = (e+ |x|)−n .

Proof. We may assume without loss of generality that f is non-negative. We
argue almost exactly as we did in the proof of Lemma 2.3. In that proof we only
used the fact that f(x) ≥ 1 in Case 3, so it will suffice to fix x ∈ Ω, |x| ≥ 1, and
a ball B containing x with radius r > |x|/4, and prove that

(
1

|B|

∫

BΩ

f(y) dy

)p(x)

≤ CM
(
|f( · )|p( · )/p∗

)
(x)p∗ + Cα(x)p∗ + CHf(x)p(x).
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Since p∗ <∞ , we have that

(
1

|B|

∫

BΩ

f(y) dy

)p(x)

≤ 2p
∗
(

1

|B|

∫

BΩ∩B|x|(0)

f(y) dy

)p(x)

+ 2p
∗
(

1

|B|

∫

BΩ\B|x|(0)

f(y) dy

)p(x)

;

since r > |x|/4,

≤ C
(
|B|x|(0)|−1

∫

B|x|(0)∩Ω

|f(y)| dy
)p(x)

+ C

(
1

|B|

∫

BΩ\B|x|(0)

f(y) dy

)p(x)

= CHf(x)p(x) + C

(
1

|B|

∫

BΩ\B|x|(0)

f(y) dy

)p(x)

.

To estimate the last term, note that if y ∈ BΩ \B|x|(0) then (2.2) holds and
α(y) ≤ α(x) , so the argument in Case 1 of the proof of Lemma 2.3 goes through.
This shows that

(
1

|B|

∫

BΩ\B|x|(0)

f(y) dy

)p(x)

≤ CM
(
|f( · )|p( · )/p∗

)
(x)p∗ + Cα(x)p∗ ,

and this completes the proof.

Lemma 2.6. If i(x) is a radial, increasing function, i∗ > 1 , and if |f(x)| ≤ 1 ,
then ∫

Ω

Hf(y)i(y) dy ≤ C
(
n, i(x)

) ∫

Ω

|f(y)|i(y) dy.

Proof. Without loss of generality we may assume that f is non-negative.
Also, for clarity of notation, we extend f to all of Rn by setting it equal to zero
on Rn \ Ω.

We first assume only that i∗ ≥ 1. Recall that |B|x|(0)| = |B1(0)| |x|n . Let S
denote the unit sphere in Rn . Then by switching to polar coordinates and making
a change of variables, we get that

Hf(x)i(x) =

(
|B1(0)|−1|x|−n

∫

B|x|(0)

f(y) dy

)i(x)

=

(
|B1(0)|−1|x|−n

∫

S

∫ |x|

0

f(rθ)rn−1 dr dθ

)i(x)

=

(
|B1(0)|−1

∫

S

∫ 1

0

f(|x|rθ)rn−1 dr dθ

)i(x)
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=

(
|B1(0)|−1

∫

B1(0)

f(|x|y) dy

)i(x)

≤ |B1(0)|−1

∫

B1(0)

f(|x|y)i(x) dy,

by Hölder’s inequality.
Now let r > 1; the exact value of r will be chosen below. By Minkowski’s

integral inequality, and again by switching to polar coordinates,

‖Hf( · )i( · )‖r,Rn ≤ C
(∫

Rn

(∫

B1(0)

f(|x|y)i(x) dy

)r
dx

)1/r

≤ C
∫

B1(0)

(∫

Rn

f(|x|y)ri(x) dx

)1/r

dy

= C

∫

S

∫ 1

0

(∫

Rn

f(|x|sθ)ri(x) dx

)1/r

sn−1 ds dθ

= C

∫

S

∫ 1

0

s−n/r
(∫

Rn

f(|x|θ)ri(x/s) dx
)1/r

sn−1 ds dθ,

by a change of variables in the inner integral. Since i is a radial increasing function,
i(x/s) ≥ i(x) ; since f(|x|θ) ≤ 1,

≤ C
∫

S

∫ 1

0

s−n/r
(∫

Rn

f(|x|θ)ri(x) dx

)1/r

sn−1 ds dθ

≤ C
∫

S

(∫

Rn

f(|x|θ)ri(x) dx

)1/r

dθ.

Since S has constant, finite measure, by Hölder’s inequality,

≤ C
(∫

S

∫

Rn

f(|x|θ)ri(x) dx dθ

)1/r

.

Since i is a radial function, if we rewrite the inner integral in polar coordinates,
we get that

= C

(∫

S

∫

S

∫ ∞

0

f(uθ)ri(u)un−1 du dφ dθ

)1/r

= C

(∫

S

∫ ∞

0

f(uθ)ri(u)un−1 du dθ

)1/r

= C

(∫

Rn

f(y)ri(y) dy

)1/r

.

To complete the proof, we repeat the above argument with i(x) replaced by
ī(x) = i(x)/i∗ and with r = i∗ , since i∗ > 1.
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Remark 2.7. While Theorem 1.5 shows that we must have p∗ <∞ for the
norm inequality to be true in general, we do not need this assumption in restricted
cases. If f is a bounded, radial, decreasing function, then Mf(x) ≈ Hf(x) , and so
it follows from Lemma 2.6 that if p is a radial increasing function, ‖Mf‖p(x),Ω ≤
C‖f‖p(x),Ω .

Proof of Theorem 1.5. Without loss of generality we may assume that f is
non-negative. We first show there exists a constant C such that if |f |p(x),Ω ≤ 1,
then |Mf |p(x),Ω ≤ C . Fix f , |f |p(x),Ω ≤ 1. Let f = f1 + f2 , where

f1(x) = f(x)χ{x:f(x)≥1}(x).

Then for i = 1, 2, |fi|p(x),Ω ≤ 1. Since p∗ <∞ ,

∫

Ω

Mf(y)p(y) dy ≤ 2p
∗
∫

Ω

Mf1(y)p(y) dy + 2p
∗
∫

Ω

Mf2(y)p(y) dy.

We will show that each integral on the right-hand side is bounded by a con-
stant. Since |f2(x)| ≤ 1, by Lemma 2.5, f2 satisfies inequality (2.3). Therefore,
if we integrate over Ω we get that

∫

Ω

Mf2(y)p(y) dy ≤ C
∫

Ω

M
(
f2( · )p( · )/p∗

)
(y)p∗ dy + C

∫

Ω

α(y)p∗ dy

+ C

∫

Ω

Hf2(y)p(y) dy.

Since p∗ > 1, M is bounded on Lp∗(Ω) and α(x) ∈ Lp∗(Ω), so

≤ C
∫

Ω

f2(y)p(y) dy + C + C

∫

Ω

Hf2(y)p(y) dy ≤ C + C

∫

Ω

Hf2(y)p(y) dy.

Given a function p , define its increasing, radial minorant ip to be the function

ip(x) = inf
|y|≥|x|

p(y).

Clearly, ip is a radial, increasing function. Further, (1.4) implies that for all x ∈ Ω,

0 ≤ p(x)− ip(x) ≤ C

log(e+ |x|) .

Therefore, since f2(x) ≤ 1 and (ip)∗ = p∗ , by Lemmas 2.6 and 2.2,

∫

Ω

Hf2(y)p(y) dy ≤ C
∫

Ω

Hf2(y)ip(y) dy ≤ C
∫

Ω

f2(y)ip(y) dy

≤ C
∫

Ω

f2(y)p(y) dy + C

∫

Ω

α(y)p∗ dy ≤ C.
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Hence, |Mf2|p(x),Ω ≤ C .
A very similar argument using Lemma 2.3 shows that |Mf1|p(x),Ω ≤ C .
Therefore, we have shown that if |f |p(x),Ω ≤ 1, then |Mf |p(x),Ω ≤ C . Since

C > 1, it follows that ∫

Ω

(
C−1Mf(x)

)p(x)
dx ≤ 1,

which in turn implies that
‖Mf‖p(x),Ω ≤ C.

To complete the proof we fix a function g ∈ Lp(x)(Ω), and let f(x) =
g(x)/‖g‖p(x),Ω . Then ‖f‖p(x),Ω ≤ 1, so |f |p(x),Ω ≤ 1. Hence,

‖Mg‖p(x),Ω = ‖g‖p(x),Ω‖Mf‖p(x),Ω ≤ C‖g‖p(x),Ω.

3. Proofs of Theorems 1.6 and 1.7

Proof of Theorem 1.6. Our proof is closely modeled on the construction given
by Pick and Růžička in [20].

By inequality (1.5), we have that

lim
x→∞

(
1− p∞

p(2x)

)
log(x) = −∞,

which in turn implies that

lim
x→∞

x1−p∞/p(2x) = 0.

Therefore, we can form a sequence {cn}∞n=1 , cn+1 < 2cn ≤ −1, such that

|cn|1−p∞/p(2|cn|) ≤ 2−n.

Let dn = 2cn < cn , and define the function f on R by

f(x) =
∞∑

n=1

|cn|−1/p(|dn|)χ(dn,cn)(x).

We claim that |f |p(x),R ≤ 1 and |Mf |p(x),R = ∞ ; it follows immediately
from this that ‖f‖p(x),R ≤ 1 and ‖Mf‖p(x),R = ∞ , so the maximal operator is

not bounded on Lp(x)(R) . First, we have that

|f |p(x),R =

∞∑

n=1

∫ cn

dn

|cn|−p(x)/p(|dn|) dx =

∞∑

n=1

∫ cn

dn

|cn|−p∞/p(|dn|) dx

=

∞∑

n=1

|cn|1−p∞/p(|dn|) ≤
∞∑

n=1

2−n = 1.
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On the other hand, if x ∈ (|cn|, |dn|) , then

Mf(x) ≥ 1

2|dn|

∫ |dn|

dn

f(y) dy ≥ 1

2|dn|

∫ cn

dn

f(y) dy

=
|cn|1−1/p(|dn|)

2|dn|
=

1

4
|cn|−1/p(|dn|).

Therefore, since p(x) is an increasing function and |cn| ≥ 1,

|Mf |p(x),R ≥
1

4

∞∑

n=1

∫ |dn|

|cn|
|cn|−p(x)/p(|dn|) ≥ 1

4

∞∑

n=1

∫ |dn|

|cn|
|cn|−p(|dn|)/p(|dn|)

=
1

4

∞∑

n=1

1 =∞.

Proof of Theorem 1.7. Fix k ≥ 1. Since p∗ = 1, Ω is open and p is upper
semi-continuous, there exists xk ∈ Ω and εk > 0 such that Bk = Bεk(xk) ⊂ Ω,
and such that if x ∈ Bk , p(x) < 1 + 1/k . We define the function fk(x) =
|xk − x|−nk/(k+1)χBk(x) . Then fk ∈ Lp(x)(Ω). On the other hand, for x ∈ Bk ,
let r = |x− xk| ; then

Mfk(x) ≥ c

|Br(xk)|

∫

Br(xk)

fk(y) dy = c(k + 1)fk(x).

Hence, ‖Mfk‖p(x),Ω ≥ c(k + 1)‖fk‖p(x),Ω ; since we may take k arbitrarily large,

the maximal operator is not bounded on Lp(x)(Ω).

4. Proof of Theorem 1.8

We begin with a lemma which, intuitively, plays the role that Hölder’s in-
equality does in the standard proof that the maximal operator is weak (p, p) .

Lemma 4.1. Given an open set Ω , a function p: Rn → [1,∞) such that 1/p
is locally integrable, f in Lp(x)(Ω) and t > 0 , suppose that B is a ball such that

1

|B|

∫

B∩Ω

|f(y)| dy > t.

Then ∫

B

dx

p(x)
≤ 1

p∗(B)

∫

B∩Ω

( |f(y)|
t

)p(y)

dy.
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Proof. Fix a sequence of simple functions {sn(x)} on B , such that sn(x) ≥
p∗(B) and such that the sequence increases monotonically to p(x) on B . For each
n we have that

sn(x) =

kn∑

j=1

αn,jχAn,j (x),

where the An,j ’s are disjoint sets whose union is B . Let tn(x) be the conjugate
function associated to sn(x) ; then tn(x) decreases to q(x) , the conjugate function
of p(x) .

By Hölder’s and Young’s inequalities,

∫

B∩Ω

|f(y)|
t

dy =

kn∑

j=1

∫

An,j∩Ω

|f(y)|
t

dy

≤
kn∑

j=1

(∫

An,j∩Ω

( |f(y)|
t

)αn,j
dy

)1/αn,j

|An,j |1/α
′
n,j

≤
kn∑

j=1

(
1

αn,j

∫

An,j∩Ω

( |f(y)|
t

)αn,j
dy +

|An,j |
α′n,j

)

≤
kn∑

j=1

(
1

p∗(B)

∫

An,j∩Ω

( |f(y)|
t

)sn(y)

dy +

∫

An,j

dy

tn(y)

)

≤ 1

p∗(B)

∫

B∩Ω

( |f(y)|
t

)sn(y)

dy +

∫

B

dy

tn(y)
.

Since this is true for all n , by the monotone convergence theorem,

∫

B

|f(y)|
t

dy ≤ 1

p∗(B)

∫

B∩Ω

( |f(y)|
t

)p(y)

dy +

∫

B

dy

q(y)
.

Therefore,

∫

B

dy

p(y)
= |B| −

∫

B

dy

q(y)
<

∫

B∩Ω

|f(y)|
t

dy −
∫

B

dy

q(y)

≤ 1

p∗(B)

∫

B∩Ω

( |f(y)|
t

)p(y)

dy.

Proof of Theorem 1.8. For each N > 0, define the operator MN by

MNf(x) = sup
1

|B|

∫

B∩Ω

|f(y)| dy,
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where the supremum is taken over all balls containing x such that |B| ≤ N . The
sequence {MNf(x)} is increasing and converges to Mf(x) for each x ∈ Ω. Thus,
by the monotone convergence theorem, for each t > 0,

|{x ∈ Ω : Mf(x) > t}| = lim
N→∞

|{x ∈ Ω : MNf(x) > t}|.

Therefore, it will suffice to prove (1.6) with M replaced by MN , and with a
constant independent of N .

Fix t > 0 and let EN = {x ∈ Ω : MNf(x) > t} . Then for each x ∈ EN ,
there exists a ball Bx containing x , |Bx| ≤ N , such that

1

|Bx|

∫

Bx∩Ω

|f(y)| dy > t.

By a weak variant of the Vitali covering lemma (cf. Stein [23, p. 9]), there exists
a collection of disjoint balls, {Bk} , contained in {Bx : x ∈ EN} , and a constant
C depending only on the dimension n , such that

|En| ≤ C
∑

k

|Bk|.

Therefore, by Lemma 4.1,

|EN | ≤ C
∑

k

|Bk| ≤
∑

k

|Bk|
(∫

Bk

dy

p(y)

)−1 ∫

Bk

dy

p(y)

≤
∑

k

(
1

|Bk|

∫

Bk

dy

p(y)

)−1
1

p∗(Bk)

∫

Bk∩Ω

( |f(y)|
t

)p(y)

dy;

since p∗(Bk)−1 = (1/p)∗(Bk) , by the definition of RH∞ ,

≤ RH∞(1/p)
∑

k

∫

Bk∩Ω

( |f(y)|
t

)p(y)

dy ≤ C
∫

Ω

( |f(y)|
t

)p(y)

dy.
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