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Abstract. Spacelike and timelike tubes and bands of zero mean curvature in Minkowski
space are investigated in a neighborhood of finite or infinite singularities. We also study the
correlation between the branching of surfaces and their exterior amounts, and questions of the
smooth pasting of spacelike and timelike tubes and bands. We give an asymptotic representation
of the surfaces in the neighborhood of the singular point.

1. Introduction

We investigate the structure of tubes and bands of zero mean curvature in
Minkowski space in a neighborhood of their singularity. An important property
of the case we study is the existence of isolated singularities of cone type [20], [11]
and [18]. This property is specific for surfaces in Lorentz spaces.

Geometric and topological aspects of the structure of Lorentzian manifolds
having singularities were investigated in [15] and [2].

We also consider another problem. That is, we study manifolds with sin-
gularities embedded in Minkowski space. Firstly, we are interested in questions
connected with the exterior structure of manifolds in a neighborhood of their singu-
lar points. We also consider some questions connected with processes of transition
from spacelike to timelike manifolds at their common singular point.

We give some results in the following directions: to describe the exterior struc-
ture of spacelike bands with infinite number of branches at the infinity of Rn+1

1 ;
to obtain an asymptotic decomposition of zero mean curvature tubes and bands
in the neighborhood of singular points; to investigate possibilities of the smooth
pasting of spacelike tubes and bands with timelike ones at the singular point.

It is possible that Shiffman [33], Nitsche [31], and Osserman and Shiffer [32]
were the first to investigate tubes of zero mean curvature. The minimal surfaces of
a tubular type of arbitrary codimension in Rn+1 were defined in [22] and minimal
bands were introduced in [24]. The idea of investigating bands was borrowed
from the theory of relative strings (for example, see [3] and [7]), where tubes and
bands of zero mean curvature in Minkowski space Rn+1

1 (but with timelike and
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not Riemannian structure, induced by the scalar product of Rn+1
1 ) are important

objects of research.
From the geometric viewpoint, relativistic strings and membranes are surfaces

of zero mean curvature in Minkowski space-time. The surfaces of tubular type
correspond to some closed strings there. The open strings are interpreted as bands
of a special form. An approach to the string theory from the viewpoint of their
geometric structure is promising, since even the simplest extrinsic properties of
a surface in the framework of that or other models can be translated into the
language of physical phenomena. Thus, the estimate of the extension of a tube
or a band along the time-axis corresponds to the estimate of the lifetime of the
string; the projection eT0 (m) of the time vector e0 onto the tangent plane T (m)
of the surface M at the point m ∈M corresponds to the local time on the string;
branch points of surfaces correspond to the beginning of change in the type of a
physical process, decay of particles, and so on [27].

The ideas of string theory lie on the basis of a Nilsen conjecture [30], which
states that metrics of zero mean curvature in Minkowski space are only physically
significant among all metrics which are solutions of the Einstein equation. The
fact that these surfaces have isolated singular points in Rn+1

1 ensures possibilities
for modeling some special aspects of the ‘big bang’ [15] by the tubes and bands
of zero mean curvature surfaces. By analogy with the ‘big bang’, the problem of
pasting is an attempt to answer the question: what could exist before the ‘big
bang’ of a universe?

Now in spite of the many papers devoted to relativistic strings and their
generalizations, there is no mathematical theory of strings. We regard the con-
struction of this theory as a superproblem and disregard important questions of
strings quantification. We restrict ourselves to a more narrow set of questions: de-
scribing the geometric structure of the string, namely, investigating the structure
of spacelike and timelike tubes and bands in Minkowski space.

Among the papers devoted to the structure of zero mean curvature tubes
and bands in a neighborhood of a singular point, we distinguish the pioneering
paper [20], where it is shown that the set of the tangent rays to any maximal
surface in a neighborhood of an essentially singular point coincides with upper or
lower sheets C+ or C− of the light cone (also, see [11]).

In our papers [18] and [21] this result was sharpened. We gave quantitative
characteristics of this property in terms of interior and exterior girth functions of
tubes.

We do not know any results relevant to asymptotic decompositions of zero
mean curvature surfaces in a neighborhood of a singularity or to pasting problems.

For the structure of zero mean curvature surfaces in Minkowski space, see also
[8], [13], [4], [5], [10], [12], and [25].
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INTAS, project 10170.
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2. Main results

Let Rn+1
1 be a Minkowski space, that is, an (n+ 1)-dimensional real pseudo-

Euclidean space with a metric of signature (1, n) . Let x = (x1, x2, . . . , xn) ∈ Rn,
t ∈ R1 and χ = (t, x) ∈ Rn+1

1 . For an arbitrary pair of vectors χ′ = (t′, x′) and
χ′′ = (t′′, x′′) of Rn+1

1 , we denote their scalar product by

(2.1) 〈χ′, χ′′〉 = −t′t′′ +
n∑

i=1

x′ix
′′
i .

The scalar square of a vector χ ∈ Rn+1
1 is

|χ|2 = −t2 +

n∑

i=1

x2
i .

A nonzero vector χ ∈ Rn+1
1 is called spacelike, lightlike, or timelike if |χ|2 > 0,

|χ|2 = 0, or |χ|2 < 0, respectively. The totality C = C(χ0) of the lightlike vectors
with origin at a point χ0 ∈ Rn+1

1 forms the light cone. We shall denote upper
and lower sheets of the light cone by C+ = C+(χ0) and C− = C−(χ0) .

Let M be a two-dimensional connected, orientable noncompact manifold of
C2 with a piecewise smooth boundary ∂M (possibly empty). Consider the surface
M = (M,u) given by a C2 -immersion χ = u(m): M → Rn+1

1 .
The surface M = (M,u) is said to be spacelike if its tangent vectors are

spacelike. If the surface M is spacelike, then the scalar product (2.1) induces
a Riemannian metric on M , and the standard connection ∇ in Rn+1

1 induces
a Riemannian connection ∇ on M . In addition, the Riemannian metric on M
and the connection ∇ are coordinated [6, Addition A]. By ∆ we will denote the
Laplacian in this metric.

The surface M = (M,u) is said to be timelike if for each point m ∈ M the
tangent plane Tu(m) contains both spacelike and timelike vectors.

Let {ei}ni=0 be an orthonormal basis in Rn+1
1 for which

〈ei, ej〉 = 0 for i 6= j, |e0|2 = −1 and |ei|2 = 1 for i = 1, 2, . . . , n.

Therefore, χ = te0 +
∑n
i=1 xiei .
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We denote a hyperplane of constant time by

Π(τ) =
{
χ ∈ Rn+1

1 : 〈χ+ τe0, e0〉 = 0
}
.

A surface M = (M,u) in Rn+1
1 is called a band with projection (α, β) ,

−∞ ≤ α < β ≤ +∞ , with the time axis 0t if it satisfies the following properties:
(a) for any τ1, τ2 ∈ (α, β) the set

M(τ1, τ2) =
{
m ∈M : τ1 < t(m) < τ2

}
, t(m) = −〈u(m), e0〉,

is precompact;
(b) for any τ ∈ (α, β) the intersection Σ(τ) = u(M) ∩Π(τ) is not empty;
(c) there exists τ ∈ (α, β) such that at least one of the connected components

of u−1
(
Σ(τ)

)
contains points of ∂M ;

(d) any vector ν of the unit normal to u(∂M) on u(M) satisfies 〈ν, e0〉 = 0;
(e) for any point m ∈ ∂M at which the boundary ∂M does not have any

tangent plane, the contingency contgu(m)u(M) does not contain lightlike rays.

Sometimes it is necessary to use the following property:
(c′) each connected component of the set u−1

(
Σ(τ)

)
contains points of ∂M .

This condition is stronger than (c). A surface M = (M,u) in Rn+1
1 is called

a strict band if it satisfies (a), (b), (c′), (d) and (e).
The (finite or infinite) quantity β−α is said to be the time existence (length)

of the band.
The surface M = (M,u) in Rn+1

1 is said to be a surface of tubular type
with a projection (α, β) if M is a manifold without a boundary and (M,u) has
properties (a) and (b).

A tube or a band is called the tube or band in large if its projection is
(−∞,+∞) .

Some examples of tubes and bands of zero mean curvature Rn+1
1 can be found

in [18], [19] and [27].

Let M = (M,u) be a surface and C(χ0) be a light cone. If for some m ∈M

l2(m,χ0) = −
(
u0(m)− t0

)2
+

n∑

i=1

(ui(m)− x0 i)
2 < 0,

then the point u(m) lies inside C(χ0) .
If for some m ∈ M the magnitude l2(m,χ0) > 0, then u(m) lies outside

C(χ0) .
Suppose that for some χ0

(2.2) lim sup
t(m)→α

l2(m,χ0) ≤ 0,
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and that the set M+ =
{
m ∈ M : l2(m,χ0) > 0

}
is not empty. For arbi-

trary p, q > 0, we consider a counting function Nu(t) = Nu(t; p, q) of the (p, q)-
connected components of M+ which are defined by (3.34). Roughly speaking, the
number Nu(t) denotes the number of the (p, q)-components of M+ ∩ Σ(t) .

Next we denote a flow of time through Σ(t) by

µ(t) =

∫

Σ(t)

|∇t(m)|.

If M is a tube or band of zero mean curvature, then µ is independent of t
[27].

2.3. Theorem. Let M be a two-dimensional tube or band of zero mean
curvature with the projection (α,∞) and the condition (2.2).

If the set M+ is not empty, then for any p, q > 0 and arbitrary τ > α , it is
true that

Nu(τ) exp

{
1

µNu(τ)

∫ τ

α

N2
u(t) dt

}
≤ 4µ max

m∈Σ(τ+1)
l4(m,χ0).

Fix an arbitrary vector e ∈ Rn+1
1 and consider the function h(m) = 〈u(m), e〉 .

Suppose that

(2.4) lim sup
t(m)→α

h(m) ≤ 0,

and that the set M+ =
{
m ∈M : h(m) > 0

}
is not empty.

The following theorem strengthens a corresponding theorem in [27], which
treats the case that M+ has a finite number of connected components.

2.5. Theorem. Let M be a band or tube of zero mean curvature with a
projection (α,∞) and with (2.4).

For any p, q > 0 and an arbitrary τ > α , it is true that

(2.6) Nu(τ) exp

{
1

µNu(τ)

∫ τ

α

N2
u(t) dt

}
≤ 4µ max

m∈Σ(τ+1)
h2(m).

Both Theorem 2.3 and 2.5 are geometric corollaries of the more general The-
orem 3.39 for arbitrary solutions of (3.18) on M .

Let G ⊂ R2 be a domain in the plane and let (0, 0) ∈ G . We consider a
solution f ∈ C2 of the equation

(2.7)
∂

∂x

(
fx√

1− f2
x − f2

y

)
+

∂

∂y

(
fy√

1− f2
x − f2

y

)
= 0.
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This equation describes the spacelike zero mean curvature surfaces in Minkowski
space-time.

We assume that f is defined on G and has an isolated singularity at the
origin (0, 0). Ecker [11] has shown that

|f(x, y)− f(0, 0)| ∼
√
x2 + y2 as (x, y)→ (0, 0).

In [18] and [27], we sharpened this asymptotic. That is, we proved that

(2.8) ν̄ = 6 lim sup
x,y→0

√
x2 + y2 − |f(x, y)− f(0, 0)|

(x2 + y2)3/2
<∞,

and, moreover, ν̄ ≥ µ−2 .
Let

κ∗(x, y) = κ∗(%eiψ) =
K(x, y)

sinh4 α(x, y)
=
f2
xy − fxxfyy
(f2
x + f2

y )2

be the curvature expression in the coordinates x+ iy = %eiψ .

2.9. Theorem. Let f(x, y) be a solution of (2.7) with a singularity at (0, 0) .
Then,

(1) there exist 2π -periodic real analytic functions ck(ψ) defined on [0, 2π]
such that the following decomposition holds:

(2.10) f(%eiψ) = %+
∞∑

k=1

ck(ψ)%2k+1;

(2) there exists a limit

(2.11) lim
x,y→0

κ∗(x, y) = lim
%→0

κ∗(%eiψ) = −6c1(ψ) = κ∗(ψ);

(3) the following equalities are true:

(2.12) 6 lim
%→0

%− f(%eiψ)

%3
= κ∗(ψ)

and

(2.13)

∫ 2π

0

dψ√
κ∗(ψ)

= µ.

Further, we suppose that f(x, y) is a solution of timelike zero mean curvature
surfaces equation in the Minkowski space-time

(2.14)
∂

∂x

(
fx√

f2
x + f2

y − 1

)
+

∂

∂y

(
fy√

f2
x + f2

y − 1

)
= 0.

We assume f is defined on a domain G ⊂ R2 and has an isolated singularity
at (0, 0).

The following statement is similar to a known theorem for spacelike zero
mean curvature surfaces [11], which says that the totality of the tangent rays in
the singular point forms an upper or lower sheet of the light cone.
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2.15. Theorem. Let M be a two-dimensional timelike tube of zero mean
curvature with a singularity at {0} ∈ R3

1 . The tangent rays to M at this point
are lightlike.

Let f1(x, y) and f2(x, y) be solutions of (2.7) and (2.14), respectively, having
isolated singularities at (0, 0) such that

f1(0, 0) = f2(0, 0) = 0, f1(x, y) < 0, f2(x, y) > 0.

We will say that solutions f1 and f2 are Ck -pasted if

δ(%eiψ) ∈ Ck, where δ(%eiψ) = f1(%eiψ) + f2(%eiψ).

The following statement asserts the possibility of the smooth gluing of solu-
tions.

2.16. Theorem. For an arbitrary solution f1(x, y) of (2.7) with a singularity
at (0, 0) , there exists a solution f2(x, y) of (2.14) with a singularity at (0, 0) such
that f1(x, y) and f2(x, y) are C2 -pasted.

3. A structure at infinity

Let M = (M,u) , dimM = 2, be a spacelike tube or band of zero mean
curvature in Rn+1

1 with projection (α, β) onto the time axis 0t . Below we will
use the notation and terminology of [27, Section 3]. That is to say, we will need
a concept of the ends ξM (α) , ξM (β) of the surface M which are determined by
analogy with the prime ends of a planar domain (for example, see [34]).

Let f(m) , f(m) 6≡ 0, be an arbitrary function of C0(M) ∩C2(M) such that

(3.17) f |∂M = 0.

We suppose

(3.18) f∆f ≥ 0 everywhere on M.

The differential inequality (3.18) is not traditional. We give some simple
properties of functions f satisfying (3.17) and (3.18).

At first, solutions of (3.17) and (3.18) do not have a strict maximum in the
domain.

3.19. Lemma. Let f be a solution of (3.18) satisfying (3.17) . Any con-
nected component O of the set {m ∈ M : f(m) > 0} does not have a compact
closure O .
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Proof. We suppose that the closure O is compact. By Gauss’ formula, we
have ∫

∂O

f〈∇f, ν〉 =

∫

O

|∇f |2 +

∫

O

f∆f,

where ν is a unit outward normal to ∂O .
Since f |∂O = 0, the contour integral vanishes. Therefore, from (3.18) it

follows that ∫

O

|∇f |2 = 0.

Hence f ≡ const on O contradicts the definition of O .
These arguments are strict only if the boundary ∂O is rectifiable. In the

general case, the function f is extended by zero outside O . Further, the func-
tion obtained can be approximated by C2 -smooth, compactly-supported functions
on M .

We denote
osc{f,Σ(t)} = sup

x,y∈Σ(t)

|f(x)− f(y)|.

3.20. Lemma. If

(3.21) lim inf
t→α

osc {f,Σ(t)} = 0,

then

(3.22) lim
m→ξM (α)

f(m) = 0,

and for an arbitrary connected component O , there exists t0 ∈ (α, β) such that

(3.23) O ∩ Σ(t) 6= ∅ for all t > t0.

Proof. The proof follows from the weak maximum-minimum principle for
solutions of differential inequalities (3.18). The maximum principle is proved by
Lemma 3.19. In order to prove the minimum principle, it is sufficient to note that
both f and −f satisfy (3.18).

We fix an arbitrary connected component O and suppose that the relation
(3.21) holds. We denote by τ(O) the smallest among values t0 ≥ α for which
(3.23) is true. For each fixed t > τ(O) , let γ1(t), γ2(t), . . . be all connected
components of O ∩ Σ(t) having properties: γi(t) ∩ ∂M 6= ∅ , i = 1, 2, . . . .

We denote

µ(t,O) = sup
i

∫

γi(t)

|∇t(m)|.
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For an arbitrary t > τ(O) , we put

J(t,O) =

∫

O∩M(α,t)

|∇f |2,

where M(t1, t2) =
{
m ∈M : t1 < t(m) < t2

}
.

The following lemma is basic in the present paragraph.

3.24. Lemma. If a function f(m) satisfies (3.17) , (3.18) and (3.21) , then
for almost every t > τ(O) we have

(3.25) J(t,O) ≤ µ(t,O)

2π
J ′(t,O).

Proof. Using the Stokes formula and (3.17), we can write

∫

O∩Σ(t)

f〈∇f, ν〉 =

∫

∂(O∩M(α,t))

f〈∇f, ν〉 = J(t,O) +

∫

O∩M(α,t)

f ∆f,

where ν is an inward normal to the boundary of O ∩M(α, t) on M .
From (3.18) we obtain

(3.26) J(t,O) ≤
∫

O∩Σ(t)

f 〈∇f, ν〉.

As

ν =
∇t
|∇t| (m) for all m ∈ Σ(t),

the condition (3.17) and Cauchy’s inequality give

(3.27)

∫

O∩Σ(t)

f 〈∇f, ν〉 =

∫

O∩Σ(t)

f 〈∇f,∇t〉 1

|∇t| =
∑

i

∫

γi(t)

f 〈∇f,∇t〉 1

|∇t|

≤
∑

i

(∫

γi(t)

f2 |∇t|
)1/2(∫

γi(t)

〈
∇f, ∇t|∇t|

〉2
1

|∇t|

)1/2

.

The following arguments are close to arguments from [27, Lemma 5.1]. Let
γ = γi(t) be an arbitrary connected component of O∩Σ(t) and m(s): [0, length (γ)]
→ γ be its natural parameterization. We put

v(s) =

∫ s

0

∣∣∇t
(
m(s)

)∣∣ ds, ṽ = v
(
length (γ)

)
.
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Since the arc γ = γi(t) is open and γi ∩ ∂M 6= ∅ , we get from (3.17)

f |s=0 = f |s=length (γ) = 0.

By Wirtinger’s inequality,
∫

γ

f2|∇t| =
∫ ṽ

0

f2 dv(s) ≤
(
ṽ

π

)2 ∫ ṽ

0

(
df

dv

)2

dv =

(
ṽ

π

)2 ∫

γ

(
df

ds

)2
ds

|∇t| .

Now we have

ṽ =

∫

γ

|∇t| ≤ sup
i

∫

γi

|∇t| ≤ µ(t,O),

and, therefore, ∫

γ

f2|∇t| ≤ µ2(t,O)

π2

∫

γ

(
df

ds

)2
1

|∇t(m)| .

This relation is true for any open arc γ = γi(t) such that γi ∩∂M 6= ∅ . From
(3.26) and (3.27), we find that

J(t,O) ≤ µ(t,O)

π

∑

i

(∫

γi(t)

(
df

ds

)2
1

|∇f |

)1/2(∫

γi(t)

〈
∇f, ∇t|∇t|

〉2
1

|∇t|

)1/2

≤ µ(t,O)

2π

∑

i

∫

γi(t)

((
df

ds

)2

+

〈
∇f, ∇t|∇t|

〉2)
1

|∇t|

≤ µ(t,O)

2π

∫

O∩Σ(t)

((
df

ds

)2

+

〈
∇f, ∇t|∇t|

〉2)
1

|∇t| .

At each point m ∈ O ∩ Σ(t) , we have
(
df

ds

)2

+

〈
∇f, ∇t|∇t|

〉2

= |∇f |2.

Therefore, from the previous inequality we obtain

(3.28) J(t,O) ≤ µ(t,O)

2π

∫

O∩Σ(t)

|∇f |2 1

|∇t| .

Now we use the following co-area formula for integration over level sets of
t = t(m) :

J(t,O) =

∫ t

τ(O)

dτ

∫

O∩Σ(τ)

|∇f |2 1

|∇t| .

Hence, for almost every t ∈ (τ(O),∞) we have

J ′(t,O) =

∫

O∩Σ(t)

|∇f |2 1

|∇t| .

Combining this relation with (3.28), we get (3.25).
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3.29. Definition. Let p, q > 0 be an arbitrary pair of numbers. We will say
that a connected component O of f has the type (p, q) (or it is a (p, q)-component)
if for any t > τ(O) + p ,

max
m∈Σ(t)∩O

|f(m)| ≥ q.

3.30. Lemma. If a domain O has the type (p, q) , then for any t > τ(O)+p′

with p′ > p , it is true that

(3.31)
(p′ − p)q2

µ
exp

{∫ t

τ(O)+p′

ds

µ(s)

}
≤ J(t,O),

where

µ =

∫

Σ(t)

|∇t(m)|

does not depend on t and µ(s) = µ(s,O) .

Proof. From (3.25) for any t > τ(O) + p′ , we can write

∫ t

τ+p′

ds

µ(s)
≤ log

J(t,O)

J(τ + p′,O)

with τ = τ(O) and µ(s) = µ(s,O) . Therefore,

(3.32) J(τ + p′,O) exp

{∫ t

τ+p′

ds

µ(s)

}
≤ J(t,O).

As the connected component O has the type (p, q) , then for any t > τ(O)+p ,
we have

q2 ≤ max
m∈Σ(t)∩O

|f(m)|2 ≤
(∫

Σ(t)∩O

|∇f(m)|
)2

≤
(∫

Σ(t)∩O

|∇f(m)|2 1

|∇t(m)|

)(∫

Σ(t)∩O

|∇t(m)|
)
.

By the property (d) of the band, we have everywhere on ∂M that

〈∇t, ν〉 = −〈e0, ν〉 = 0.

Fix numbers t1 < t2 so that α < t1 < t2 <∞ . We have

∫

∂M(t1,t2)

〈∇t, ν〉 =

∫

Σ(t2)

〈∇t, ν〉 −
∫

Σ(t1)

〈∇t, ν〉

=

∫

Σ(t2)

|∇t| −
∫

Σ(t1)

|∇t| =
∫

M(t1,t2)

∆t = 0.
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Consequently, the integral

µ =

∫

Σ(t)

|∇t|

is independent of t . Now we obtain

(p′ − p)q2

µ
≤ q2

∫ τ+p′

τ+p

ds

µ(s)
= q2

∫ τ+p′

τ+p

ds

/ ∫

Σ(s)

|∇t(m)|

≤ q2

∫ τ+p′

τ+p

ds

/ ∫

Σ(s)∩O

|∇t(m)|

≤
∫ τ+p′

τ+p

ds

∫

Σ(s)∩O

|∇f(m)|2 1

|∇t(m)| ≤ J(τ + p′,O).

Taking into account (3.32), we arrive at (3.31).

Now, we let {m ∈ M : f(m) > 0} have either a finite or an infinite number
of connected components O1,O2, . . . of the type (p, q) .

Clearly, for any given finite number of connected components O1,O2, . . . ,ON
of {m ∈M : f(m) > 0} , there are p, q > 0 such that all Oi are (p, q)-components.

We set

τi = τ(Oi), µi(t) = µ(t,Oi), i = 1, 2, . . . ,

and define functions µ∗i (t): (α,∞)→ R , i = 1, 2, . . . , in the following way:

µ∗i (t) = µi(t) for t > τi + p+ 1 and µ∗i (t) =∞ for t ∈ (α, τi + p+ 1].

In Lemma 3.30, we choose p′ = p + 1 and fix t > α . Since (3.31) for any
i = 1, 2, . . . such that τi + p+ 1 < t , we can write

q2

µ
exp

{∫ t

τi+p+1

ds

µi(s)

}
≤
∫

Oi∩M(α,t)

|∇f |2,

and

(3.33)
q2

µ

N∑

i=1

exp

{∫ t

α

ds

µ∗i (s)

}
≤

N∑

i=1

∫

Oi∩M(α,t)

|∇f |2 ≤
∫

M(α,t)

|∇f |2.

3.34. Definition. The counting function Nf (t; p, q) is equal to the number
of all (p, q)-domains Oi for which τ(Oi) + p + 1 < t , and it vanishes for t ≤
infi τ(Oi) + p+ 1.
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We use an inequality between arithmetic and geometric means. We have

exp

{
1

Nf (t)

Nf (t)∑

i=1

∫ t

α

ds

µ∗i (s)

}
=

(Nf (t)∏

i=1

exp

{∫ t

α

ds

µ∗i (s)

})1/Nf (t)

≤ 1

Nf (t)

Nf (t)∑

i=1

exp

{∫ t

α

ds

µ∗i (t)

}
,

where Nf (t) = Nf (t; p, q) is the counting function.
Hence from (3.33) for any t > α , we get

(3.35)
q2

µ
Nf (t) exp

{
1

Nf (t)

Nf (t)∑

i=1

∫ t

α

ds

µ∗i (s)

}
≤
∫

M(α,t)

|∇f |2.

Further, we note that

Nf (t)∑

i=1

∫ t

α

ds

µ∗i (s)
=

∫ t

α

Nf (t)∑

i=1

ds

µ∗i (s)
=

∫ t

α

Nf (s)∑

i=1

ds

µ∗i (s)

≥
∫ t

α

Nf (s)

(Nf (s)∏

i=1

1

µ∗i (s)

)1/Nf (s)

ds

=

∫ t

α

Nf (s) ds

/ (Nf (s)∏

i=1

µ∗i (s)

)1/Nf (s)

≥
∫ t

α

N2
f (s) ds

/ Nf (s)∑

i=1

µ∗i (s) ≥
∫ t

α

N2
f (s) ds

/ Nf (s)∑

i=1

∫

Σ(s)∩Oi

|∇t|

≥
∫ t

α

N2
f (s) ds

/ ∫

Σ(s)

|∇t| ≥ 1

µ

∫ t

α

N2
f (s) ds,

and, consequently,

(3.36)

Nf (t)∑

i=1

∫ t

α

ds

µ∗i (s)
≥ 1

µ

∫ t

α

N2
f (s) ds.

Combining (3.35) and (3.36), we obtain the following estimate

(3.37)
q2

µ
Nf (t) exp

{
1

µNf (t)

∫ t

α

N2
f (s) ds

}
≤
∫

M(α,t)

|∇f |2,

where Nf (t) = Nf (t; p, q) .
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Therefore, we obtain the following assertion which is important for applica-
tions.

3.38. Lemma. Let f(m) be a C2 -solution of (3.18) on M satisfying (3.17)
and (3.21) . Let p, q > 0 and let O1,O2, . . . be (p, q) -components of {m ∈ M :
f(m) > 0} . Then for any t > α , the counting function Nf (t) = Nf (t; p, q) < ∞
is nondecreasing, and (3.37) is true.

For the proof it is sufficient to show that the counting function is locally
finite. By Lemmas 3.19 and 3.20 for each connected component Oi , and for any
t > τ(Oi) , it is true that Oi∩Σ(t) 6= ∅ . Thus the function Nf (t) is nondecreasing
as t→∞ . The relation (3.37) implies locally the boundedness of Nf (t) .

3.39. Theorem. Let f(m) be a C2 -solution of (3.18) on M satisfying
(3.17) and (3.21) . Let p, q > 0 and let O1,O2, . . . be (p, q) -components of {m ∈
M : f(m) > 0} . Then for any τ > α , it is true that

(3.40) Nf (τ) exp

{
1

µNf (τ)

∫ τ

α

N2
f (t) dt

}
≤ µ2

q2
max

m∈Σ(τ+1)
f2(m),

where Nf (t) = Nf (t; p, q) .

Proof. Let φ(m) = ξ◦t(m) , and let ξ(t) = 1 for α < t < τ and ξ(t) = τ+1−t
for τ ≤ t ≤ τ + 1. By (3.17), (3.18) and (3.21), we can write
∫

M(α,τ)

|∇f |2 ≤
∫

M(α,τ+1)

φ2|∇f |2

=

∫

∂M(α,τ+1)

fφ2〈∇f, ν〉 − 2

∫

M(α,τ+1)

fφ〈∇f,∇φ〉 −
∫

M(α,τ+1)

φ2f∆f

≤ −2

∫

M(α,τ+1)

fφ〈∇f,∇φ〉

≤ 2

(∫

M(α,τ+1)

f2|∇φ|2
)1/2(∫

M(α,τ+1)

φ2|∇f |2
)1/2

.

Thus, we find ∫

M(α,τ+1)

φ2|∇f |2 ≤ 4

∫

M(α,τ+1)

f2|∇φ|2

and ∫

M(α,τ)

|∇f |2 ≤ 4 max
m∈Σ(τ+1)

f2(m)

∫

M(τ,τ+1)

|∇t|2

= 4 max
m∈Σ(τ+1)

f2(m)

∫ τ+1

τ

dt

∫

Σ(t)

|∇t|

≤ 4µ max
m∈Σ(τ+1)

f2(m).

Using (3.37), we arrive at (3.40).
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Proof of Theorem 2.3. At first we recall that the function

l2(m) = |u(m)− χ0|2

satisfies the inequality ∆l > 0.
Let k ∈ Rn

1 be a fixed vector, and let M ⊂ Rn+1
1 be a two-dimensional

surface. For an arbitrary point m ∈ M , we denote by T = T (m) the tangent
space to M at this point and the projection of k onto T (m) by kT = kT (m) . It
is not difficult to see that

∆l2(m) = −2|eT0 |2 + 2
n∑

i=1

|eTi |2 = 4.

If {m ∈ M : f(m) > 0} = M+ is not empty, then l2∆l2 ≥ 0 on M+ , and
(2.2) implies (3.40) for any p, q > 0.

Proof of Theorem 2.5. Here h(m) satisfies ∆h = 0 on M and h∆h ≥ 0
on M+ . By Theorem 3.39, property (2.4) implies (3.21) and it follows that (3.40)
and (2.6) also hold.

4. Neighborhood of isolated singularity

Let M = (M,u) be a tube with a projection (α, β) defined by an immersion
u: M → R3

1 . We say that the surface M has a singularity at χ0 ∈ R3
1 if Σ(t)→ χ0

as t→ α+ 0.

4.41. Lemma. Let M be a two-dimensional, doubly-connected, spacelike
tube of zero mean curvature in R3

1 with a projection (0, β) . Then M can be
defined by an immersion w = (x1, x2, t): K(1, R)→ R3

1 of an annulus

K(1, R) = {ζ ∈ C : 1 < |ζ| < R}, ζ = ξ + iη,

such that

(4.42)

x1 =
µ

4π
Re

∫ ζ

ζ0

1

iz

(
1

g(z)
− g(z)

)
dz,

x2 =
µ

4π
Re

∫ ζ

ζ0

1

z

(
1

g(z)
+ g(z)

)
dz,

t =
µ

2π
log |ζ|,

where g(z) is a holomorphic function on K(1, R) for which

(4.43) Re

∮
i

z

(
1

g
− g
)
dz = Re

∮
1

z

(
1

g
+ g

)
dz = 0.



254 V. A. Klyachin and V. M. Miklyukov

Here R = e2πβ/µ and

µ =

∫

Σ(t)

|∇t|.

Proof. Because the function t(m) is harmonic with respect to the metric of
M by the Stokes formula, we conclude that the integral∫

Σ(t)

|∇t|

does not depend on t , that is, µ ≡ const, and the conjugate form ∗dt has a period∫

Σ(t)

∗dt = µ.

There exists a multifunction h(m) such that dh = ∗dt , and the mapping

ζ(m) = exp
2π

µ
(t+ i h)

establishes a one-to-one holomorphic correspondence between M and K(1, R)
(see [27]). By m = m(ζ) we denote the inverse mapping to ζ(m) . Clearly,

t ◦m =
µ

2π
log |ζ|.

Using the arguments of [37, Chapter 3, Section 3], we obtain a Weierstrass
representation for spacelike surfaces of zero mean curvature in R3

1

(4.44)

x1 =
1

2
Re

∫ ζ

ζ0

f(z)
(
1− g2(z)

)
dz,

x2 =
1

2
Re i

∫ ζ

ζ0

f(z)
(
1 + g2(z)

)
dz,

t = Re

∫ ζ

ζ0

if(z) g(z) dz,

where f(z) and g(z) are holomorphic functions on K(1, R) satisfying the condi-
tions

Re

∮
f(1− g2) dz = Re

∮
if(1 + g2) dz = Re

∮
ifg dz = 0.

These conditions provide a tubular type of M .
On the other hand,

Re

∫ ζ

ζ0

if(z)g(z) dz =
µ

2π
log |ζ|;

therefore, we can put

f(z) =
µ

2πizg(z)
.

Substituting the expression in (4.44), we obtain what is needed.
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A similar result was obtained for minimal tubes in [35] and [36].

4.45. Lemma. Let M ⊂ R3
1 be a spacelike tube of zero mean curvature

having a singularity at the origin. Then it can be defined by an immersion (4.42)
of the annulus K(1, e2πβ/µ) with some holomorphic function g(z) such that

|g(z)| < 1, z ∈ K(1, e2πβ/µ) and |g(eiφ)| ≡ 1.

Proof. We note that M is spacelike if and only if |g(z)| 6= 1, z ∈ K(1, R) .
Below we shall suppose that |g(z)| < 1 because the substitution g(z) → 1/g(z)
reflects the surface M with respect to the plane x = 0. On the other hand, it is
known [18] that M is conelike in a neighborhood of the singularity, and also the
totality of the tangent rays to M at this point forms a light cone. This means
that |g(z)| ≡ 1 on the interior circle of K(1, R) .

Now it is sufficient to verify (4.43). In fact, if g(eiϕ) = eiθ(ϕ) , then

Re
1

i

∮
1

z

(
1

g
− g
)
dz = Re

1

i

∫ 2π

0

e−iϕ(e−iθ(ϕ) − eiθ(ϕ))ieiϕ dϕ

= −2 Re i

∫ 2π

0

sin θ(ϕ) dϕ = 0.

The second condition of (4.43) is verified similarly.

Let x1(m) and x2(m) be the coordinate functions of an immersion w(ζ): K(1, R)
→ R3

1 of a spacelike zero mean curvature tube with a projection (0, β) . Both
functions are harmonic with respect to the metric of the surface M [21, Note 14].
Therefore, the Stokes formula implies that quantities

µ1 =

∫

Σ(t)

〈∇x1,∇t〉
1

|∇t| , µ2 =

∫

Σ(t)

〈∇x2,∇t〉
1

|∇t|

do not depend on t . According to this, we define the vector Q = µe0+µ1e1+µ2e2 ,
which will be called the flow vector of the tube M [36].

We let K(ζ) denote the Gaussian curvature of M =
(
K(1, R), w

)
at the

point w(ζ) .

4.46. Lemma. The Gaussian curvature K(s, t) of a conformal metric

dl2 = λ(s, t)(ds2 ± dt2)

is expressed by the following formula:

K(t, s) = − 1

2λ

[
∂

∂s

(
λs
λ

)
± ∂

∂t

(
λt
λ

)]
.
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Proof. We put E1 = ∂/∂s and E2 = ∂/∂t . Then

|E1|2 = λ, |E2|2 = ±λ and 〈E1, E2〉 = 0,

∇E1E2 −∇E2E1 =
∂2

∂s∂t
− ∂2

∂t∂s
= 0.

It is known [6, Addition A] that

K(s, t) = 〈R(e1, e2)e2, e1〉 = ±λ−2〈R(E1, E2)E2, E1〉,
where ei = Ei/

√
λ and R( · , · )· is the curvature tensor of the given metric. If the

connection of the metric is denoted by ∇ , then

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Using the well-known properties of connections, we obtain

〈∇E2E2, E2〉 = 1
2∇E2 |E2|2 = ± 1

2λt,

〈∇E2E2, E1〉 = −〈E2,∇E2E1〉 = 〈E2,∇E1E2〉 12∇E1 |E2|2 = ∓ 1
2λs.

Therefore,

∇E2E2 = ∓λs
2λ
E1 +

λt
2λ
E2.

In the same way we find

∇E1E2 =
λt
2λ
E1 +

λs
2λ
E2.

Now we get

〈R(E1, E2)E2, E1〉 = 〈∇E1∇E2E2, E1〉 − 〈∇E2∇E1E2, E1〉

=

〈
∇E1

(
∓λs

2λ
E1 +

λt
2λ
E2

)
, E1

〉

−
〈
∇E2

(
λt
2λ
E1 +

λs
2λ
E2

)
, E1

〉

= ∓
(
λs
2λ

)′

t

λ∓
(
λs
2λ

)
〈∇E1E1, E1〉+

(
λt
2λ

)

−
(
λt
2λ

)′

t

λ−
(
λt
2λ

)
〈∇E2E1, E1〉 −

(
λs
2λ

)
〈∇E2E2, E1〉

= −−λ
2

[
±
(
λs
2λ

)′

s

+

(
λt
2λ

)′

t

]
,

because 〈∇E1E1, E1〉 = 1
2λs . Therefore,

K(t, s) = − 1

2λ

[
∂

∂s

(
λs
λ

)
± ∂

∂t

(
λt
λ

)]
,

and the lemma is proved.
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Let ζ = ξ + iη . Then the Laplacian in coordinates (ξ, η) is denoted by the
term 4∂2/∂ζ∂ζ̄ . From Lemma 4.46 it is not difficult to calculate

(4.47) K(ζ) = 4
∂2

∂ζ∂ζ̄
λ(ζ) =

64π2|g′(ζ)|2|ζ|2|g(ζ)|2
µ2(1− |g(ζ)|2)4

,

where from Lemma 4.45

λ(ζ) =
µ2

16π2|ζ|2|g(ζ)|2
(
1− |g(ζ)|2

)2
.

We denote by sinhα(ζ) a sine of hyperbolic angle between the normal vector
to the surface M and the vector e0 . Using Lemma 4.45, we can write

sinhα(ζ) =
2|g(ζ)|

1− |g(ζ)|2 .

Below we show that it is convenient to describe a geometric structure of a
tube in a neighborhood of an isolated singularity in terms of the quantity κ(ζ) =
K(ζ)/ sinh4 α(ζ) , called the specific curvature of the surface M .

Using (4.47), we obtain

(4.48) κ(ζ) =
4π2

µ2

∣∣∣∣
ζ

g(ζ)

∣∣∣∣
2

|g′(ζ)|2.

Our immediate aim is to show that the flow vector and the specific curvature
of M are characteristics of the first and second orders of a deviation of a tube
from the light cone in a neighborhood of a singularity.

In order to accomplish this goal, we prove the following auxiliary statement
about the asymptotic decomposition of the coordinate functions.

4.49. Lemma. Let M be a spacelike zero mean curvature tube with a
projection (0, β) defined by an immersion (4.44) . We put

x1(eiϕ) = a0(ϕ),
∂x1

∂r
(eiϕ) = a1(ϕ),

x2(eiϕ) = b0(ϕ),
∂x2

∂r
(eiϕ) = b1(ϕ),

and suppose that a0 , a1 , b0 , b1 are real analytic functions. Then

(4.50)

x1(ζ) =

∞∑

k=0

(−1)k+1 1

(2k)!

[
a

(2k)
0 (ϕ)− log r

2k + 1
a

(2k)
1 (ϕ)

]
(log r)2k,

x2(ζ) =
∞∑

k=0

(−1)k+1 1

(2k)!

[
b
(2k)
0 (ϕ)− log r

2k + 1
b
(2k)
1 (ϕ)

]
(log r)2k.
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If M has a singularity, then

a2
1(ϕ) + b21(ϕ) =

µ2

4π2
, a′21 (ϕ) + b′21 (ϕ) =

µ2

4π2
|g′(eiϕ)|2,(4.51)

∫ 2π

0

a1(ϕ) dϕ = µ1,(4.52)

∫ 2π

0

b1(ϕ) dϕ = µ2.(4.53)

Proof. We put

x1(ζ) = x1(reiϕ) =
∞∑

k=0

ak(ϕ)(log r)k.

If ζ = ξ + i η and

D =

(
∂

∂ξ
,
∂

∂η

)
,

then

〈Dϕ,Dr〉 = 0, ∆ϕ = 0, ∆ log r = 0, |Dϕ|2 =
1

r2
.

Since the mapping w(ζ) is holomorphic, ∆x(ζ) = 0. Therefore,

0 = ∆x1(ζ) =

∞∑

k=0

{
a′′k(ϕ)

1

r2
(log r)k + ak(ϕ)k(k − 1)

1

r2
(log r)k−2

}
.

We get a system of differential equations

a′′k(ϕ) + (k + 1)(k + 2)ak+2(ϕ) = 0, k = 0, 1, 2, . . . ,

which gives

a2k(ϕ) = (−1)k+1a
(2k)
0 (ϕ)

1

(2k)!
and a2k+1(ϕ) = (−1)ka

(2k)
1 (ϕ)

1

(2k + 1)!
.

We have obtained the necessary decomposition.
Further, we have

Dx1 =
µ

4π

(
1

iζ

(
1

g(ζ)
− g(ζ)

))
=

µ

4π

i

ζ̄ḡ(ζ)
− µ

4π

iḡ(ζ)

ζ̄
,

Dx2 =
µ

4π

(
1

ζ

(
1

g(ζ)
+ g(ζ)

))
=

µ

4π

1

ζ̄ ḡ(ζ)
+

µ

4π

ḡ(ζ)

ζ̄
.
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Therefore,

−Dx1 + iDy1 = i
µ

2π

ḡ(ζ)

ζ̄
.

On the other hand, as

Dx1(eiϕ) = a1(ϕ)eiϕ and Dx2(eiϕ) = b1(ϕ)eiϕ,

we find

g(eiϕ) = −2πi

µ

(
a1(ϕ) + ib1(ϕ)

)
and g′(eiϕ) = −2πi

µ

(
a′1(ϕ) + ib′1(ϕ)

)
,

and we obtain (4.51).
In order to prove (4.52) and (4.53), we note the mapping w(ζ) is holomorphic

and, consequently,

∫

Σ(t)

〈∇x1,∇t〉
1

|∇t| =

∫

u−1◦Σ(t)

〈Dx1, Dr〉 =

∫ 2π

0

a1(ϕ) dϕ.

The equality (4.53) can be proved similarly.

We note that from (4.51), (4.52), (4.53) and Cauchy’s inequality we get

4.54. Corollary. We have

−µ2 + µ2
1 + µ2

2 ≤ 0.

This means that the flow vector Q = (µ, µ1, µ2) is not spacelike.

The following statement gives a geometric interpretation of coefficients at the
decomposition of coordinate functions x1(ζ) and x2(ζ) .

4.55. Lemma. Let M ⊂ R3
1 be a spacelike tube of zero mean curvature

having an isolated singularity at the origin. Then the function κ(ζ) has real
analytic values κ(ϕ) on the unit circle ζ = eiϕ , 0 ≤ ϕ ≤ 2π , and also

(
µ2

4π2

)2

κ(ϕ) = −a1(ϕ)a′′1(ϕ)− b1(ϕ)b′′1(ϕ).

Proof. By (4.48), we have

κ(ζ) =
4π2

µ2

∣∣∣∣
ζ

g(ζ)

∣∣∣∣
2

|g′(ζ)|2.
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As |g(eiϕ)| ≡ 1, by the symmetry principle, g(ζ) can be holomorphically extended
on the annulus

K

(
1

R
,R

)
=

{
ζ ∈ C :

1

R
< |ζ| < R

}
, R = e2πβ/µ.

Therefore, κ(ϕ) is a real analytic function, and from (4.51) it follows that

(4.56)

κ(ϕ) =
4π2

µ2
|g′(eiϕ)|2 =

(
a′21 (ϕ) + b′21 (ϕ)

)(4π2

µ2

)2

=

(
4π2

µ2

)2(
−a1(ϕ)a′′1(ϕ)− b1(ϕ)b′′1(ϕ)

)
.

Proof of Theorem 2.9. Let

h(m) =
1

2
log

coshα− 1

coshα+ 1
,

where coshα is a cosine of the hyperbolic angle between the unit normal vec-
tor to M and the time axis. Because the Gauss mapping of the surface M is
holomorphic, h(m) is harmonic with respect to the metric of M , and also

lim
f(m)→0

h(m) = 0.

Therefore, the sets
Hτ = {m : h(m) = τ}

are compact for small τ . The quantity

c =

∫

Hτ

|∇h|

does not depend on τ , and

c =

∫

Σ(t)

〈∇h,∇t〉 1

|∇t| .

On the other hand, the last integral is a value of integral curvature of the curve
Σ(t) , which equals 2π . Therefore,

2π =

∫

Σ(τ)

〈∇h,∇t〉 1

|∇t| ds

=

∫

{(µ/2π) log |ζ|=τ}
〈Dh,Dr〉 =

∫

{(µ/2π) log |ζ|=0}
|Dh|,
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that is,

(4.57)

∫

|ζ|=1

|g′(ζ)| =
∫ 2π

0

√
a′21(ϕ) + b′21 (ϕ) dϕ = 2π.

As a2
1 + a2

2 ≡ µ2/π2 , there exists a function θ(ϕ) such that

a1(ϕ) =
µ

2π
cos θ(ϕ) and a2(ϕ) =

µ

2π
sin θ(ϕ).

Then the equality (4.57) can be rewritten

(4.58)

∫ 2π

0

|θ′(ϕ)| dϕ = 2π.

We note that the representation (4.44) is invariant under rotations of the
plane C . It means that the transformation of the variables ζ → eiαζ retains M .
By this fact and without losing generality, we will suppose that θ(0) = 0. By
(4.58) the function θ is monotone on [0, 2π] and θ(2π) = 2π . Moreover, it is
obvious that θ′(ϕ) > 0 by the maximum principle. Therefore,

√
κ(ϕ) = θ′(ϕ)2π/µ.

Now let f(x, y) be a solution of (2.7) having an isolated singularity at (0, 0).
We put x+ iy = %eiψ . As in Lemma 4.41 log r = 2πt/µ , the decomposition (2.10)
follows directly from analyticity and monotonicity of θ(λ) .

Next, we have

x(reiϕ)2 + y(reiϕ)2 − f2
(
x(reiϕ), y(reiϕ)

)
(
x(reiϕ)2 + y(reiϕ)2

)2 =
1

3
κ
(
(reiϕ)

)
+ o(log r).

We fix ψ , and suppose that ϕ satisfies ψ = θ(ϕ) . By Lemma 4.49 we conclude
that

%eiψ =
µ

2π
log reiθ(ϕ) + o(log r).

Therefore,

(4.59) lim
%→0

κ∗(%eiθ(ϕ)) = κ(ϕ),

which implies real analyticity of the function κ∗ .
From the last equality and (4.56), we obtain

∫ 2π

0

dψ√
κ∗(ψ)

=

∫ 2π

0

θ′(ϕ) dϕ√
κ∗
(
θ(ϕ)

) =

∫ 2π

0

θ′(ϕ) dϕ√
κ(ϕ)

= µ.

By (4.56) it is not difficult to get the equality (2.13), from which it follows that

max
[0,2π]

κ∗ ≥ 4π2

µ2
and min

[0,2π]
κ∗ ≤ 4π2

µ2
.

The theorem is proved.
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The characteristic κ∗ introduced for the behavior of a solution of the spacelike
zero mean curvature surfaces equation in the neighborhood of the singularity is
complete.

4.60. Theorem. Let f1(x, y) and f2(x, y) be two solutions of (2.7) defined
in a neighborhood of its common isolated singular point (0, 0) . We suppose that
the limit values

κ∗i (ψ) = 6 lim
%→0

%− fi(%eiψ)

%3
, i = 1, 2,

of these solutions are equal. Then f1(x, y) ≡ f2(x, y) .

Proof. By (4.59) and the equivalence κ∗1 ≡ κ∗2 , we can conclude that θ′1(ϕ) ≡
θ′2(ϕ) . Hence, θ1(ϕ) ≡ θ2(ϕ) . Therefore, g1(eiϕ) ≡ g2(eiϕ) . Using the uniqueness
theorem for holomorphic functions, we obtain g1(ζ) ≡ g2(ζ) . The representation
(4.44) leads to the equality f1 ≡ f2 .

5. Timelike surfaces

In this section we investigate timelike tubular surfaces of zero mean curvature
in a neighborhood of a singular point. Below we will suppose that the Cartesian
coordinates (x1, . . . , xn, t) ∈ Rn+1

1 are determined so that the scalar square of a
vector χ = (x1, . . . , xn, t) is expressed by

|χ|2 = −t2 +

n∑

i=1

x2
i .

Let M be a two-dimensional connected orientable C4 -manifold without a
boundary. We consider a surface M = (M,u) defined by a C3 -immersion u: M →
Rn+1

1 . A surface M is called timelike if each of its tangent planes contains timelike
vectors. Because the metric of timelike surfaces is indefinite, we introduce the norm
‖ · ‖ by

‖X‖ =
√
|〈X,X〉| .

5.61. Lemma. Let M be a two-dimensional timelike tube of zero mean
curvature in Rn+1

1 . Then,
(a) with respect to the metric of the surface M , ∆xi = 0 , i = 0, 1, . . . , n;
(b) the quantity µ =

∫
Σ(t)
‖∇t‖ does not depend on t ;

(c) if (t, s) are local isothermal coordinates on M , then

∂2xi
∂t2

=
∂2xi
∂s2

for any i = 0, 1, . . . , n.

Proof. The harmonicity of the coordinate functions of M is known as well as
the harmonicity of the coordinate functions of minimal surfaces in the Euclidean
space [21, Note 14].
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Using the Stokes formula with ∆t = 0 as well as the above one, we conclude
that µ is independent of t .

The third statement follows from (a) and from the special expression of the
Laplacian in local isothermal coordinates.

In fact, if the metric is dl2 = λ2(ds2−dt2) and f(s, t) is a C2 -function, then

∇f =

(
1

λ2
fs,−

1

λ2
ft

)

and

∆f = div (∇f) = 〈∇E1∇f,E1〉 − 〈∇E2∇f,E2〉 =
1

λ2
(fss − ftt),

where E1 = λ−1∂/∂s and E2 = λ−1∂/∂t .

We will prove the following auxiliary statement.

5.62. Lemma. Let M ⊂ Rn+1
1 be a two-dimensional doubly-connected

timelike C2 -tube of zero mean curvature with a projection (α, β) and a flow µ .
Then M can be represented by a C2 -immersion

u(t, s) =
1

2

(
r(s+ t) + r(s− t)

)
+

1

2

∫ s+t

s−t
h(λ) dλ+ e0t,

of the string (α, β)× (−∞,+∞) .
Here r, h: R→ Rn are vector functions such that for any s ∈ R

(5.63) |r′(s)|2 + |h(s)|2 = 1, 〈r′(s), h(s)〉 = 0,

and

(5.64) r′(s+ µ) + h(s+ µ) = r′(s) + h(s).

Proof. With respect to the metric of M , the function t(m) satisfies the
following differential equation:

∆t = div∇t = 0.

Therefore, the differential form ∗dt is closed. Hence, there exists a multifunction
δ(m) such that dδ = ∗dt and

∫

Σ(t)

dδ = µ =

∫

Σ(t)

‖∇t‖.

We consider the multivalued mapping

F : M → (α, β)× (−∞,+∞), where m→
(
t(m), δ(m)

)
.
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Note that u(t, s) is µ -periodic by the variable s .
We denote the inverse mapping to F by u(t, s) . We assume that

R(t, s) = u(t, s)− e0t.

We note that the coordinates (t, s) are isothermal on M . Because the mean
curvature is equal to zero by Lemma 5.61, we conclude

∂2R

∂t2
=
∂2R

∂s2
.

Using d’Alambert’s formula [38, Section 13], we get

(5.65) u(t, s) =
1

2

(
r(s+ t) + r(s− t)

)
+

1

2

∫ s+t

s−t
h(λ) dλ+ e0t,

where r, h: R → Rn are some vector functions. Since the coordinates (t, s) are
isothermal,

|ut|2 = −|us|2, 〈ut, us〉 = 0.

For vector functions r(s) and h(s) , these equalities can be rewritten in the form

|r′(s+ t) + h(s+ t)|2 + |r′(s− t)− h(s− t)|2 = 2,

|r′(s+ t) + h(s+ t)|2 − |r′(s− t)− h(s− t)|2 = 0,

which is the same as (5.63) and (5.64).
From (5.65) we conclude that if and only if the function r′(s) + h(s) is µ -

periodic, M is a tube. The lemma is proved.

Below we give a representation of a timelike surface of zero mean curvature
having a singularity in R3

1 .

5.66. Theorem. Let M ⊂ R3
1 be a two-dimensional doubly-connected

timelike C2 -tube of zero mean curvature with projection (0, β) . Then there exists
a C1 -function θ: (−∞,+∞) → R such that for some integer k , it is true that
θ(s+ µ) = θ(s) + 2πk , and M can be represented in the form

(5.67)

x(τ, s) =
1

2

∫ s+τ

s−τ
cos θ(λ) dλ;

y(τ, s) =
1

2

∫ s+τ

s−τ
sin θ(λ) dλ;

t = τ.
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Proof. Because M has a singularity at the origin, we have r(s) ≡ 0. From
Lemma 5.62, we obtain |h(s)| ≡ 1 and h(s+ µ) = h(s) .

Therefore, there exists a function θ(λ) such that

h(λ) =
(
cos θ(λ), sin θ(λ)

)
, θ(λ+ µ) = θ(λ) + 2πk, k = 0, 1, 2, . . . .

We denote the Gaussian curvature by K(s, t) and by coshα a hyperbolic
cosine of an angle between a unit normal to M and the time axis. The quantity

κ =
K

cosh4 α

is said to be a specific curvature of M .

5.68. Lemma. The following formulas are true:

cosh2 α =

(
sin2 θ(s+ t)− θ(s− t)

2

)−1

,

κ(t, s) = θ′(s+ t)θ′(s− t).

Proof. By Theorem 5.66, the metric of M has the form

ds2
M = sin2 ω(ds2 − dt2), where ω = 1

2

(
θ(s+ t)− θ(s− t)

)
.

Therefore,

cosh2 α = ‖eT0 ‖2 = ‖∇t‖2 =
1

sin2 ω
.

From Lemma 4.46, we have

K(s, t) = − 1

sin2 ω
∆′ log sinω = − 1

sin2 ω

(
∆′ sinω

sinω
− |D sinω|2

sin2 ω

)
,

where

∆′ =
∂2

∂s2
− ∂2

∂t2
, D =

(
∂

∂s
,− ∂

∂t

)
.

Since

|Dω|2 =

(
∂ω

∂s

)2

−
(
∂ω

∂t

)2

and ∆′ω = 0,

the Gaussian curvature can be rewritten as

K(s, t) =
|Dω|2
sin4 ω

.
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Hence, the specific curvature is expressed by the equality

κ(s, t) = |Dω|2 = θ′(s+ t)θ′(s− t).

Proof of Theorem 2.15. Let Σ(τ) be a section of M by the plane t = τ . We
note that the curve Σ(τ) is closed and can be defined by

x(τ, s) =
1

2

∫ s+τ

s−τ
cos θ(λ) dλ and y(τ, s) =

1

2

∫ s+τ

s−τ
sin θ(λ) dλ.

We denote the curvature of this curve by k(s) . Using the formula

k(s) =
x′y′′ − y′x′′

(x′2 + y′2)3/2
,

we get

k(s) =
θ′(s+ t) + θ′(s− t)

2|sinω| .

Because the length element of Σ(t) is dl = |sinω| ds , we can write

∫

Σ(τ)

k(s) dl =
1

2

∫ µ

0

θ′(s+ τ) ds+
1

2

∫ µ

0

θ′(s− τ) ds.

On the other hand, as Σ(τ) is closed,

∫

Σ(τ)

k(s) dl = 2π,

and, therefore,

2π =

∫ µ

0

θ′(s) ds = θ(µ)− θ(0).

Hence, we conclude that the range of θ(s) is [0, 2π] .
We put

ξτ =
(

1
2

(
cos θ(s+ τ) + cos θ(s− τ)

)
, 1

2

(
sin θ(s+ τ) + sin θ(s− τ)

)
, 1
)
.

Clearly, the vectors ξτ are orthogonal to Σ(τ) and tangent to M . Let τ → 0.
We find that the totality of the vectors

ξ0 =
(
cos θ(s), sin θ(s), 1

)

forms a light cone. This follows from the above properties of θ(s) .
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We put ψ = θ(s) .

5.69. Theorem. Let f(x, y) be a solution of (2.14) having an isolated
singularity at (0, 0) with f(0, 0) = 0 . Then

lim
%→0

f(%eiψ)− %
%3

=
1

6
κ(s) and %eiψ = x+ iy.

Proof. We have

x′t(s, t) = 1
2

(
cos θ(s+ t) + cos θ(s− t)

)
,

x′′tt(s, t) = 1
2

(
−θ′(s+ t) sin θ(s+ t) + θ′(s− t) sin θ(s− t)

)
,

y′t(s, t) = 1
2

(
sin θ(s+ t) + sin θ(s− t)

)
,

y′′tt(s, t) = 1
2

(
θ′(s+ t) cos θ(s+ t)− θ′(s− t) cos θ(s− t)

)
.

Computing directly, we get

lim
t→0

x′2t + y′2t − 1

t2
= −θ′2(s) and lim

t→0

x x′′ + y y′′

t
= −θ′2(s).

Using Lemma 5.68, we find that

lim
t→0

t−
√
x2 + y2

(√
x2 + y2

)3 =
κ(s)

6
.

6. Smooth pasting

In this section, we investigate the possibility of a smooth pasting of spacelike
and timelike tubes in a neighborhood of their common singular point. To begin,
we prove the following auxiliary statement.

6.70. Lemma. Let f(x, y) be a solution of (2.14) with an isolated singular-
ity (0, 0) . We assume that the function θ(λ) in (5.67) is real analytic and satisfies
θ′(λ) > 0 . Then there exist real analytic functions hk(ψ) , k = 1, 2, . . . , defined
on [0, 2π] so that

(6.71) f(%eiψ) = %+
∞∑

k=1

hk(ψ)%2k+1.

Proof. We consider the mapping (%, ψ) of the rectangle

Q = (0, µ)× (0, β)
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in R2 , defined by

(6.72) % =
1

2

((∫ s+t

s−t
cos θ(λ) dλ

)2

+

(∫ s+t

s−t
sin θ(λ) dλ

)2)1/2

and

(6.73) ψ = arctg

(∫ s+t

s−t
cos θ(λ) dλ

)(∫ s+t

s−t
sin θ(λ) dλ

)−1

.

For the Jacobian J(s, t) of this mapping, we have

J(s, 0) = θ′(s) > 0.

We denote by G(%, ψ) the local inverse mapping to (6.72) and (6.73). As θ(s) is
real analytic, the mapping G is also real analytic. Differentiating (6.72) directly,
we see that

∂2kt

∂%2k

∣∣∣∣
%=0

= 0.

Therefore, there exist real analytic functions hk(ψ) , k = 1, 2, . . . , such that

t = %+

∞∑

k=1

hk(ψ)%2k+1,

that is, the decomposition (6.71) holds.

Proof of Theorem 2.16. Let f1(x, y) be a solution of (2.7) with singularity at
(0, 0) and a flow µ . Using (2.10), we obtain

f1(%eiψ) = %− 1

6
κ∗(ψ)%3 +

∞∑

k=2

ck(ψ)%2k+1.

Consider a solution of (2.14) constructed by (5.67) with

θ(s) =

∫ 2πs/µ

0

√
κ(λ) dλ.

By (6.71) we find

f2(%eiψ) = −%− 1

6
κ∗(ψ)%3 +

∞∑

k=2

hk(ψ)%2k+1.

Using the analyticity of the functions ck(ψ) and hk(ψ) , we conclude that the
function δ(%eiψ) ∈ C2 in some neighborhood of (0, 0). The theorem is proved.
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