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Abstract. This paper deals with Lindelöf type theorems for monotone functions in weighted
Sobolev spaces.

1. Introduction

Let Rn , n ≥ 2, denote the n -dimensional Euclidean space. We use the
notation D to denote the upper half space of Rn , that is,

D = {x = (x1, . . . , xn−1, xn) : xn > 0}.

Denote by B(x, r) the open ball centered at x with radius r , and set σB(x, r) =
B(x, σr) for σ > 0 and S(x, r) = ∂B(x, r) .

A continuous function u on D is called monotone in the sense of Lebesgue
(see [5]) if for every relatively compact open set G ⊂ D ,

max
G

u = max
∂G

u and min
G

u = min
∂G

u.

If u is monotone in D and p > n− 1, then

(1) |u(x)− u(x′)| ≤Mr

(
1

rn

∫

B(y,2r)

|∇u(z)|p dz
)1/p

for every x, x′ ∈ B(y, r) , whenever B(y, 2r) ⊂ D (see [6, Theorem 1] and [4,
Theorem 2.8]). For further results of monotone functions, we refer to [3], [13]
and [15].

Our aim in the present note is to extend the second author’s result [12, The-
orem 2] and the most recent results by Manfredi–Villamor [8].
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Theorem 1. Let u be a monotone function on D satisfying

(2)

∫

D

|∇u(z)|pzαn dz <∞,

where p > n− 1 and 0 ≤ n+ α− p < 1 . Define

En+α−p =

{
ξ ∈ ∂D : lim sup

r→0
rp−α−n

∫

B(ξ,r)∩D

|∇u(z)|pzαn dz > 0

}
.

If ξ ∈ ∂D−En+α−p and there exists a curve γ in D tending to ξ along which u
has a finite limit, then u has a nontangential limit at ξ .

Remark 1. We know that En+α−p has (n + α − p)-dimensional Hausdorff
measure zero, and hence it is of C1−α/p,p -capacity zero; for these results, see
Meyers [9], [10] and the second author’s book [13].

We shall give a generalization of Theorem 1 (see Theorem 2 below). We
proceed to the proof of Theorem 1 for the sake of clarity.

Throughout this paper, let M denote various positive constants independent
of the variables in question, and M(ε) a positive constant which depends on ε .

2. Proof of Theorem 1

A sequence {Xj} is called regular at ξ ∈ ∂D if Xj → ξ and

|Xj − ξ| < c|Xj+1 − ξ|

for some constant c > 0.
First we give the following result, which can be proved by (1).

Lemma 1. Let u be a monotone function on D satisfying (2) with n− 1 <
p ≤ α + n . If ξ ∈ ∂D − En+α−p and there exists a regular sequence {Xj} ⊂ D
with Xj = ξ + (0, . . . , 0, rj) such that u(Xj) has a finite limit, then u has a
nontangential limit at ξ .

Proof of Theorem 1. For r > 0 sufficiently small, take C(r) ∈ γ ∩ S(ξ, r) .
Letting C1(r) = ξ + (0, . . . , 0, r) , take an end point C2(r) ∈ ∂D of a quarter of
circle containing C1(r) and C(r) .

Let %D(x) denote the distance of x ∈ D from the boundary ∂D , that is,
%D(x) = xn . We take a finite covering

{
B
(
Xj , 4

−1%D(Xj)
)}

of circular arc

C(r)C1(r) such that

(i) X1 = C(r) and XN+1 = C1(r) ;
(ii) |z − ξ| < 2r and |z − C2(r)| ∼ %D(z) for z ∈ A(ξ, r) =

⋃
j 2Bj , where

Bj = B
(
Xj , 4

−1%D(Xj)
)

;
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(iii) Bj ∩Bj+1 6= ∅ for each j ;
(iv)

∑
j χ2Bj is bounded, where χA denotes the characteristic function of A ;

see Heinonen [2] and HajÃlasz–Koskela [1]. By the monotonicity of u we see that

|u(x)− u(Xj)| ≤M%D(Xj)

(
1

%D(Xj)n

∫

2Bj

|∇u(z)|p dz
)1/p

for x ∈ Bj . We have by Hölder’s inequality
∣∣u
(
C1(r)

)
− u
(
C(r)

)∣∣ ≤ |u(X1)− u(X2)|+ |u(X2)− u(X3)|
+ · · ·+ |u(XN )− u(XN+1)|

≤M
∑

j

%D(Xj)
1−(n−δ)/p

(∫

2Bj

|∇u(z)|p%D(Xj)
−δ dz

)1/p

≤M
(∑

j

%D(Xj)
p′(p−n+δ)/p

)1/p′

×
(∫

A(ξ,r)

|∇u(z)|p%D(z)−δ dz

)1/p

≤M
(∑

j

%D(Xj)
p′(p−n+δ)/p

)1/p′

×
(∫

B(ξ,2r)∩D

|∇u(z)|p%D(z)α|C2(r)− z|−δ−α dz
)1/p

for δ > 0, where 1/p+ 1/p′ = 1. Here note that

∑

j

%D(Xj)
p′(p−n+δ)/p ≤M

∫

A(ξ,r)

%D(z)p
′(p−n+δ)/p−n dz

≤M
∫

A(ξ,r)

|C2(r)− z|p′(p−n+δ)/p−n dz

≤Mrp
′(p−n+δ)/p

when δ > n− p . Moreover,

(3)

∫ 2−j+1

2−j
|C2(r)− z|−δ−α dr ≤

∫ 2−j+1

2−j

∣∣r − |z|
∣∣−δ−α dr ≤M2−j(1−δ−α)

when −α < δ < 1− α . Hence it follows that

∫ 2−j+1

2−j

∣∣u
(
C1(r)

)
−u
(
C(r)

)∣∣p dr/r ≤M2−j(p−n−α)

∫

B(ξ,2−j+2)∩D

|∇u(z)|p%D(z)α dz.
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Since ξ ∈ ∂D−En+α−p , we can find a sequence {rj} such that 2−j < rj < 2−j+1

and

lim
j→∞

∣∣u
(
C1(rj)

)
− u
(
C(rj)

)∣∣ = 0.

By our assumption we see that u
(
C1(rj)

)
has a finite limit as j →∞ . If we note

that {C1(rj)} is regular at ξ , then Lemma 1 proves the required conclusion of the
theorem.

3. Monotone functions on a measure space (D;µ)

Let µ be a Borel measure on Rn satisfying the doubling condition:

µ(2B) ≤Mµ(B)

for every ball B ⊂ Rn . We further assume that

(4)
µ(B′)
µ(B)

≥M
(

diam(B′)
diam(B)

)s

for all B′ = B(ξ′, r′) and B = B(ξ, r) with ξ′, ξ ∈ ∂D and B′ ⊂ B , where s > 1
and diam(B) denotes the diameter of B .

A pair (u, g) ∈ L1
loc(D;µ)×Lploc(D;µ) is said to satisfy p -Poincaré inequality

if g ≥ 0 on D and

1

µ(B)

∫

B

|u(x)− uB | dµ(x) ≤M diam(B)

(
1

µ(σB)

∫

σB

g(z)p dµ(z)

)1/p

for every ball B with σB ⊂ D , where σ > 1 and

uB =

∫
−
B

u(y) dµ(y) =
1

µ(B)

∫

B

u(y) dµ(y).

We need a stronger property than Poincaré inequalities; a continuous function u
is called monotone in D if there exists a nonnegative function g ∈ Lploc(D;µ) such
that

(5) |u(x)− uB | ≤Mr

(
1

µ(σB)

∫

σB

g(z)p dµ(z)

)1/p

for every x ∈ B with σB ⊂ D , where σ > 1 and B = B(y, r) .
Now we show the following result, which gives of course a generalization of

Theorem 1.
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Theorem 2. Let u be a monotone function on D with g satisfying (5) and

(6)

∫

D

g(z)p dµ(z) <∞.

Suppose p > s− 1 , and set

E =

{
ξ ∈ ∂D : lim sup

r→0

(
r−pµ

(
B(ξ, r)

))−1
∫

B(ξ,r)∩D

g(z)p dµ(z) > 0

}
.

If ξ ∈ ∂D−E and there exists a curve γ in D tending to ξ along which u has a
finite limit, then u has a nontangential limit at ξ .

Remark 2. Let 1 ≤ q < p/(n− 1). Let w be a Muckenhoupt (Aq) weight,
and define

dµ(y) = w(y) dy.

If u is monotone in the sense of Lebesgue, then (u, |∇u|) satisfies the monotonicity
property (5) by applying Hölder’s inequality to (1) with p replaced by p/q (see
also Manfredi–Villamor [8]). If in addition u satisfies (6) with g = |∇u| , then
we apply Theorem 1 with p replaced by p/q to obtain the same conclusion as
Theorem 2.

Remark 3. In Theorem 2, since µ(E) = 0, we see that E is of C1,p,µ -
capacity zero; here the weighted p -capacity C1,p,µ(E) is defined by

C1,p,µ(E) = inf

{∫
|f(y)|p dµ :

∫

B(x,1)

|x− y|1−nf(y) dy ≥ 1 for all x ∈ E
}
,

which has the property

(7) C1,p,µ

(
B(x, r)

)
≤Mr−pµ

(
B(x, r)

)
.

For proofs of these facts, see Meyers [9] and [10].

Proof of Theorem 2. By the monotonicity of u we see that

∣∣u(x)− u
(
C(r)

)∣∣ ≤M diam(B)

(
1

µ(σB)

∫

σB

g(z)p dµ(z)

)1/p

for x ∈ B = B
(
C(r), 2−1σ−1%D

(
C(r)

))
. We take a finite covering {Bj} of circular

arc C(r)C1(r) as in the proof of Theorem 1; in this case

Bj = B
(
Xj , 2

−1σ−1%D(Xj)
)
.
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We find by Hölder’s inequality

∣∣u
(
C1(r)

)
− u
(
C(r)

)∣∣ ≤ |u(X1)− u(X2)|+ |u(X2)− u(X3)|
+ · · ·+ |u(XN )− u(XN+1)|
≤M

∑

j

%D(Xj)
1+δ/pµ(σBj)

−1/p

×
(∫

σBj

g(z)p%D(z)−δ dµ(z)

)1/p

≤M
(∑

j

%D(Xj)
p′(1+δ/p)µ(σBj)

−p′/p
)1/p′

×
(∫

A(ξ,r)

g(z)p%D(z)−δ dµ(z)

)1/p

≤M
(∑

j

%D(Xj)
p′(1+δ/p)µ(σBj)

−p′/p
)1/p′

×
(∫

B(ξ,2r)∩D

g(z)p|C2(r)− z|−δ dµ(z)

)1/p

for δ > 0, where 1/p+ 1/p′ = 1. If we take δ > s− p , then we see from (4) that

∑

j

%D(Xj)
p′(p+δ)/pµ(σBj)

−p′/p ≤M
∫ 2r

0

tp
′(p+δ)/pµ

(
B
(
C2(r), t

))−p′/p
dt/t

≤Mrp
′s/pµ

(
B(ξ, 4r)

)−p′/p ∫ 2r

0

tp
′(p+δ−s)/p dt/t

≤Mrp
′δ/p
(
r−pµ

(
B(ξ, r)

))−p′/p
.

Hence it follows from (3) with 0 < δ < 1 and α = 0 that

∫ 2−j+1

2−j

∣∣u
(
C1(r)

)
−u
(
C(r)

)∣∣p dr/r ≤M
(
2jpµ

(
B(ξ, 2−j)

))−1
∫

B(ξ,2−j+2)

g(z)p dµ(z).

Thus we can show that u has a nontangential limit at ξ , in the same manner as
Theorem 1.

Remark 4. Let u be a monotone Sobolev function on D satisfying

∫

D

|∇u(x)|p dµ(x) <∞.
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Define

E1 =

{
ξ ∈ ∂D :

∫

B(ξ,1)∩D

|ξ − y|1−n|∇u(y)| dy =∞
}

and

E2 =

{
ξ ∈ ∂D : lim sup

r→0

(
r−pµ

(
B(ξ, r)

))−1
∫

B(ξ,r)∩D

|∇u(y)|p dµ(y) > 0

}
.

Then we can show as in [11], [12] that u has a nontangential limit at every ξ ∈
∂D− (E1 ∪ E2) . Note here that E1 ∪E2 is of C1,p,µ -capacity zero.
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