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Abstract. This paper deals with Lindelof type theorems for monotone functions in weighted
Sobolev spaces.

1. Introduction

Let R™, n > 2, denote the n-dimensional Euclidean space. We use the
notation D to denote the upper half space of R™, that is,

D={z=(z1,...,2n-1,2y) : T, > 0}.

Denote by B(z,r) the open ball centered at = with radius r, and set o B(z,r) =
B(z,or) for ¢ >0 and S(z,r) = 0B(x,r).

A continuous function u on D is called monotone in the sense of Lebesgue
(see [5]) if for every relatively compact open set G C D,

maxu = maxu and min v = min .
G oG G oG

If u is monotone in D and p >n — 1, then

1 1/p
(1) lu(z) —u(x’)| < M’/‘(—n/ |Vu(z)|P dz)

r B(y,2r)
for every z,z’ € B(y,r), whenever B(y,2r) C D (see [6, Theorem 1] and [4,
Theorem 2.8]). For further results of monotone functions, we refer to [3], [13]
and [15].

Our aim in the present note is to extend the second author’s result [12, The-

orem 2] and the most recent results by Manfredi—Villamor [8].
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Theorem 1. Let u be a monotone function on D satisfying

(2) /D |Vu(z)|Pzy dz < oo,

where p >n—1 and 0 <n+«a —p < 1. Define

Epnta—p= {{ € 0D : limsup rpo‘”/ |Vu(z)|Pze dz > 0}.
r—0 B(¢,r)ND

If £ € 0D — Ep ) and there exists a curve v in D tending to { along which u

has a finite limit, then u has a nontangential limit at &.

Remark 1. We know that E, 1., has (n + o — p)-dimensional Hausdorff
measure zero, and hence it is of Ci_,/p ,-capacity zero; for these results, see
Meyers [9], [10] and the second author’s book [13].

We shall give a generalization of Theorem 1 (see Theorem 2 below). We
proceed to the proof of Theorem 1 for the sake of clarity.

Throughout this paper, let M denote various positive constants independent
of the variables in question, and M|(e) a positive constant which depends on ¢.

2. Proof of Theorem 1
A sequence {X,} is called regular at £ € 0D if X; — ¢ and

| X =& < el X1 — ¢

for some constant ¢ > 0.
First we give the following result, which can be proved by (1).

Lemma 1. Let u be a monotone function on D satisfying (2) with n —1 <
p<a+n. If{ € 0D — E, ., and there exists a regular sequence {X;} C D
with X; = £+ (0,...,0,7;) such that uw(X;) has a finite limit, then u has a
nontangential limit at &.

Proof of Theorem 1. For r > 0 sufficiently small, take C(r) € v N S(, 7).
Letting Ci(r) = &+ (0,...,0,7), take an end point Cs(r) € dD of a quarter of
circle containing Cq(r) and C(r).

Let op(z) denote the distance of z € D from the boundary 0D, that is,

op(z) = z,. We take a finite covering {B(X;,4 'op(X;))} of circular arc
T

C(r)C1(r) such that
(i) X1 =C(r) and Xny41 = C1(1);
(i) |z — ¢ < 2r and |z — Ca(r)| ~ op(z) for z € A(§,r) = U, 2B;, where

Bj = B(X;,4 'opn(X}));



Lindelof theorems for monotone Sobolev functions 273

(i) Bj N Bjy1 # 0 for each j;
(iv) > x2B; is bounded, where x4 denotes the characteristic function of A;
see Heinonen [2] and Hajlasz—Koskela [1]. By the monotonicity of u we see that

1/p
lu(z) — u(X;)] < MQD<Xj>(m / ) |w<z>|pdz)

for x € B;. We have by Holder’s inequality

[u(C1(r) —u(C(r)] < [u(X1) — u(X2)| + [u(X2) — u(Xs)]
+ ot u(XN) — w(Xnt1)|

< MZQD(Xj)I*("*‘S)/p (/2
J

1/p
< 21 (X ao (e

J

) (/A@,T) [Vu(2)["ep (2)~° dZ) N

1/p’
<M (Z oo <Xj>P’<p—”+5>/p)

J

1/p
V(=) Pen (X;)~) dz)
B;

1/p
X / |IVu(2)[Pop(2)*|Ca(r) — z|75*0‘ dz)
B(¢,2r)ND

for 6 > 0, where 1/p+ 1/p’ = 1. Here note that

Z QD(Xj)p’(p—n+5)/p <M QD(Z)p'(p—n+5)/p—n dz
j A(£7T)

<M / |Co(r) — z[p/P=nF0)/p=n g
A(&r)
< MyP (p=n+0)/p

when § > n — p. Moreover,
g—i+1 g—i+1
(3) / |Ca(r) — z|75*°‘ dr < / {r — |z|‘_6_a dr < M2~i(1=0-)
27 2-7
when —a < § < 1 — «. Hence it follows that
g—i+1
| luert)=u(ew) ] dryr < drzion-e | Vulz) o (2)° dz.
2 B

—J (§,277+2)ND
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Since £ € D — Ey, 4 4—p, we can find a sequence {r;} such that 277 < r; < 277%!
and
lim |u(C’1(7“j)) — u(C’(rj))‘ =0.

Jj—oo

By our assumption we see that u(C1(r;)) has a finite limit as j — co. If we note
that {C1(r;)} is regular at £, then Lemma 1 proves the required conclusion of the
theorem.

3. Monotone functions on a measure space (D;pu)

Let p be a Borel measure on R”™ satisfying the doubling condition:
u(2B) < Mu(B)
for every ball B C R™. We further assume that

B (i)’

) diam(B)

for all B’ = B(¢',r") and B = B(&,r) with ¢, € 9D and B’ C B, where s > 1
and diam(B) denotes the diameter of B.

A pair (u,g) € L, .(D;u) x LY (D; ) is said to satisfy p-Poincaré inequality
if g >0 on D and

ﬁ /B \u(z) — up|du(z) < M diam(B) (u(alB) /UB o(2)? dﬂ(z)) 1/p

for every ball B with ¢B C D, where ¢ > 1 and

1

up = ]iuw) du(y) = @/B“(y) dp(y).

We need a stronger property than Poincaré inequalities; a continuous function u
is called monotone in D if there exists a nonnegative function g € L}, (D;u) such
that

) o) —unl <2t ( oo [ gtoraute)) "

for every x € B with ¢B C D, where ¢ > 1 and B = B(y,r).
Now we show the following result, which gives of course a generalization of
Theorem 1.
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Theorem 2. Let u be a monotone function on D with g satisfying (5) and

(6) /D g(2)P du(z) < oo.

Suppose p > s — 1, and set

= :limsup(r—® ) z)P z )
R ) /B(WD9<>du<>>o}

r—0

If £ € OD — E and there exists a curve v in D tending to £ along which u has a
finite limit, then u has a nontangential limit at &.

Remark 2. Let 1 < ¢ <p/(n—1). Let w be a Muckenhoupt (A4,) weight,
and define

du(y) = w(y) dy.

If w is monotone in the sense of Lebesgue, then (u, |Vu|) satisfies the monotonicity
property (5) by applying Hélder’s inequality to (1) with p replaced by p/q (see
also Manfredi-Villamor [8]). If in addition u satisfies (6) with g = |Vu/, then
we apply Theorem 1 with p replaced by p/q to obtain the same conclusion as
Theorem 2.

Remark 3. In Theorem 2, since pu(E) = 0, we see that E is of Cj, -
capacity zero; here the weighted p-capacity Ci p ,(E) is defined by

Crpu(B) = inf{ Jls@raus [ oyl i@y = Lorall a € E}
B(z,1)
which has the property
(7) C'Lp’“(B(x,r)) < Mr*pu(B(m,r)).

For proofs of these facts, see Meyers [9] and [10].

Proof of Theorem 2. By the monotonicity of u we see that

1/p
) = u(©)| < M ion(B) (s [ ot ducs) )

for z € B=B(C(r),2 o7 op(C(r))). We take a finite covering {B;} of circular

T
arc C(r)C1(r) as in the proof of Theorem 1; in this case

B; = B(X;,2 o' op(Xj)).
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We find by Holder’s inequality
[u(C1(r)) —u(C(r)| < u(X1) — u(Xa)| + Ju(X2) — u(X3)]
+ o [ u(Xy) — u(X vy
<MY on(X;)' T Pu(oB;) P
J

’ </ch g<z)p@n<z)‘5du<z))1/p

J

1/p’
= M(Z on (X;)" 1P (o B;) P /p)
j

) </A<s,r> 9(=)"en ()"’ du(z>) N

1/p’
< M(Z op (X;)P (1+6/p),u(aBj)_p /p)

J

" (/B(mr)m 9(2)P|Ca(r) — 2|7 du(z)>1/p

for § > 0, where 1/p+ 1/p’ = 1. If we take 6 > s — p, then we see from (4) that

2r ,
> n () rloBy) I < [ O B(Calr). 1)
- 0
J

, 2r ,
<M lr(B(Ean) T [ e ey
0

< M (P p(B(Er)))
Hence it follows from (3) with 0 < § <1 and o = 0 that
9—J+1 ' ' .
/2 lu(C1(r)) —u(C(r)) ’p dr/r < M(27Pu(B(&,277))) /B g(2)P du(z).

—J (€,2=312)

Thus we can show that u has a nontangential limit at £, in the same manner as
Theorem 1.

Remark 4. Let v be a monotone Sobolev function on D satisfying

/ [Vu(z)|P du(z) < oo.
D
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Define

By - {geaD: |§—y|1—“|Vu<y>|dy=oo}

B(&,1)ND

and

E, = {§ € 0D : 1imsup(7’_p,u(B(§,r)))_l /B(g - |Vu(y)|P du(y) > 0}.

r—0

Then we can show as in [11], [12] that v has a nontangential limit at every £ €
0D — (E1 U E3). Note here that E; U Ey is of C , ,-capacity zero.
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