Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 271–277

LINDELÖF THEOREMS FOR MONOTONE SOBOLEV FUNCTIONS

Toshihide Futamura and Yoshihiro Mizuta

Hiroshima University, Graduate School of Science, Department of Mathematics Higashi-Hiroshima 739-8526, Japan; toshi@mis.hiroshima-u.ac.jp

Hiroshima University, Faculty of Integrated Arts and Sciences The Division of Mathematical and Information Sciences Higashi-Hiroshima 739-8521, Japan; mizuta@mis.hiroshima-u.ac.jp

Abstract. This paper deals with Lindelöf type theorems for monotone functions in weighted Sobolev spaces.

1. Introduction

Let \mathbb{R}^n , $n \geq 2$, denote the *n*-dimensional Euclidean space. We use the notation **D** to denote the upper half space of \mathbb{R}^n , that is,

$$
\mathbf{D} = \{x = (x_1, \dots, x_{n-1}, x_n) : x_n > 0\}.
$$

Denote by $B(x, r)$ the open ball centered at x with radius r, and set $\sigma B(x, r) =$ $B(x, \sigma r)$ for $\sigma > 0$ and $S(x, r) = \partial B(x, r)$.

A continuous function u on \bf{D} is called monotone in the sense of Lebesgue (see [5]) if for every relatively compact open set $G \subset \mathbf{D}$,

$$
\max_{\overline{G}} u = \max_{\partial G} u \qquad \text{and} \qquad \min_{\overline{G}} u = \min_{\partial G} u.
$$

If u is monotone in **D** and $p > n - 1$, then

(1)
$$
|u(x) - u(x')| \le Mr \left(\frac{1}{r^n} \int_{B(y, 2r)} |\nabla u(z)|^p dz\right)^{1/p}
$$

for every $x, x' \in B(y,r)$, whenever $B(y, 2r) \subset \mathbf{D}$ (see [6, Theorem 1] and [4, Theorem 2.8]). For further results of monotone functions, we refer to [3], [13] and [15].

Our aim in the present note is to extend the second author's result [12, Theorem 2] and the most recent results by Manfredi–Villamor [8].

²⁰⁰⁰ Mathematics Subject Classification: Primary 31B25, 46E35.

Theorem 1. Let u be a monotone function on \bf{D} satisfying

(2)
$$
\int_{\mathbf{D}} |\nabla u(z)|^p z_n^{\alpha} dz < \infty,
$$

where $p > n - 1$ and $0 \leq n + \alpha - p < 1$. Define

$$
E_{n+\alpha-p} = \left\{ \xi \in \partial \mathbf{D} : \limsup_{r \to 0} r^{p-\alpha-n} \int_{B(\xi,r) \cap \mathbf{D}} |\nabla u(z)|^p z_n^{\alpha} dz > 0 \right\}.
$$

If $\xi \in \partial$ **D** − $E_{n+\alpha-p}$ and there exists a curve γ in **D** tending to ξ along which u has a finite limit, then u has a nontangential limit at ξ .

Remark 1. We know that $E_{n+\alpha-p}$ has $(n+\alpha-p)$ -dimensional Hausdorff measure zero, and hence it is of $C_{1-\alpha/p,p}$ -capacity zero; for these results, see Meyers [9], [10] and the second author's book [13].

We shall give a generalization of Theorem 1 (see Theorem 2 below). We proceed to the proof of Theorem 1 for the sake of clarity.

Throughout this paper, let M denote various positive constants independent of the variables in question, and $M(\varepsilon)$ a positive constant which depends on ε .

2. Proof of Theorem 1

A sequence $\{X_j\}$ is called regular at $\xi \in \partial \mathbf{D}$ if $X_j \to \xi$ and

$$
|X_j-\xi|
$$

for some constant $c > 0$.

First we give the following result, which can be proved by (1).

Lemma 1. Let u be a monotone function on **D** satisfying (2) with $n-1 <$ $p \le \alpha + n$. If $\xi \in \partial$ **D** – $E_{n+\alpha-p}$ and there exists a regular sequence $\{X_i\} \subset \mathbf{D}$ with $X_i = \xi + (0, \ldots, 0, r_i)$ such that $u(X_i)$ has a finite limit, then u has a nontangential limit at ξ .

Proof of Theorem 1. For $r > 0$ sufficiently small, take $C(r) \in \gamma \cap S(\xi, r)$. Letting $C_1(r) = \xi + (0, \ldots, 0, r)$, take an end point $C_2(r) \in \partial \mathbf{D}$ of a quarter of circle containing $C_1(r)$ and $C(r)$.

Let $\varrho_{\mathbf{D}}(x)$ denote the distance of $x \in \mathbf{D}$ from the boundary $\partial \mathbf{D}$, that is, $\varrho_{\mathbf{D}}(x) = x_n$. We take a finite covering $\{B(X_j, 4^{-1}\varrho_{\mathbf{D}}(X_j))\}$ of circular arc $C(r)C_1(r)$ such that

(i) $X_1 = C(r)$ and $X_{N+1} = C_1(r)$;

(ii) $|z-\xi| < 2r$ and $|z - C_2(r)| \sim \varrho_{\mathbf{D}}(z)$ for $z \in A(\xi,r) = \bigcup_j 2B_j$, where $B_j = B(X_j, 4^{-1} \varrho_{\mathbf{D}}(X_j));$

(iii) $B_j \cap B_{j+1} \neq \emptyset$ for each j;

(iv) $\sum_j^i \chi_{2B_j}$ is bounded, where χ_A denotes the characteristic function of A; see Heinonen [2] and Hajłasz–Koskela [1]. By the monotonicity of u we see that

$$
|u(x) - u(X_j)| \le M \varrho_{\mathbf{D}}(X_j) \left(\frac{1}{\varrho_{\mathbf{D}}(X_j)^n} \int_{2B_j} |\nabla u(z)|^p dz\right)^{1/p}
$$

for $x \in B_j$. We have by Hölder's inequality

$$
\begin{aligned}\n|u(C_1(r)) - u(C(r))| &\le |u(X_1) - u(X_2)| + |u(X_2) - u(X_3)| \\
&\quad + \cdots + |u(X_N) - u(X_{N+1})| \\
&\le M \sum_j \varrho_{\mathbf{D}}(X_j)^{1 - (n - \delta)/p} \left(\int_{2B_j} |\nabla u(z)|^p \varrho_{\mathbf{D}}(X_j)^{-\delta} \, dz \right)^{1/p} \\
&\le M \left(\sum_j \varrho_{\mathbf{D}}(X_j)^{p'(p - n + \delta)/p} \right)^{1/p'} \\
&\quad \times \left(\int_{A(\xi,r)} |\nabla u(z)|^p \varrho_{\mathbf{D}}(z)^{-\delta} \, dz \right)^{1/p} \\
&\le M \left(\sum_j \varrho_{\mathbf{D}}(X_j)^{p'(p - n + \delta)/p} \right)^{1/p'} \\
&\quad \times \left(\int_{B(\xi, 2r) \cap \mathbf{D}} |\nabla u(z)|^p \varrho_{\mathbf{D}}(z)^{\alpha} |C_2(r) - z|^{-\delta - \alpha} \, dz \right)^{1/p}\n\end{aligned}
$$

for $\delta > 0$, where $1/p + 1/p' = 1$. Here note that

$$
\sum_{j} \varrho_{\mathbf{D}}(X_{j})^{p'(p-n+\delta)/p} \leq M \int_{A(\xi,r)} \varrho_{\mathbf{D}}(z)^{p'(p-n+\delta)/p-n} dz
$$

$$
\leq M \int_{A(\xi,r)} |C_{2}(r) - z|^{p'(p-n+\delta)/p-n} dz
$$

$$
\leq M r^{p'(p-n+\delta)/p}
$$

when $\delta > n - p$. Moreover,

$$
(3) \qquad \int_{2^{-j}}^{2^{-j+1}} |C_2(r) - z|^{-\delta - \alpha} \, dr \le \int_{2^{-j}}^{2^{-j+1}} \left| r - |z| \right|^{-\delta - \alpha} \, dr \le M 2^{-j(1-\delta - \alpha)}
$$

when $-\alpha < \delta < 1 - \alpha$. Hence it follows that

$$
\int_{2^{-j}}^{2^{-j+1}} \left| u(C_1(r)) - u(C(r)) \right|^p dr/r \le M 2^{-j(p-n-\alpha)} \int_{B(\xi, 2^{-j+2}) \cap \mathbf{D}} \left| \nabla u(z) \right|^p \varrho_{\mathbf{D}}(z)^\alpha dz.
$$

Since $\xi \in \partial \mathbf{D} - E_{n+\alpha-p}$, we can find a sequence $\{r_j\}$ such that $2^{-j} < r_j < 2^{-j+1}$ and

$$
\lim_{j \to \infty} \left| u(C_1(r_j)) - u(C(r_j)) \right| = 0.
$$

By our assumption we see that $u(C_1(r_j))$ has a finite limit as $j \to \infty$. If we note that ${C_1(r_i)}$ is regular at ξ , then Lemma 1 proves the required conclusion of the theorem.

3. Monotone functions on a measure space $(D; \mu)$

Let μ be a Borel measure on \mathbb{R}^n satisfying the doubling condition:

$$
\mu(2B) \le M\mu(B)
$$

for every ball $B \subset \mathbf{R}^n$. We further assume that

(4)
$$
\frac{\mu(B')}{\mu(B)} \ge M \left(\frac{\text{diam}(B')}{\text{diam}(B)} \right)^s
$$

for all $B' = B(\xi', r')$ and $B = B(\xi, r)$ with $\xi', \xi \in \partial \mathbf{D}$ and $B' \subset B$, where $s > 1$ and diam (B) denotes the diameter of B .

A pair $(u, g) \in L^1_{loc}(\mathbf{D}; \mu) \times L^p_{loc}$ $l_{\text{loc}}^{p}(\mathbf{D};\mu)$ is said to satisfy *p*-Poincaré inequality if $g \geq 0$ on **D** and

$$
\frac{1}{\mu(B)} \int_B |u(x) - u_B| \, d\mu(x) \le M \operatorname{diam}(B) \left(\frac{1}{\mu(\sigma B)} \int_{\sigma B} g(z)^p \, d\mu(z) \right)^{1/p}
$$

for every ball B with $\sigma B \subset \mathbf{D}$, where $\sigma > 1$ and

$$
u_B = \int_B u(y) \, d\mu(y) = \frac{1}{\mu(B)} \int_B u(y) \, d\mu(y).
$$

We need a stronger property than Poincaré inequalities; a continuous function u is called monotone in **D** if there exists a nonnegative function $g \in L^p_{\text{loc}}$ $_{\text{loc}}^{p}(\mathbf{D};\mu)$ such that

(5)
$$
|u(x) - u_B| \le Mr \left(\frac{1}{\mu(\sigma B)} \int_{\sigma B} g(z)^p d\mu(z)\right)^{1/p}
$$

for every $x \in B$ with $\sigma B \subset \mathbf{D}$, where $\sigma > 1$ and $B = B(y, r)$.

Now we show the following result, which gives of course a generalization of Theorem 1.

Theorem 2. Let u be a monotone function on \bf{D} with g satisfying (5) and

(6)
$$
\int_{\mathbf{D}} g(z)^p d\mu(z) < \infty.
$$

Suppose $p > s - 1$, and set

$$
E = \left\{ \xi \in \partial \mathbf{D} : \limsup_{r \to 0} \left(r^{-p} \mu \big(B(\xi, r) \big) \right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}} g(z)^p \, d\mu(z) > 0 \right\}.
$$

If $\xi \in \partial$ **D** − E and there exists a curve γ in **D** tending to ξ along which u has a finite limit, then u has a nontangential limit at ξ .

Remark 2. Let $1 \leq q \leq p/(n-1)$. Let w be a Muckenhoupt (A_q) weight, and define

$$
d\mu(y) = w(y) dy.
$$

If u is monotone in the sense of Lebesgue, then $(u, |\nabla u|)$ satisfies the monotonicity property (5) by applying Hölder's inequality to (1) with p replaced by p/q (see also Manfredi–Villamor [8]). If in addition u satisfies (6) with $q = |\nabla u|$, then we apply Theorem 1 with p replaced by p/q to obtain the same conclusion as Theorem 2.

Remark 3. In Theorem 2, since $\mu(E) = 0$, we see that E is of $C_{1,p,\mu}$. capacity zero; here the weighted p-capacity $C_{1,p,\mu}(E)$ is defined by

$$
C_{1,p,\mu}(E) = \inf \biggl\{ \int |f(y)|^p \, d\mu : \int_{B(x,1)} |x - y|^{1-n} f(y) \, dy \ge 1 \text{ for all } x \in E \biggr\},\
$$

which has the property

(7)
$$
C_{1,p,\mu}(B(x,r)) \leq Mr^{-p}\mu(B(x,r)).
$$

For proofs of these facts, see Meyers [9] and [10].

Proof of Theorem 2. By the monotonicity of u we see that

$$
\left| u(x) - u(C(r)) \right| \le M \operatorname{diam}(B) \left(\frac{1}{\mu(\sigma B)} \int_{\sigma B} g(z)^p \, d\mu(z) \right)^{1/p}
$$

for $x \in B = B(C(r), 2^{-1}\sigma^{-1} \varrho_{\mathbf{D}}(C(r)))$. We take a finite covering $\{B_j\}$ of circular arc $C(r)C_1(r)$ as in the proof of Theorem 1; in this case

$$
B_j = B(X_j, 2^{-1}\sigma^{-1}\varrho_{\mathbf{D}}(X_j)).
$$

We find by Hölder's inequality

$$
|u(C_1(r)) - u(C(r))| \le |u(X_1) - u(X_2)| + |u(X_2) - u(X_3)|
$$

+ ... + |u(X_N) - u(X_{N+1})|

$$
\le M \sum_{j} \varrho_{\mathbf{D}}(X_j)^{1+\delta/p} \mu(\sigma B_j)^{-1/p}
$$

$$
\times \left(\int_{\sigma B_j} g(z)^p \varrho_{\mathbf{D}}(z)^{-\delta} d\mu(z) \right)^{1/p}
$$

$$
\le M \left(\sum_{j} \varrho_{\mathbf{D}}(X_j)^{p'(1+\delta/p)} \mu(\sigma B_j)^{-p'/p} \right)^{1/p'}
$$

$$
\times \left(\int_{A(\xi,r)} g(z)^p \varrho_{\mathbf{D}}(z)^{-\delta} d\mu(z) \right)^{1/p}
$$

$$
\times M \left(\sum_{j} \varrho_{\mathbf{D}}(X_j)^{p'(1+\delta/p)} \mu(\sigma B_j)^{-p'/p} \right)^{1/p'}
$$

$$
\times \left(\int_{B(\xi,2r) \cap \mathbf{D}} g(z)^p |C_2(r) - z|^{-\delta} d\mu(z) \right)^{1/p}
$$

for $\delta > 0$, where $1/p + 1/p' = 1$. If we take $\delta > s - p$, then we see from (4) that

$$
\sum_{j} \varrho_{\mathbf{D}}(X_{j})^{p'(p+\delta)/p} \mu(\sigma B_{j})^{-p'/p} \leq M \int_{0}^{2r} t^{p'(p+\delta)/p} \mu(B(C_{2}(r), t))^{-p'/p} dt/t
$$

$$
\leq M r^{p's/p} \mu(B(\xi, 4r))^{-p'/p} \int_{0}^{2r} t^{p'(p+\delta-s)/p} dt/t
$$

$$
\leq M r^{p'\delta/p} \left(r^{-p} \mu(B(\xi, r))\right)^{-p'/p}.
$$

Hence it follows from (3) with $0 < \delta < 1$ and $\alpha = 0$ that

$$
\int_{2^{-j}}^{2^{-j+1}} \left| u(C_1(r)) - u(C(r)) \right|^p dr/r \le M \left(2^{jp} \mu\big(B(\xi, 2^{-j})\big)\right)^{-1} \int_{B(\xi, 2^{-j+2})} g(z)^p d\mu(z).
$$

Thus we can show that u has a nontangential limit at ξ , in the same manner as Theorem 1.

Remark 4. Let u be a monotone Sobolev function on D satisfying

$$
\int_{\mathbf{D}} |\nabla u(x)|^p \, d\mu(x) < \infty.
$$

Define

$$
E_1 = \left\{ \xi \in \partial \mathbf{D} : \int_{B(\xi,1) \cap \mathbf{D}} |\xi - y|^{1-n} |\nabla u(y)| dy = \infty \right\}
$$

and

$$
E_2 = \left\{ \xi \in \partial \mathbf{D} : \limsup_{r \to 0} \left(r^{-p} \mu \big(B(\xi, r) \big) \right)^{-1} \int_{B(\xi, r) \cap \mathbf{D}} |\nabla u(y)|^p \, d\mu(y) > 0 \right\}.
$$

Then we can show as in [11], [12] that u has a nontangential limit at every $\xi \in$ $\partial \mathbf{D} - (E_1 \cup E_2)$. Note here that $E_1 \cup E_2$ is of $C_{1,p,\mu}$ -capacity zero.

References

- [1] HAJŁASZ, P., and P. KOSKELA: Sobolev met Poincaré. Mem. Amer. Math. Soc. 688, 2000, 1–101.
- [2] Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer-Verlag, 2001.
- [3] HEINONEN, J., T. KILPELÄINEN, and O. MARTIO: Nonlinear Potential Theory of Degenerate Elliptic Equations. - Oxford Univ. Press, 1993.
- [4] KOSKELA, P., J. J. MANFREDI, and E. VILLAMOR: Regularity theory and traces of $\mathscr A$ harmonic functions. - Trans. Amer. Math. Soc. 348, 1996, 755–766.
- [5] LEBESGUE, H.: Sur le probléme de Dirichlet. Rend. Circ. Mat. Palermo 24, 1907, 371–402.
- [6] MANFREDI, J. J.: Weakly monotone functions. J. Geom. Anal. 4, 1994, 393–402.
- [7] MANFREDI, J. J., and E. VILLAMOR: Traces of monotone Sobolev functions. J. Geom. Anal. 6, 1996, 433–444.
- [8] MANFREDI, J. J., and E. VILLAMOR: Traces of monotone Sobolev functions in weighted Sobolev spaces. - Illinois J. Math. 45, 2001, 403–422.
- [9] Meyers, N. G.: A theory of capacities for potentials in Lebesgue classes. Math. Scand. 8, 1970, 255–292.
- [10] Meyers, N. G.: Taylor expansion of Bessel potentials. Indiana Univ. Math. J. 23, 1974, 1043–1049.
- [11] Mizuta, Y.: On the boundary limits of harmonic functions. Hiroshima Math. J. 18, 1988, 207–217.
- [12] Mizuta, Y.: Tangential limits of monotone Sobolev functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 20, 1995, 315–326.
- [13] MIZUTA, Y.: Potential Theory in Euclidean Spaces. Gakkōtosyo, Tokyo, 1996.
- [14] Vuorinen, M.: On functions with a finite or locally bounded Dirichlet integral. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 1984, 177–193.
- [15] Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math. 1319, Springer-Verlag, 1988.

Received 18 February 2002