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Abstract. We show that nonlinear harmonic measures on trees lack many desirable proper-
ties of set functions encountered in classical analysis. Let F be an averaging operator on Rκ and
ωF be the F -harmonic measure on a κ -regular forward branching tree. Unless F is the usual
average, ωF is not a Choquet capacity; union of sets of ωF measure zero can have positive ωF
measure when F is permutation invariant; and there exist sets of full ωF measure having “small”
dimension. Let A be a monotone operator on Rκ , then A -harmonic functions on trees need not
obey the strong maximum principle unless the ratio of the ellipticity constants is close to 1 .

We show that nonlinear harmonic measures on trees lack many desirable prop-
erties of set functions encountered in classical analysis.

Let T be a directed tree with regular κ -branching; in this paper we continue
earlier work on p -harmonic functions on trees in [CFPR] and [KW]. We treat
the p -Laplacian as a special case of a nonlinear averaging operator F : Rκ → R1

studied by Alvarez, Rodŕıguez and Yakubovich in [ARY]. Then the F -potential
theory on T is the discrete version of the nonlinear potential theory in the Eu-
clidean space structured on the nonlinear Euler equation of the variational integral∫

F (x,∇u) dx with F (x, h) ≈ |h|p ; see [GLM] and [HKM].
Each averaging operator F leads to a harmonic measure on the boundary

∂T of the tree. Except when F is the usual average, there exists a number
d(κ, F ) strictly less than the dimension of ∂T , so that every compact set on ∂T
of dimension < d(κ, F ) must have zero F -harmonic measure, and there exist sets
of dimension ≤ d(κ, F ) having full F -harmonic measure. If we could show that
every Borel set on ∂T of dimension < d(κ, F ) has zero F -harmonic measure,
then the statement “the dimension of F -harmonic measure is d(κ, F )” would
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follow; here dimension of F -harmonic measure is defined to be the infimum of the
dimensions of those Borel sets on ∂T having full F -harmonic measure. When
F is the p -Laplacian operator, d(κ, F ) is introduced in [KW] and used to study
the sizes of Fatou sets and sets of finite radial variations for bounded p -harmonic
functions on trees. Here again d(κ, F ) is the critical dimension of Fatou sets for
bounded F -harmonic functions.

We also prove that when F is permutation invariant and is not the usual
average, there exist two sets on ∂T , of zero F -harmonic measure, whose union
has positive F -harmonic measure. This answers a question raised by Martio on
trees ([ARY], [M]). Our work is motivated by [ARY], in which it is proved that for
certain F ’s, there exist congruent sets B1, B2, . . . , Bκ of arbitrarily small positive
F -harmonic measure, whose union is ∂T . Our construction starts from the root
of the tree and theirs starts from the boundary.

We also show that when F is permutation invariant and is not the usual
average, F -harmonic measure is not a Choquet capacity; consequently, it is not
left continuous on increasing sequences of sets.

While these results show that F -harmonic measure lacks many desirable prop-
erties of set functions in the linear theory, many problems remain: some concern
inner approximation of Borel sets by compact sets, others are about the behavior
of monotone sequences An such that

⋃∞
1 An = ∂T .

In another direction, we study the analogue of the quasilinear elliptic equation
div(A∇u) = 0 ([HKM]) on trees. We examine the notion of A -harmonic functions
on trees, when A is a monotone operator on Rκ . We find that A -harmonic
functions do not always satisfy the strong maximum principle defined in Section 1;
this shows that some caution is necessary in arguing from elliptic operators in the
Euclidean space to potential theory on trees. When an A -operator is close to the
p -Laplacian, the strong maximum principle holds and a Fatou type theorem is
valid; our sufficient condition is sharp when p = 2. We also show that the critical
dimension d(κ,A) for the A -operator approaches the critical dimension d(κ, p)
for the p -Laplacian uniformly as the ellipticity constants of A approach that of
the p -Laplacian.

Finally, we comment on the meanings of 1-Laplacian and ∞ -Laplacian on
trees.

Our operators on trees may be considered as simple analogues of the p -
Laplacian div(|∇u|p−2∇u) , 1 < p < ∞ , on the unit disk D . Martio ([HKM],
[M]) asked whether the p -harmonic measure on the unit circle ∂D is subadditive,
or whether the union of two null sets must be null when p 6= 2; for work in this
direction, see [AM], [GLM]. The Fatou set F (u) of a function u in D is the set
on ∂D where the radial limits exist. The classical theorem of Fatou from 1906
states that F (u) has length 2π for bounded harmonic functions. When p 6= 2,
the Fatou set F (u) of a bounded p -harmonic function u can have length zero;
examples are given by Wolff ([W]) for 2 < p <∞ and by Lewis ([L]) for 1 < p < 2.
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It is known that dim F (u) ≥ δ(p) > 0, see ([MW], [FGMS]). The best value of
δ(p) is unknown when p 6= 2, in particular whether δ(p) is equal to 1.

1. Preliminaries

Let κ > 1 be a natural number and T a directed tree with regular κ -
branching. That is, T consists of the empty set φ and all finite sequences
(v1, v2, . . . , vr) of lengths r = 1, 2, 3, . . . , whose coordinates are chosen from {1, 2,
3, . . . , κ} . The elements in T are called vertices. Each vertex v has κ successors,
obtained by adding another coordinate. These are abbreviated by (v, 1), (v, 2),
. . . , (v, κ) and have length one more than the length of v .

A branch b of T is an infinite sequence (b1, b2, . . .) with coordinates in {1, 2,
. . . , κ} . And b can be regarded as an infinite sequence of vertices (b1) , (b1, b2) ,
. . . , (b1, b2 , . . . , br), . . . , each followed by its immediate successor. The set of all
branches forms the boundary ∂T of the tree.

A metric on T ∪∂T is defined as follows. The distance between two sequences
(finite or infinite) b = (b1, b2, . . .) and b′ = (b′1, b

′
2, . . .) is κ−N+1 when N is

the first index n such that bn 6= b′n ; but when b = (b1, b2, . . . , bN ) and b′ =
(b1, b2, . . . , bN , b

′
N+1, . . .) , the distance is κ−N . Hausdorff measure and Hausdorff

dimension are defined using this metric. The tree T and the boundary ∂T then
have diameter one, and ∂T has Hausdorff dimension one.

We define a probability measure λ on ∂T through the mapping g(b) =∑∞
1 κ−r(br − 1) onto [0, 1] . The λ -measure of a set E is the Lebesgue mea-

sure of g(E) ; this is the infinite product of uniform distributions on each factor
{1, 2, . . . , κ} . λ is sometimes called Lebesgue measure.

Let F : Rκ → R1 be a continuous function. We call F an averaging operator
if it satisfies the following:

(i) F (0, 0, . . . , 0) = 0 and F (1, 1, . . . , 1) = 1;

(ii) F (tx1, tx2, . . . , txκ) = tF (x1, x2, . . . , xκ) for t ∈ R1 ;

(iii) F (t+ x1, t+ x2, . . . , t+ xκ) = t+ F (x1, x2, . . . , xκ) for t ∈ R1 ;

(iv) F (x1, x2, . . . , xκ) < max{x1, x2, . . . , xκ} if not all xj ’s are equal;

(v) F is nondecreasing with respect to each variable.

The definition is adopted from [ARY].
Property (iv) is the strong maximum principle, which implies that if

F (x1, x2, . . . , xκ) = 0,

unless all xj ’s are zero, there must be a sign change among the entries. Prop-
erty (v) is the monotonicity property which gives the comparison principle for the
Dirichlet problem needed in developing potential theory.

It follows from (i) ∼ (iv) that



282 R. Kaufman, J.G. Llorente, and J.-M. Wu

(vi) F (1− x1, 1− x2, . . . , 1− xκ) = 1− F (x1, x2, . . . , xκ) ;

and

(vii) there is a number b > 0 such that whenever F (x1, x2, . . . , xκ) ≥ 0 and
maxxj ≤ 1, then minxj ≥ −b .

To verify (vii), let S be the set in Rκ defined by maxxj ≤ 0 and minxj =
−1. Then by (ii) and (iv), F (x1, x2, . . . , xκ) < 0 on S . By continuity, there is an
ε > 0 so that F < 0 on the set {(x1, x2, . . . , xκ) : maxxj ≤ ε and minxj = −1} .
Hence we can choose b = 1/ε .

Property (vii) is used in the proof of Theorem 1, more precisely, in proving
(iii) in Lemma 1. When the strong maximum principle is replaced by

(iv) ′ F (x1, x2, . . . , xκ) ≤ max{x1, x2, . . . , xκ} ,

then Lemma 1(iii) fails and the proof of Theorem 1 will be considerably more
tedious.

In certain theorems, we require, in addition, F to be permutation invariant :

(viii) F (x1, x2, . . . , xκ) = F (xτ(1), xτ(2), . . . , xτ(κ)) for each permutation τ of
{1, 2, . . . , κ} .

From now on, we assume F is an averaging operator not necessarily permu-
tation invariant, unless otherwise mentioned. We let

0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1),

and use X = (x1, x2, . . . , xκ) to denote vectors in Rκ .

Remark. If F is differentiable at 0 , then F (X) = Σλjxj for some λj ∈ [0, 1]
with Σλj = 1; if F is also permutation invariant then F (X) ≡ Σxj/k is the usual
average. To see this, let λj = (∂/∂xj)F (0) , and X 6= 0 . Then tF (X) = F (tX) =
Σλjtxj + o(t) as t→ 0. This implies that F (X) = Σλjxj .

We call X ∈ Rκ an F -harmonic vector (or F -superharmonic vector) if
F (X) = 0 (or F (X) ≤ 0).

Given a function u on T , the gradient of u at a vertex v is

∇u(v) =
(
u(v, 1)− u(v), u(v, 2)− u(v), . . . , u(v, κ)− u(v)

)
.

We say u is an F -harmonic function on tree T , if ∇u(v) is F -harmonic at each
vertex v , i.e.

F
(
u(v, 1), u(v, 2), . . . , u(v, κ)

)
= u(v) for all v ∈ T.

F -superharmonicity is defined analogously.



Nonlinear harmonic measures on trees 283

For E ⊆ ∂T , let Ec = ∂T\E ,

U =
{
u : F -superharmonic on T so that lim inf

v→b
u(v) ≥ χE(b) for all b ∈ ∂T

}

the upper class of E , and

ωF (v,E) = inf{u(v) : u ∈ U}

the F -harmonic measure function for E ; and call ωF (φ,E) the F -harmonic mea-
sure of E , in short ωF (E) . Theorem 3 below shows that ωF is not an outer
measure unless F is the usual average.

Following the arguments in [HKM] for the continuous case, we have

(i) 0 ≤ ωF ( · , E) ≤ 1 on T ;

(ii) ωF (E) ≤ ωF (G) when E ⊆ G ;

(iii) if E is compact, then limv→b ωF (v,E) = 0 for b ∈ Ec ;

(iv) ωF ( · , E) is F -harmonic on T ;

(v) if E and G are disjoint compact sets on ∂T and ωF (E) = ωF (G) = 0,
then ωF (E ∪G) = 0;

(vi) if E is compact, then ωF (E) + ωF (Ec) = 1;

(vii) if E1 ⊇ E2 ⊇ · · · ⊇ Ej ⊇ · · · are compact sets then limωF (Ej) =
ωF (∩Ej) .

Examples. (1) For 1 < p <∞ , the p -Laplacian ∆p of a vector X in Rκ is

∑

j

xj |xj |p−2,

and X is said to be p -harmonic (or p -superharmonic) if ∆pX = 0 (or ≤ 0). The
operator p(X) = t from Rκ to R1 defined implicitly by

∆p(X − t1) = Σ(xj − t)|xj − t|p−2 = 0

is an averaging operator; and ∆p(X−t1) = 0 if and only if
∑κ

1 |xj−x|p attains its
minimum at x = t . Thus p -harmonic functions and Fp -harmonic functions are the
same, and they are the discrete analogues of the solutions to div(∇u|∇u|p−2) = 0.
We use ωp to denote the p -harmonic measure.

(2) The discrete analogue to the quasilinear elliptic equation divA(∇u) = 0,
which contains p -Laplacian as a special case, gives rise to another host of averaging
operators, see Section 5.



284 R. Kaufman, J.G. Llorente, and J.-M. Wu

2. The critical dimension d(κ, F )

Given a vector X = (x1, x2, . . . , xκ) , we identify it with a random variable,
again called X , with probability P (X = xj) = κ−1 for 1 ≤ j ≤ κ . When X
contains both positive and negative entries, with E denoting expectation,

β(X) = min{E (etX) : t ∈ R}

is less than 1 and is attained at some t(X) , with t(X) > 0 if Σxj < 0 and
t(X) < 0 if Σxj > 0 ([KW]).

Let

m(κ, F ) = min

{ κ∑

1

exj : F (X) = 0

}

and observe that the minimum is attained. In fact, xj < log κ as soon as the
sum is less than κ . It follows from property (vii) of the averaging operators that
minxj ≥ −b log κ . The minimum is attained by continuity.

Define
d(κ, F ) = logm(κ, F )/ log κ.

Then 0 < d(κ, F ) < 1 unless F is the usual average, in which case d(κ, F ) = 1,
see Lemma 3 below.

The Fatou set F (u) of a function u is the set of branches b = (b1, b2, . . .)
on which limn→∞ u(b1, b2, . . . , bn) exists and is finite, and BV(u) is the set of
branches b on which u has finite variation Σ|u(b1, b2, . . . , bn+1)−u(b1, b2, . . . , bn)| .
Recall that Fp is the averaging operator associated with the p -Laplacian, and let
m(κ, p) = m(κ, Fp) , d(κ, p) = d(κ, Fp) . It is proved in [KW] that

min
Hp

dim F (u) = min
Hp

dim BV(u) = d(κ, p)

with Hp being the set of bounded p -harmonic functions on T . Values of d(κ, p)
can be estimated by Lagrange multipliers, and asymptotics can be found for large
p or large κ ([KW]). The same argument gives the following.

Theorem A. Let F be an averaging operator and HF be the set of bounded
F -harmonic functions on T . Then

min
HF

dim F (u) = min
HF

dim BV(u) = d(κ, F ).

Remark. The monotonicity of the averaging operators is not used in the
proof. Thus Theorem A is valid for the class of operators satisfying (i) ∼ (iv)
only.

Theorem A suggests that dimωF = d(κ, F ) might be true.
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Theorem 1. Let F be an averaging operator. Suppose that E is a compact
set on ∂T with dimE < d(κ, F ) then ωF (E) = 0 .

The entropy of a probability measure µ on {1, 2, . . . , κ} is H(µ) = −Σµj log µj ,
where µj = µ({j}) .

Lemma 1. Let F (x1, x2, . . . , xκ) = 0 . Then there is a probability measure
ν on {1, 2, . . . , κ} such that

(i) Σνjxj = 0 ,

(ii) H(ν) ≥ logm(κ, F ) ,

(iii) min νj ≥ c(κ, F ) > 0 .

Proof. We follow the proof in [KW]. If Σxj = 0, choose νj = 1/κ for all j . We
may assume then Σxj < 0 and recall that (1/κ)Σetxj attains a minimum β(X) at
some τ > 0. Then κβ(X) ≥ m(κ, F ) and Σxje

τxj = 0. Define νj = eτxj/κβ(X) ,
and observe that Σνj = 1, Σνjxj = 0 and H(ν) = log κβ(X) ≥ logm(κ, F ) . To
prove (iii), note that τxj ≤ log κ for all j ; then by property (vi) of averaging
operators, min τxj ≥ −b log κ . This gives (iii).

In the following, we let Sr be the class of subsets of branches of the tree,
defined by the first r coordinates. This is a finite field whose atoms are called
cylinders of rank r . Now Sr contains κr cylinders Cr of Lebesgue measure κ−r

each and the same diameter. The cylinder C0 is ∂T .

Proof of Theorem 1. Let u(v) = ωF (v,E) , then 0 ≤ u ≤ 1 on T . Since E
is compact, limv→b u(v) = 0 for all b ∈ ∂T\E . We now apply Lemma 1 to the
gradient of u at each vertex v , to find a probability measure µ on ∂T so that
u is a martingale with respect to µ . The process resembles the linearization of a
solution of a nonlinear operator in the continuous situation, see [CFPR] and [KW].
To define µ , let µ(C0) = 1 and assume µ has been defined on all cylinders of
rank ≤ r . Let Cr be a cylinder of rank r represented by (b1, b2, . . . , br) . The
gradient (x1, . . . , xκ) of u at the vertex v = (b1, . . . , br) forms an F -harmonic
vector. Let ν be the probability measure on {1, 2, . . . , κ} associated with the
present (x1, x2, . . . , xκ) as in Lemma 1, and define µ on the κ cylinders Cr+1

of rank r + 1 contained in Cr by µ(Cr+1) = νjµ(Cr) if Cr+1 is represented by
(b1, b2, . . . , br, j) . We have defined µ on all cylinders of rank r + 1, and then on
∂T by σ -additivity.

Properties (ii) and (iii) in Lemma 1 yield that µ(Cr+1) > c(κ, F )µ(Cr) when-
ever Cr+1 ⊆ Cr , and H(µ | Cr) ≥ logm(κ, F ) . Then by a theorem on entropy
and the dimension associated with a measure, known as early as Besicovitch and
Eggleston and stated in the form used here in [KW], the measure µ is zero on any
subset of ∂T of dimension less than logm(κ, F )/ log κ .
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Note from (i) of Lemma 1, u is a bounded martingale with respect to µ ,
and therefore by the martingale convergence theorem, limv→b u(v) = u∗(b) exists
µ -a.e. on ∂T and

u(φ) =

∫

∂T

u∗(b) dµ(b) =

∫

E

u∗(b) dµ(b) = 0.

This proves that E has zero F -harmonic measure and thus the theorem.

We need another expression for the quantity m(κ, F ) in the next section.

Lemma 2. Let F be an averaging operator, not equal to the usual average.
Then there exists Y = (y1, y2, . . . , yκ) so that F (Y ) = 1 ,

∏
yj > 1 and yj > 0

for all 1 ≤ j ≤ κ .

Proof. Since F is not the usual average, there is some vector X = (x1, . . . , xκ)
such that F (X) = 0 but Σxj > 0. Now we can take Y = 1 + tX for some small
positive t .

Let

m∗(κ, F ) = inf
{

min
t≤0

Σytj : F (Y ) = 1 and yj > 0 for all 1 ≤ j ≤ κ
}
,

and

m∗∗(κ, F ) = inf

{
min
t≤0

Σytj : F (Y ) = 1,
∏

yj > 1 and yj > 0 for all 1 ≤ j ≤ κ
}
.

Lemma 3. m(κ, F ) = m∗(κ, F ) = m∗∗(κ, F ) . The minimum m(κ, F ) is
attained. When F is not the usual average, m∗(κ, F ) and m∗∗(κ, F ) are not
attained by vectors defining them, and 0 < m(κ, F ) < κ ; when F is the usual
average, m(κ, F ) = κ .

Proof. First suppose F (X) = 0. Then F (1 + tX) = 1 and 1 + tx1 , 1 +
tx2, . . . , 1 + txκ > 0 for small t < 0. Since limt→0− Σ(1 + txj)

1/t = Σexj , then
m∗(κ, F ) ≤ m(κ, F ) .

Conversely, suppose y1, y2, . . . , yκ > 0 and F (y1, y2, . . . , yκ) = 1. Hence
log yj ≤ yj − 1 and F (y1− 1, y2− 1, . . . , yκ− 1) = 0. Thus m(κ, F ) ≤ Σet(yj−1) ≤
Σytj for t ≤ 0. This proves m(κ, F ) ≤ m∗(κ, F ) , and m(κ, F ) = m∗(κ, F ) .

Suppose F is the usual average, then a simple calculation gives m(κ, F ) =
κ . Otherwise, there exists an F -harmonic vector (x1, x2, . . . , xκ) with Σxj <
0. Choosing t > 0 and sufficiently small, we have m(κ, F ) ≤ Σetxj < κ . We
proved earlier that m(κ, F ) is attained and therefore strictly positive. Thus 0 <
m(κ, F ) < κ .
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Suppose
∏κ

1 yj ≤ 1 and t ≤ 0. By the arithmetic-geometric mean inequality,
we have

κ−1Σytj ≥ exp(κ−1Σt log yj) ≥ 1.

Since 0 < m(κ, F ) < κ , m∗(κ, F ) = m∗∗(κ, F ) .

Because m(κ, F ) < κ , we only need to consider t < 0 and Y 6= 1 in the
second paragraph of the proof. Since log is strictly concave, m(κ, F ) < Σytj . This
shows that m∗(κ, F ) and m∗∗(κ, F ) are not attained, and completes the proof of
Lemma 3.

3. F -harmonic measure—dimension and null sets

When F is not the arithmetic mean, we show in Theorem 2 that there exists
a set of dimension at most d(κ, F ) , having full ωF measure; and in Theorem 3
that the union of two sets of zero ωF measure can have positive ωF measure.

If we were able to prove Theorem 1 for all Borel sets on ∂T , then from
Theorem 2,

dimension of ωF = d(κ, F ),

here dimension of ωF is inf{dimE : E Borel on ∂T, ωF (E) = 1} . The problem
is nontrivial, in view of Theorem 5.

Proposition 1. Let F be an averaging operator not equal to the usual
average, and Y be a vector in Rκ satisfying F (Y ) = 1 ,

∏
yj > 1 and yj > 0 for

all 1 ≤ j ≤ κ . Let X = (log y1, log y2, . . . , log yκ) , then there exists a set E ⊆ ∂T
so that ωF (E) = 0 , ωF (Ec) = 1 and dim(Ec) ≤ 1 + log β(X)/ log κ .

Proof. Define an F -harmonic function u on T as follows: let u(φ) = 1;
suppose u has been defined at a vertex v , define u at its immediate succes-
sors (v, 1), (v, 2), . . . , (v, κ) by y1u(v), y2u(v), . . . , yκu(v) , respectively. It is clear
that u is positive F -harmonic. And suppose that v = (v1, v2, . . . , vn) with
vj ∈ {1, 2, . . . , κ} , then

u(v) =
n∏

j=1

yvj .

Let m and n be positive integers, define

E(m,n) =

{
b :

n∏

j=1

ybj > m

}
, Em =

⋃
n≥1

E(m,n) and E =
∞⋂
m=1

Em.

It is clear that Em decreases as m increases, and E is exactly the set of b along
which u is unbounded.
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To calculate dimEc , we note that Ec =
⋃∞
m=1E

c
m and Ecm ⊆ E(m,n)c for

every n ≥ 1. We shall calculate dimEcm . Denote by X also the random variable
defined by probability P (X = log yj) = 1/κ for 1 ≤ j ≤ κ ; then the expectation
E (etX) = E (Y t) attains its minimum β(X) at t(X) < 0.

Let Sn be the sum X1 +X2 + · · ·+Xn of independent identically distributed
random variables with the same law as X . Then the Lebesgue measure

λ
(
E(m,n)c

)
= P (Sn ≤ logm) = P

(
et(X)Sn ≥ mt(X)

)

≤ m−t(X)
(
E (et(X)X)

)n
= m−t(X)β(X)n.

Therefore E(m,n)c is contained in β(X)nm−t(X)κn many balls of diameter κ−n .
From this we see that

dimEcm ≤ 1 + log β(X)/ log κ for all m ≥ 1.

Therefore
dimEc ≤ 1 + log β(X)/ log κ,

where
β(X) = min

t

∑

j

et log yj = min
t

∑

j

ytj .

We now prove ωF (E) = 0. For each m > 1, define um , an F -harmonic
function by stopping time argument. Let um(φ) = u(φ) = 1, and suppose um
has been defined at a certain vertex v . If um(v) < m , then let um(v, j) = u(v, j)
for 1 ≤ j ≤ κ ; if um(v) ≥ m , then um stops and takes the value um(v) at
all successors (v, j) of v . It is clear that um is positive F -harmonic, and that
limv→b um(v) ≥ m for b ∈ Em . It follows that ωF (E) ≤ ωF (Em) ≤ um(φ)/m =
1/m for each m > 1. Therefore ωF (E) = 0.

Recall, from property (vi) stated after the definition of F -harmonic functions,
that for compact sets S , ωF (S) + ωF (Sc) = 1. Since the identity is unknown for
general sets, we need to show ωF (Ec) = 1. Note that Ec =

⋃
mE

c
m and that 1−

um/m ≤ 1 on T with boundary values limv→b 1−um(v)/m ≤ 0 on Em . It follows
from the definition of F -harmonic measure and the monotonicity property of F
that ωF (Ec) ≥ ωF (Ecm) ≥ 1− um(φ)/m = 1− 1/m . This says that ωF (Ec) = 1.

This completes the proof of Proposition 1.

Theorem 2. Let F be an averaging operator on Rκ . Then there exists a
set E on ∂T such that ωF (E) = 0 , ωF (Ec) = 1 and dimEc ≤ d(κ, F ) .

The fact that m(κ, F ) is not attained by mint≤0 Σytj for any vector Y satis-
fying F (Y ) = 1,

∏
yj > 1 and yj > 0 for all 1 ≤ j ≤ κ , complicates the proof of

the theorem. For otherwise, we could have used an extremal Y in Proposition 1
and achieved the dimension d(κ, F ) .
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Proof. Assume that F is not the usual average; otherwise take Ec = ∂T .
Let X be an F -harmonic vector such that Σexj = m(κ, F ) , then Σxj < 0.

Let ψ(n) = (log+ log+ n)−1 when n > ee and ψ(n) = 1 otherwise. Let Y (n) =

(y
(n)
1 , y

(n)
2 · · · y(n)

κ ) be a sequence of vectors defined by

y
(n)
j = 1− ψ(n)xj

provided that n is so large that y
(n)
j > 1

2 for all j ; and let Y (n) = 1 otherwise.

Then F (Y (n)) = 1.
Define now a positive F -harmonic function u on T by the multiplicative

process in Proposition 1 with respect to the varying sequence {Y (n)} . That is
u(φ) = 1, after u(v) has been defined at a vertex v = (v1, v2, . . . , vn) , let u(v, j) =

y
(n+1)
j u(v) for 1 ≤ j ≤ κ . So, for v = (v1, v2, . . . , vn) ,

u(v) =
n∏

r=1

(
1− ψ(r)xvr

)
.

Let η(n) = ψ(n)−1 , so η(n) = log log n for n > ee . We want to estimate
the average Mn of u(v)−η(n) over all vertices of length n . For n large and√
n ≤ r ≤ n , we have 1 ≤ ψ(r)η(n) ≤ 1 + 2ψ(n) . For these r ’s we have a formula

for the expected value

E
(
1− ψ(r)X

)−η(n)
= E

(
e−η(n) log(1−ψ(r)X)

)

= E
(
e(1+O(ψ(n)))X

)
= κ−1m(κ, F ) + 0

(
ψ(n)

)
.

Here X is the random variable defined by P (X = xj) = κ−1 . For 1 ≤ r <
√
n ,

we use y
(r)
j = 1− ψ(r)xj >

1
2 .

Writing γ = logm(κ, F )− log κ , and applying the product formula for u , we
can summarize

Mn = E
(
u(v1, v2, . . . , vn)−η(n)

)

= E

(√n−1∏

1

(
1− ψ(r)X

)−η(n)
)

E

( n∏
√
n

(
1− ψ(r)X

)−η(n)
)

= eγn+o(n).

Let

En =

{
b : u(b1, b2, . . . , bn) =

n∏

r=1

(
1− ψ(r)xbr

)
> n

}
,
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and
E = lim supEn.

Note from the estimate in the last paragraph, the Lebesgue measure

λ(Ecn) ≤Mnn
η(n) = exp

(
γn+ o(n)

)
;

therefore Ecn is contained in at most κn exp
(
γn + o(n)

)
many balls of diameter

κ−n each. Since Ec = lim inf Ecn , dimEc ≤ 1 + γ/ log κ = d(κ, F ) .
Note that u is unbounded at each branch in E ; unlike Proposition 1, the set

E here does not contain all branches b along which u is unbounded. However
arguing as in Proposition 1, we can show that ωF (E) = 0 and ωF (Ec) = 1. This
proves Theorem 2.

Theorem 3. Let F be a permutation invariant averaging operator, not
equal to the usual average. Then there exist congruent sets E1, E2, . . . , Eκ with
∪Ej = ∂T such that ωF (Ej) = 0 for 1 ≤ j ≤ κ . And there exist sets A and B
on ∂T such that ωF (A) = ωF (B) = 0 , however ωF (A ∪B) > 0 .

Proof. Let τ be the permutation of 1, 2, 3, . . . , κ defined by τ1 = 2, τ2 =
3, . . . , τκ = 1. Then for each state j , the images j , τj , τ 2j , τκ−1j are just
the κ states in a different order. The powers of τ operate on the vertices of
T in the obvious way, and also on ∂T . Sets A and B in ∂T are congruent if
B = τ qA for some q = 0, 1, 2, . . . , κ − 1. Clearly congruent sets have the same
F -harmonic measure. Let E be the set defined in Proposition 1. Then we claim
that E ∪ τE ∪ τ2E ∪ · · · ∪ τκ−1E = ∂T . After that the first assertion in the
theorem follows. Now let q0 = min

{
q : F − ω(E ∪ τE ∪ τ 2E ∪ · · · ∪ τ qE) > 0

}
,

A = E ∪ τE ∪ · · · τ q0−1E and B = τ q0E , and thus the second assertion follows.

To verify the claim, let Y be the vector in Proposition 1, δ =
∏
yj > 1, and

u be the function in the proof of Proposition 1. Note from the definition of u that
for a vertex v of length n ,

u(v)u(τv)u(τ2v) · · ·u(τκ−1v) = δn.

Hence there is some q = 0, 1, . . . , κ−1 such that u(τ qv) ≥ δn/κ . Taking an infinite
branch b = (b1, b2, . . .) , we apply this to each segment (b1, b2, . . . , bn) obtaining a
number q(b, n) in {0, 1, 2, . . . , κ− 1} so that

u
(
τ q(b,n)(b1, b2, . . . , bn)

)
≥ δn/κ.

For each b , one of the numbers q in {0, 1, 2, . . . , κ − 1} occurs infinitely often
in {q(b, n) : n ≥ 1} . For that number q , u is unbounded on τ qb and therefore
b ∈ τκ−qE . This proves the claim and thus the theorem.
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Our next theorem says that there exists E ⊆ ∂T of ωp(E) = 0 and ωp(E
c) =

1 for all numbers p in an interval. When κ = 2, p -harmonic functions are 2-
harmonic; hence we assume κ ≥ 3.

Theorem 4. Given p0 > 2 , there exists E ⊆ ∂T with dimEc < 1 so that
ωp(E) = 0 and ωp(E

c) = 1 for all p ≥ p0 ; given 1 < p0 < 2 , there exists E ⊆ ∂T
with dimEc < 1 so that ωp(E) = 0 and ωp(E

c) = 1 for all 1 < p ≤ p0 .

Proof. Fix p0 6= 2, 1 < p0 <∞ ; let a = Fp0(1, 0, . . . , 0), i.e.

(1− a)p0−1 − (κ− 1)ap0−1 = 0.

Note that 1/κ < a < 1
2 when p0 > 2, and 0 < a < 1/κ when p0 < 2. Follow

the proof of Lemma 2; let y1 = 1 + (1 − a)t , yj = 1 − at(2 ≤ j ≤ k) and
Y = (y1, y2, . . . , yκ) with t fixed (t < 0 when p0 > 2 and t > 0 when p0 < 2) so
that Fp0(Y ) = 1,

∏
yj > 1 and yj > 0 for 1 ≤ j ≤ κ .

Simple calculations show that Y − 1 is p -superharmonic for p > p0 when
p0 > 2, and p -superharmonic for 1 < p < p0 when p < 2.

Assume for now that p0 > 2. Follow the construction of E and u in Propo-
sition 1 with F = Fp0 and the vector Y chosen above. Then u is p0 -harmonic
and is p -superharmonic for all p > p0 . Since F -harmonic measure is defined
to be the infimum of an upper class of F -superharmonic functions, the proof in
Proposition 1 shows ωp(E) = 0 and ωp(E

c) = 1 for all p ≥ p0 .
The case p0 < 2 is similar.

4. Choquet capacity

Theorem 5. Suppose F is a permutation invariant averaging operator on
Rκ , not equal to the usual average. Then there exists an increasing sequence of
sets B1 ⊆ B2 ⊆ · · · ⊆ Bj ⊆ · · · ⊆ ∂T so that limωF (Bj) < ωF (∪Bj) . In other
words, ωF is not a Choquet capacity.

A Choquet capacity C on a metric space Ω is a set function defined on all
subsets of Ω into [0,∞] with the following properties:

(i) C is monotone: C (A) ≤ C (B) when A ⊆ B ;

(ii) C is right continuous on compact sets: if A1 ⊇ A2 ⊇ · · · ⊇ Aj ⊇ · · · are
compact sets then lim C (Aj) = C (∩Aj) ;

(iii) C is left continuous on arbitrary sets: if B1 ⊆ B2 ⊆ · · · ⊆ Bj ⊆ · · · are
arbitrary sets then lim C (Bj) = C (∪Bj) .

The Capacitability Theorem of Choquet ([C], [D]) asserts that when Ω is a
complete separable metric space then all Borel subsets E of Ω are capacitable:

C (E) = sup
{
C (A) : A compact, A ⊆ E

}
.
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Proof of Theorem 5. Assume C is a Choquet capacity on a complete separable
metric space Ω. Later, we let Ω = ∂T and C = ωF .

Let M be another complete separable metric space and ψ a continuous func-

tion of M into Ω. Then the set function C ∗(S)
def
= C

(
ψ(S)

)
is easily seen to be a

Choquet capacity on M .
Let A , B be Borel sets in Ω, then A and B\A are continuous images

ψ1(N ), ψ2(N ) of the space N = NN , the set of sequences of positive integers;
([K, p. 446]). The discrete union N1∪N2 of two copies of N is homeomorphic to
N and we can map N1 ∪N2 into Ω by a continuous ψ (induced by ψ1 , and ψ2)
so that ψ(N1) = A and ψ(N2) = B\A .

Let M = N1 ∪N2 ; when L is compact in M then L ∩N1 and L ∩N2 are
both compact. Applying the capacitability theorem to C ∗ on M , we see that

C (A ∪B) = C
(
ψ(M)

)
= C ∗(M)

= sup{C ∗(L1 ∪ L2) : L1, L2 compact and L1 ⊆ N1, L2 ⊆ N2}
≤ sup{C (G1 ∪G2) : G1, G2 compact and G1 ⊆ A and G2 ⊆ B\A}.

Suppose that ωF is a Choquet capacity, and let Ω = ∂T , C = ωF , A and B
be the sets in Theorem 3 chosen with ωF (A) = ωF (B) = 0 but ωF (A ∪ B) > 0.
Note that ωF (G1) = ωF (G2) = 0 for compact G1 ⊆ A and G2 ⊆ B\A , thus
ωF (G1 ∪ G2) = 0 by property (v) of F -harmonic measures stated in Section 1.
The inequalities in the last paragraph would show that ωF (A ∪ B) = 0. The
contradiction says that ωF can not be a Choquet capacity. Since the first two
properties of Choquet capacity hold for ωF , property (iii) must fail for ωF . This
completes the proof of Theorem 5.

5. Ellipticity and the strong maximum principle

In this section, we study the analogue of the quasilinear elliptic equation
divA(∇u) = 0 on a tree T .

Let 1 < p < ∞ , q = p/(p− 1), and 0 < α ≤ β . Let A: Rκ → Rκ be a
continuous function satisfying the following structural conditions:

(i) 〈AX,X〉 ≥ α‖X‖pp ,

(ii) ‖AX‖q ≤ β‖X‖p−1
p ,

(iii) 〈AX −AY,X − Y 〉 > 0 for all X 6= Y ,

(iv) A(λX) = λ|λ|p−2AX for all λ ∈ R ;

A is an example of monotone operator.

Example. Let 1 < p < ∞ and AX = (x1|x1|p−2, x2|x2|p−2, . . . , xκ|xκ|p−2) .
Then A satisfies (i) ∼ (iv) with α = β = 1; and 〈AX,1〉 is the p -Laplacian of X .
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A vector X ∈ Rκ is called an A -harmonic vector if

〈AX,1〉 = 0.

Each monotone operator A defines an operator FA from Rκ to R1 with FA(X) =
t provided that

〈A(X − t1),1〉 = 0,

or X − t1 is A -harmonic.
From (iii), we see that this equation has at most one solution. To prove that

there is a solution, we show that lim〈A(X − t1),1〉 = ∓∞ as t → ±∞ ; in fact
A(X + t1) = t|t|p−2A(1 + t−1X) and A is continuous while 〈A1,1〉 > 0.

The solution of 〈A(X − t1),1〉 = 0 is a quasiminimizer for the p -Dirichlet
sum

∑
j |xj − x|p over all real x . To see this,

‖X − t1‖pp ≤ α−1〈A(X − t1), X − t1〉 = α−1〈A(X − t1), X − x1〉

≤ β

α
‖X − t1‖p−1

p ‖X − x1‖p
and thus

‖X − t1‖pp ≤
(
β

α

)p
‖X − x1‖pp.

It is easy to see that FA has properties (i) ∼ (iii) of the averaging operators.
FA satisfies (iv), the strong maximum principle, if and only if every nonzero

A -harmonic vector changes sign. For each p ∈ (1,∞) and κ > 1, there are A ’s
for which the strong maximum principle fails, see the second remark below.

When the ratio α/β of the ellipticity constants is close to 1, the strong
maximum principle holds. Let

γ(κ, p) =
(
(κ− 1)q−1

[
1 + (κ− 1)q−1

]−1)1/q
.

Theorem 6. Under the assumption α/β > γ(κ, p) , any nonzero A -harmonic
vector changes sign, and the strong maximum principle holds for FA .

From Theorem A and the remark immediately after, we obtain the following.

Corollary. Suppose that α/β > γ(κ, p) . Then

min
HA

dim F (u) = min
HA

dim BV(u) = d(κ,A),

where HA is the set of bounded A -harmonic functions on T .

Remark. When p = 2, γ(κ, 2) = (1 − 1/κ)1/2 , and this is sharp for Theo-
rem 6. To see this, let e = (1, 0, . . . , 0), then e − (1/κ)1 is its projection on the
hyperplane 〈Y,1〉 = 0 and u = (1−1/κ)−1/2

(
e− (1/κ)1

)
has length 1. Let A be

an orthogonal matrix A such that AeT = uT and 〈AX,X〉 ≥ 〈e,u〉‖X‖22 for all
column vectors X ∈ Rκ . Then 〈e,u〉 = (1−1/κ)1/2 and the structural conditions
are satisfied with p = q = 2, α = (1− 1/κ)1/2 and β = 1. Since e is A -harmonic
and does not change sign, γ(κ, 2) is sharp for Theorem 6.
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Remark. When p 6= 2, we do not have examples to show the sharpness
of γ(κ, p) . However for each p 6= 2, 1 < p < ∞ , there exists A satisfying the
structural conditions, for which e = (1, 0, . . . , 0) is A -harmonic. To see this, let

ε0(κ, p) = (κ− 1)−1/p[1 + (κ− 1)q−1]−1/p

and let X =
((

1−(κ−1)εpo
)1/p

,−ε0,−ε0, . . . ,−ε0

) (
ε0 = ε0(p, κ)

)
, then ‖X‖p = 1

and X is p -harmonic. Let P be the p -harmonic operator such that PY =
(y1|y1|p−2, y2|y2|p−2, . . . , yκ|yκ|p−2) for all Y ∈ Rκ , and B be an invertible ma-
trix with BeT = XT and B1T = 1T . Let A = BTPB , then 〈AeT ,1T 〉 =
〈PBeT , B1T 〉 = 〈PXT ,1T 〉 = 0, so e is A -harmonic. Clearly A has properties
(i) ∼ (iv).

The following result controls the oscillation of A -harmonic vectors, from which
Theorem 6 follows by taking C = 0.

Proposition 2. Let X 6= 0 be A -harmonic and C ≥ 0 . Suppose that
α/β ≥ λγ(κ, p) for some λ ∈ [1, γ(κ, p)−1] . Then maxxj ≤ C (or minxj ≥ −C )
implies that

‖X‖p ≤ C/ψ−1(λ),

where
ψ(t) = t+ [1− (κ− 1)tp]1/p.

The function ψ is increasing in [0, ε0(κ, p)] , ψ(0) = 1 and ψ
(
ε0(κ, p)

)
=

γ(κ, p)−1 .
If X is p -harmonic, then from the a priori bound xj ≤ C it is easy to deduce

that |xj | ≤ C(κ − 1)1/(p−1) . Proposition 2 can be considered as a generalization
of this fact in the A -harmonic setting. The proof of the proposition is based on
the following.

Lemma 4. For 0 ≤ ε ≤ 1 , let

φ(ε, κ, p) = max
{
〈X,Y 〉 : ‖X‖p = ‖Y ‖q = 1, 〈Y,1〉 = 0, xj ≥ −ε for all 1 ≤ j ≤ κ

}
.

Then

φ(ε, κ, p) =

{
γ(κ, p)

(
ε+ [1− (κ− 1)εp]1/p

)
, if 0 ≤ ε ≤ ε0,

1, if ε0 ≤ ε ≤ 1.

Remark. For 0 ≤ ε ≤ ε0(p, κ) , the maximum φ(ε, κ, p) is attained when

X =
((

1 − (κ − 1)εp
)1/p

,−ε, . . . ,−ε
)

and Y =
(
γ,−γ/(κ − 1), . . . ,−γ/(κ − 1)

)
,(

γ = γ(κ, p)
)

; and φ(ε, p, κ) ≥ γ(p, κ) . When ε = 0, X = (1, 0, . . . , 0) does not
change sign and 〈X,Y 〉 = γ(p, κ) . Observe that 〈X,Y 〉 = 1 when ε = ε0(κ, p) ;
Hölder’s inequality implies that φ(ε, κ, p) = 1 when ε0(κ, p) ≤ ε ≤ 1.
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Proof of Lemma 4. Assume as we may that 0 ≤ ε ≤ ε0(κ, p) . Before going
to the proof, we need some preliminary computations. Suppose that X,Y ∈ Rn ,
are normalized in the sense that ‖X‖p = ‖Y ‖q = 1 and that 〈Y,1〉 = 0. Assume
that y1, . . . , yn ≥ 0 and yn+1, . . . , yκ < 0, for some n , 1 ≤ n ≤ κ− 1. Then

n∑

j=1

yqj ≤
( n∑

j=1

yj

)q
=

( κ∑

j=n+1

|yj |
)q

≤ (κ− 1)q−1
κ∑

j=n+1

|yj |q = (κ− 1)q−1

(
1−

n∑

j=1

yqj

)
,

so
n∑

j=1

yqj ≤ (κ− 1)q−1[1 + (κ− 1)q−1]−1,

and, analogously,

κ∑

j=n+1

|yj |q ≤ (κ− 1)q−1[1 + (κ− 1)q−1]−1,

so
n∑

j=1

yqj ≥ [1 + (κ− 1)q−1]−1.

Now, assume that xj ≥ −ε for all j , and let J = {j : n+1 ≤ j ≤ κ, −ε ≤ xj ≤ 0} .
Then

〈X,Y 〉 ≤
n∑

j=1

xjyj +
∑

j∈J
|xj | |yj |

≤
( n∑

j=1

|xj |p
)1/p( n∑

j=1

yqj

)1/q

+

(∑

j∈J
|xj |p

)1/p(
1−

n∑

j=1

yqj

)1/q

.

Now set

a =

n∑

j=1

|xj |p, b =
∑

J

|xj |p, c =

n∑

j=1

yqj .

Observe that, if b1 = (κ − 1)εp , c1 = γ(κ, p)q , then a, b, c ≥ 0, a + b ≤ 1,
0 ≤ b ≤ b1 ≤ 1 − c1 ≤ c ≤ c1 < 1, and γ(κ, p)ε + γ(κ, p)[1 − (κ − 1)εp]1/p =

(1− b1)1/pc
1/q
1 + b

1/p
1 (1− c1)1/q . The above considerations show that Lemma 4 is

a consequence of the following
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Lemma 5. Let f(a, b, c) = a1/pc1/q + b1/p(1 − c)1/q and suppose that 0 ≤
b1 ≤ 1− c1 ≤ c1 < 1 . Then

max
{
f(a, b, c) : a, b, c ≥ 0, a+ b ≤ 1, 0 ≤ b ≤ b1, 1− c1 ≤ c ≤ c1

}

= (1− b1)1/pc
1/q
1 + b

1/p
1 (1− c1)1/q.

Proof. Note that f is increasing in a and in b , therefore at the maximum,
a+ b = 1. Let

g(b, c) = (1− b)1/pc1/q + b1/p(1− c)1/q,

and claim that

max
{
g(b, c) : 0 ≤ b ≤ b1, 1− c1 ≤ c ≤ c1

}
= (1− b1)1/pc

1/q
1 + b

1/p
1 (1− c1)1/q.

Fix c ∈ [1 − c1, c1] ; then g(b, c) is an increasing function of b over the interval
[0, 1− c] ; since b1 ≤ 1− c1 ≤ c ,

max{g(b, c) : 0 ≤ b ≤ c1} = g(b1, c).

Again g(b1, c) is an increasing function of c over the interval [0, 1− b1] and c1 ≤
1− b1 , we conclude that

max{g(b1, c) : 1− c1 ≤ c ≤ c1} = g(b1, c1).

This verifies the claim and the lemma.

Proof of Proposition 2. Assume that α/β = λγ(κ, p) with 1 ≤ λ ≤ γ(κ, p)−1 .
Let X be a nonzero A -harmonic vector, X ′ = X/‖X‖p and Y = AX/‖AX‖q ,
then X ′ is also A -harmonic and

‖X ′‖p = ‖Y ‖q = 1, 〈X ′, Y 〉 ≥ α/β.

Suppose now that maxxj ≤ C and let ε = C/‖X‖p . We can assume that
ε ≤ ε0(κ, p) . Then Lemma 4, applied to X ′ and Y , gives

λγ(κ, p) ≤ 〈X ′, Y 〉 ≤ γ(κ, p)ε+ γ(κ, p)[1− (κ− 1)εp]1/p,

so ε = C/‖X‖p ≥ ψ−1(λ) and Proposition 2 follows.
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6. Ellipticity and the critical dimension

Fix p, q and let A be a monotone operator on Rκ and α, β the constants
in (i) and (ii). Assume from now on that α/β > γ(κ, p) ; then FA has properties

(i) ∼ (iv) of the averaging operators, and m(κ,A)
def
=m(κ, FA) = min{Σexj : X is

A -harmonic} and d(κ,A) = logm(κ,A)/ log κ are attained.
We shall compare the critical dimension d(κ,A) with the critical dimension

d(κ, p) when the ratio α/β of the ellipticity constants is close to 1. The estimates
obtained are not sharp but are enough to show that if α/β tends to 1, then d(κ,A)
tends to d(κ, p) uniformly in A .

Theorem 7. Fix p , q and A as above, and assume that α/β = λγ(p, κ) for
some λ ∈ (1, γ−1(p, κ)] . Then

exp{−M(p, 1− α/β) log κ/ψ−1(λ)} ≤ m(κ,A)/m(κ, p)

≤ exp{M(p, 1− α/β) log κ/ε0(κ, p)}

where

M(p, δ) =





δ1/p(p1/p + 1), if p ≥ 2 and 0 ≤ δ ≤ q

2p
,

δ1/2

((
2q

p

)1/2

+ 1

)
, if 1 < p < 2 and 0 ≤ δ ≤ p

2q
,

2, if δ > min

{
p

2q
,
q

2p

}
.

Corollary. Under the assumptions above, d(κ,A)→ d(κ, p) uniformly in A
as α/β ↑ 1 .

To prove Theorem 7, we associate to any A -harmonic vector X a p -harmonic
vector Z (and conversely) in such a way that each zj is close to xj as soon as
the ratio α/β is close to 1; we look at the “near equality” case in the arithmetic-
geometric inequality and compare Σexj with Σezj .

Suppose that 0 ≤ x, z ≤ 1. Then by the arithmetic-geometric inequality,

xp

p
+
zp

q
− xzp−1 ≥ 0

with equality if and only if x = z . The following two lemmas give estimates on
|x− z| and x+ z in the “near equality” situation.

Lemma 6. Let 0 ≤ δ ≤ 1 and

M+(p, δ) = max

{
|x− z| : 0 ≤ x, z ≤ 1,

xp

p
+
zp

q
− xzp−1 = δ

}
.
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Then

M+(p, δ) ≤





(δp)1/p, when p ≥ 2,(
2δq

p

)1/2

, when 1 < p < 2.

Lemma 7. Let 0 ≤ δ ≤ 1 and

M−(p, δ) = max

{
x+ z : 0 ≤ x, z ≤ 1,

xp

p
+
zp

q
+ xzp−1 = δ

}
.

Then

M−(p, δ) ≤ δ1/p(max{p1/p, q1/p}+ 1).

Proof of Lemma 6. Case 1: p ≥ 2. Suppose that z ≤ x = z + h . By
differentiation on h , it follows that

(z + h)p

p
+
zp

q
− (z + h)zp−1 ≥ hp

p
.

If x ≤ z = x+ h , then also by differentiation we get

xp

p
+

(x+ h)p

q
− x(x+ h)p−1 ≥ hp

q
≥ hp

p
,

so
xp

p
+
zp

q
− xzp−1 ≥ |x− z|

p

p
.

Case 2: 1 < p < 2. Also by differentiation we get now that

xp

p
+
zp

q
− xzp−1 ≥ p− 1

2
(x− z)2

which proves the lemma.

Proof of Lemma 7. If x ≥ z , then zp ≤ xzp−1 ≤ δ and x ≤ (δp)1/p so, x + z ≤
(δ)1/p(1+p1/p) . Analogously, if z ≥ x , we get x+z ≤ δ1/p(1+q1/p) and therefore

M−(p, δ) ≤ δ1/p(max{p1/p, q1/p}+ 1).

Lemma 8. Let X and Y be vectors in Rκ which satisfy ‖X‖p = ‖Y ‖q = 1 ,
〈Y,1〉 = 0 and 〈X,Y 〉 ≥ 1− δ for some δ ∈ [0, 1] . Let Z ∈ Rκ be chosen so that
yj = zj |zj |p−2 for 1 ≤ j ≤ κ . Then max |xj − zj | ≤ M(p, δ) , where M is the
function in the statement of Theorem 7.
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Proof. Observe that Z is a p -harmonic vector and that

‖Z‖p = 1, 1− δ ≤ Σxjzj |zj |p−2 ≤ 1.

Suppose for now that 0 ≤ δ ≤ min{p/2q, q/2p} and let J+ = {j : xjzj > 0} and
J− = {1, 2, . . . , κ}\J+ . Suppose i ∈ J+ , then

1− δ ≤ 〈X,Y 〉 ≤
∑

J+

|xj | |zj |p−1 ≤ |xi| |zi|p−1 +
∑

J+\{i}

( |xj |p
p

+
|zj |p
q

)

≤ |xi| |zi|p−1 +
1− |xi|p

p
+

1− |zi|p
q

,

so
|xi|p
p

+
|zi|p
q
− |xi| |zi|p−1 ≤ δ;

and |xi − zi| ≤M+(p, δ) . On the other hand, if i ∈ J− , then the same argument
shows that

|xi|p
p

+
|zi|p
q

+ |xi| |zi|p−1 ≤ δ

and that |xi − zi| = |xi|+ |zi| ≤M−(p, δ) . The lemma follows from the estimates
of M+ and M− in Lemmas 6 and 7.

Proof of Theorem 7. Let X be a nonzero A -harmonic vector and set X ′ =
X/‖X‖p and Y ′ = AX/‖AX‖q . Choose Z ′ ∈ Rκ so that yj = z′j |z′j |p−2 for all
j , and define Z = ‖X‖pZ ′ . We apply Lemma 8 to X ′ , Z ′ , δ = 1− α/β to get

max |x′j − z′j | ≤M(p, 1− α/β),

so

max |xj − zj | ≤M(p, 1− α/β)‖X‖p;

consequently

exp{−M(p, 1− α/β)‖X‖p} ≤ Σexj/Σezj ≤ exp{M(p, 1− α/β)‖X‖p}.

Suppose now that α/β = λγ(κ, p) and that X is an extremal vector for
m(κ,A) . Since 0 is also A -harmonic, we must have Σexj ≤ κ and maxxj ≤ log κ .
Apply Proposition 2 to the extremal vector X , we obtain ‖X‖p ≤ log κ/ψ−1(λ) .
Therefore

exp
{
−M(p, 1− α/β) log κ/ψ−1(λ)

}
≤ m(κ,A)/m(κ, p).
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To reverse the argument, we need some topological properties of the map-
ping A . First observe that by the monotonicity (iii), A is one to one; and by the
homogeneity (iv), the mapping

BX = AX/‖AX‖q
is also one to one from Sp = {X : ‖X‖p = 1} to Sq = {Y : ‖Y ‖q = 1} . As a
consequence of Borsuk’s Antipodal Theorem [Du, Chapter 16], this implies that
B is also surjective, and again from homogeneity, it follows that A is surjective
too.

Now choose a p -harmonic vector Z , extremal for m(κ, p) and define Y by
letting yj = zj |zj |p−2/‖Z‖p−1

p for 1 ≤ j ≤ κ . Then ‖Y ‖q = 1 and 〈Y,1〉 = 0.
Choose X ′ with ‖X ′‖p = 1 such that BX ′ = Y and set X = ‖Z‖pX ′ . Then
Y = AX/‖AX‖q . Apply Proposition 2 to the p -harmonic case (where α = β = 1),
we get ‖X‖p = ‖Z‖p ≤ log κ/ε0(κ, p) ; therefore

m(κ,A)/m(κ, p) ≤ exp
{
M(p, 1− α/β) log κ/ε0(κ, p)

}
.

This completes the proof of Theorem 7.

7. 1-Laplacian and ∞-Laplacian

Suppose we consider 1-Laplacian ∆1 as the limit of ∆p when p → 1+ , and
define F1(X) = t when

lim
p→1+

∑

j

(xj − t)|xj − t|p−2 = 0;

we note immediately that this definition leads to confusion even in the simple
situations, e.g. F1(1, 2, 3) and F1(1, 1, 3).

Therefore we define F1(X) through minimizing 1-Dirichlet sums. Given a
vector X ∈ Rκ , the possible values of the average F1(X) are the numbers x = t
that minimize the sum

∑κ
j=1 |xj − x| over all x ∈ R1 .

Suppose that t is the unique minimizer, and let n+, n0, n− be the number of
xj ’s that are greater than, equal to, or less than t , respectively. Then, necessarily,
n−+n0 > n+ and n+ +n0 > n− , or simply n0 > |n+−n−| ; this is also a sufficient
condition that t be the sole minimizer. In this case, define F1(X) = t .

If there is more than one minimizer, then the minimizers occupy an interval
[a, b] , whose endpoints are among the xj ’s. This occurs if and only if κ is even
and there are exactly 1

2κ terms xj ≥ b , 1
2κ terms xj ≤ a . We then define

F1(X) = 1
2 (a+ b) .

The operator F1 has properties (i) ∼ (iii) for the averaging operators. Since
F1(x, 0, 0, . . . , 0) = 0 for any (x, 0, . . . , 0) ∈ Rκ when κ ≥ 3, F1 lacks the strong
maximum principle.

We say X is a 1-harmonic vector if F1(X) = 0.
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Proposition 3. Let m(κ, 1) = inf{Σexi : X is 1 -harmonic} and d(κ, 1) =
logm(κ, 1)/ log κ . Then m(κ, 1) =

[
1
2κ
]

+ 1 and d(κ, 1) = log
([

1
2κ
]

+ 1
)
/ log κ .

In finding the infimum, we make the negative coordinates tend to −∞ ; the
infimum is not attained when κ ≥ 3.

Proof. Let X be 1-harmonic. In the case that 0 is the sole minimizer, we
saw that n+ + n0 > n− . If κ is even, then n+ + n0 ≥ 1 + 1

2κ and Σexi ≥ 1 + 1
2κ .

Choosing X with n0 = 1+ 1
2κ , n− = −1+ 1

2κ and n+ = 0, we see that the infimum
in this special case is 1 + 1

2κ . Next if κ is odd, we have n+ + n0 ≥ 1
2 (κ+ 1) and

Σexj ≥ 1
2 (κ + 1); choosing vectors X with n0 = 1

2 (κ + 1), n− = 1
2 (κ − 1) and

n+ = 0, we see that the infimum is 1
2 (κ+ 1) in this special case.

In the second case, there is a pair of xj ’s equal to a > 0 and −a < 0,
and there are in addition exactly 1

2 (κ − 2) positive xi ’s. Since ea + e−a ≥ 2,
Σexj ≥ 2 + 1

2 (κ − 2) = 1 + 1
2κ . And the infimum of Σexj in the second case is

1 + 1
2κ .

Remark. Alternative definitions of F1(X) in the case there is more than one
minimizer will give different values of m(κ, 1) and d(κ, 1).

As for the ∞ -Laplacian, first we regard ∆∞ as the limit of ∆p when p→∞ ,
and define F∞(X) = t provided that

lim
p→∞

∑

j

(xj − t)|xj − t|p−2 = 0.

This definition leads to problems when the number of coordinates equal to maxxj
is not the same as the number of coordinates equal to minxj .

Therefore we define F∞(X) = t if t is the minimizer for maxi |xi − x| over
all x . It is easy to see that

F∞(X) = 1
2 (maxxj + minxj).

Clearly F∞ has all properties (i) ∼ (iv) for averaging operators. However F∞
is not strictly increasing with respect to each variable, because F (1,−1, 0, . . . , 0) =
F (1,−1,−1, . . . ,−1) = 0 when κ ≥ 3.

We say X is ∞ -harmonic if F∞(X) = 0. Simple calculations give the fol-
lowing.

Proposition 4. Let m(κ,∞) = min{Σexi : X is ∞ -harmonic} and

d(κ,∞) = logm(κ,∞)/ log κ.

Then the minimum m(κ,∞) is attained at

(1

2
log(κ− 1),−1

2
log(κ− 1), . . . ,−1

2
log(κ− 1)

)

with value 2
√
κ− 1 ; and d(κ,∞) = log

(
2
√
κ− 1

)
/ log κ .
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functions on trees. - Potential Anal. 15, 2001, 199–244.

[C] Choquet, G.: Theory of capacities. - Ann. Inst. Fourier (Grenoble) 5, 1953–54, 131–295.

[D] Doob, J. L.: Classical Potential Theory and its Probabilistic Counterpart. - Springer-
Verlag, New York, 1984.

[Du] Dugundji, J.: Topology. - Allyn and Bacon, Inc., Boston, 1966.
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