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Abstract. McMillan and Pommerenke showed that a locally univalent meromorphic function
f in the disc, without Koebe arcs, has at least three asymptotic values in each boundary arc. The
modular function shows that the number three is best possible. We show that if f satisfies certain
further conditions, each of which narrowly excludes the modular function, then the number of
asymptotic values in each boundary arc must be infinite.

1. Introduction

Let D denote the unit disc {z : |z| < 1} , C the unit circle {z : |z| = 1} , and

Ĉ the extended complex plane. Let the function f be meromorphic in D . We
say that f is locally univalent if it has at most simple poles and f ′ 6= 0, and that
f has Koebe arcs if there are curves Jn ⊂ D such that, for some α < β < α+ 2π
and some a ∈ Ĉ ,

(a) Jn meets the radii arg z = α and arg z = β , for n = 1, 2, . . . ;
(b) |z| → 1, for z ∈ Jn , n→∞ ;
(c) f(z)→ a , for z ∈ Jn , n→∞ .

A curve γ : z(t) , 0 ≤ t < 1, in D is a boundary path if |z(t)| → 1 as t→ 1. The

set γ ∩ C is called the end of γ . We say that f has the asymptotic value a ∈ Ĉ
if there is a boundary path γ : z(t) , 0 ≤ t < 1, such that

f
(
z(t)

)
→ a as t→ 1.

If f maps γ one-to-one onto a line segment, then the asymptotic value a is said
to be linearly accessible along γ . Whenever the end of γ is contained in a subset
E of C , we say that f has the asymptotic value a in E ; if the end of γ is a
singleton {ζ} , then we say that f has the (point) asymptotic value a at ζ . It is
clear that if f has no Koebe arcs, then all the asymptotic values of f are point
asymptotic values.

In [17], McMillan and Pommerenke proved the following elegant result.
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Theorem A. If f is meromorphic and locally univalent in D , and has no
Koebe arcs, then f has at least three distinct point asymptotic values in each
non-trivial arc of C .

The modular function is locally univalent and its only asymptotic values are
0, 1 and ∞ ; see [14, p. 56] for a summary of facts about the modular function.
Thus the number three is best possible in Theorem A. In this paper we show that if
f satisfies certain further conditions, each of which narrowly excludes the modular
function, then ΓP (f, γ) , which denotes the set of point asymptotic values of f in
any non-trivial arc γ of C , is infinite.

First we give a result for locally univalent analytic functions for which the
maximum modulus M(r, f) = max{|f(z)| : |z| = r} does not grow too quickly.

Theorem 1. Let f be analytic and locally univalent in D , with

(1.1) (1− r) log+ M(r, f) = o(1) as r → 1.

Then for each non-trivial arc γ in C , the set ΓP (f, γ) is infinite.

The modular function satisfies (1 − r) log+ M(r, f) = O(1), because it is
normal; see below. Thus the condition o(1) in (1.1) cannot be replaced by O(1).
Also, the assumption that f is locally univalent cannot be dropped. Indeed, there
are unbounded analytic functions in D which grow ‘arbitrarily slowly’ but have
just one asymptotic value, namely ∞ ; see [13] and the references therein.

We give an example in Section 4 to show that the conclusion of Theorem 1
cannot be strengthened to ‘uncountable’ no matter what restriction is placed on
the growth of an unbounded M(r, f) . We remark that Bagemihl [3] gave several
conditions on unbounded analytic functions f in D under which the set ΓP (f, γ)
is always of positive linear measure.

Next recall that a meromorphic function f is said to be normal if the functions

f
(
φ(z)

)
, where φ(z) = eiθ

(
z + a

1 + āz

)
, |a| < 1, θ ∈ R,

form a normal family or, equivalently, if

(1.2) sup
z∈D

(1− |z|2)f#(z) <∞, where f#(z) =
|f ′(z)|

1 + |f(z)|2 ;

see [10]. For example, the modular function is normal because it omits the three
values 0, 1 and ∞ . By a theorem of Bagemihl and Seidel [4], normal meromorphic
functions do not have Koebe arcs, so all their asymptotic values are point asymp-
totic values, and even angular limits by a theorem of Lehto and Virtanen [12].
Thus Theorem A applies to normal meromorphic functions that are locally univa-
lent, and the modular function again shows that the number three is best possible.
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Note that there exist normal meromorphic functions in D with no asymptotic val-
ues. See [12] for an example based on a modification of the modular function;
alternatively, certain other Schwarz triangle functions with multiple points give an
example directly (those described in [18, p. 294, case 3]).

The class N0 consists of functions meromorphic in D such that

(1.3) (1− |z|2)f#(z)→ 0 as |z| → 1.

Such ‘little normal’ functions have been characterised in various ways; see [2],
and also [7] where they were called ‘strongly normal’. As noted in [1, p. 31], the
hypothesis (1.3) means that the spherical radius of the largest schlicht disc around
f(z) on the Riemann image surface of f tends to 0 as |z| → 1. In particular,
every univalent function is in N0 . The ‘little Bloch’ class B0 consists of analytic
functions in D which satisfy

(1− |z|2)|f ′(z)| → 0 as |z| → 1,

and these evidently lie in N0 . There are functions in B0 which have finite angular
limits almost nowhere on C , but all such functions must have finite angular limits
on a set of Hausdorff dimension 1, by a result of Makarov; see [20, Chapters 8
and 11].

For locally univalent functions in N0 , the conclusion of Theorem A can be
greatly strengthened.

Theorem 2. Let f be meromorphic in D , locally univalent and in N0 . Then
for each non-trivial arc γ in C , the set ΓP (f, γ) is of positive linear measure.

We remark that the set of asymptotic values of a meromorphic function is
known to be analytic and hence linearly measurable; see [16]. The conclusion of
Theorem 2 is best possible, and the modular function shows that the hypothesis
in Theorem 2 that f ∈ N0 cannot be replaced by the hypothesis that f is normal.

Finally, recall that a function f analytic in D is said to be in the MacLane
class A if f is non-constant and has point asymptotic values at a dense set of
points in C ; see [14]. It is known that if

(1.4)

∫ 1

0

log+ log+ M(r, f) dr <∞,

then f ∈ A ; see [11]. In particular, normal analytic functions are in A because
they satisfy (1− r) log+ M(r, f) = O(1) as r → 1; see [10, p. 165].

The class Am , introduced in [5], is the extension of the class A to mero-
morphic functions. Theorem A shows that locally univalent normal meromorphic
functions belong to Am . Theorem 2 shows that a stronger result holds if ‘normal’
is replaced by N0 . We say that a set is uncountably dense in C if the set meets
each non-trivial arc of C in an uncountable set.
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Corollary 1. Let f be meromorphic in D , locally univalent and in N0 .
Then f has angular limits at an uncountably dense set of points of C .

It is natural to ask about the asymptotic values of a meromorphic function f
in N0 without the hypothesis of local univalence. If

(1− |z|2)f#(z) = O(1)(1− |z|)ε as |z| → 1,

where ε > 0, then it follows from a result of Carleson [6, p. 61] that f has angular
limits at all points of C apart from a set of (an appropriate) capacity zero. It is
plausible that if f is meromorphic in D and in N0 , then f belongs to Am ; we
intend to return to this matter in another paper.

2. Proof of Theorem 1

It is sufficient to consider the case when the function f is unbounded near
each interior point of the arc γ . Indeed, if f is bounded near some interior point
ζ of γ , then ΓP (f, γ) has positive linear measure by [8, p. 120].

We assume that the set ΓP (f, γ) \ {∞} of finite asymptotic values of f at
points of γ is finite, and obtain a contradiction. It follows from (1.1), (1.4) and
Cauchy’s estimate that f and f ′ belong to the class A . Since f ′ 6= 0, we deduce
from [15, Theorem 9] that f has at least three distinct point asymptotic values in
each non-trivial arc of C . Hence there is a cross-cut γ ′ of D ending at distinct
points of γ on which f is bounded. Let D(γ) be the component of D \ γ ′ such
that ∂D(γ) ∩ C ⊂ γ . We can choose R > 0 so that

(2.1) ΓP (f, γ) \ {∞} ⊂ {|w| ≤ R},
and

(2.2) |f(z)| ≤ R, for z ∈ γ′.
Since f is unbounded near each interior point of γ , there is at least one

component, Ω say, of {z : |f(z)| > R + 1} lying entirely in D(γ) , by (2.2). Pick
z0 ∈ Ω, let w0 = f(z0) , and let g denote the branch of f−1 such that g(w0) = z0 .
By (2.1), (2.2) and the local univalence of f , the branch g can be analytically
continued along any path from w0 in {|w| > R} without meeting any singularity.
Indeed, since the Riemann surface of f has no branch points, such a singularity
would give rise to an asymptotic value α of f , with |α| > R , at a point of γ .

Thus if H = {t : Re(t) > logR} and t0 satisfies et0 = w0 , then h(t) = g(et)
can be analytically continued from t0 along any path in H to give a single-valued
analytic function, by the monodromy theorem. Two cases can then arise [18,
p. 283], as follows.

(a) The function h is univalent in H .
(b) The function h is periodic with period 2πim , where m is a minimal positive

integer.
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In the present situation case (b) cannot occur. Indeed, if case (b) holds, then
the function G(w) = g(wm) must be univalent in ∆0 = {|w| > R1/m} , so it has
a Laurent expansion there of the form

G(w) = a1w + a0 + a−1w
−1 + · · · .

Since g takes values in D , we have a1 = 0. Hence G has a univalent extension
to ∆0 ∪ {∞} and so a−1 6= 0. Then G(∞) = a0 is a pole of f in D , which is
impossible.

Thus only case (a) can occur. Since the values taken by the function h in H
all lie in the component of {z : |f(z)| > R} which contains Ω, we deduce that Ω
is conformally equivalent to {t : Re(t) > log(R + 1)} and that ∂Ω consists of a
simple analytic curve in D(γ) .

Now we use the fact that f belongs to the MacLane class A . Then by
[14, Theorem 1], both ends of the simple curve ∂Ω must approach points of γ .
Moreover, by the Carathéodory boundary correspondence theorem [20, p. 24],
both ends of ∂Ω must approach the same point, ζ0 say, of γ . It follows that the
function

u(z) =

{
log
(
|f(z)|/(R+ 1)

)
, for z ∈ Ω,

0, for z ∈ D \ Ω,

is subharmonic in D and tends to zero at each point of C \ {ζ0} . The hypothesis
(1.1) implies that max{u(z) : |z| = r} = o(1)/(1 − r) as r → 1 so, by a special
case of Dahlberg’s radial maximum theorem [9, Theorem 2], u must be identically
zero, a contradiction. This completes the proof of Theorem 1.

Remark. By a result of MacLane [15, Theorem 8], it follows that under the
hypotheses of Theorem 1 the set of linearly accessible finite asymptotic values of
f is unbounded and so infinite.

3. Proof of Theorem 2

First we consider the case when there exists α ∈ Ĉ such that f is bounded
away from α , in the spherical metric, near some interior point ζ of γ . Then f
or g(z) = 1/

(
f(z) − α

)
is bounded near ζ , and it follows from [8, p. 120] that

ΓP (f, γ) is of positive linear measure.

There remains the case when, for each α ∈ Ĉ , the function f takes values
arbitrarily close to α , in the spherical metric, in any neighbourhood of any interior
point of γ . To deal with this case, we suppose that the set ΓP (f, γ) is of linear
measure zero, and obtain a contradiction.

Since normal functions do not have Koebe arcs [4], we deduce from Theorem A
that there is a cross-cut γ′ of D ending at distinct points of γ on which f is
bounded, say

(3.1) |f(z)| ≤ R, for z ∈ γ′,
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for some R > 3. Let D(γ) be the component of D \ γ ′ such that ∂D(γ)∩C ⊂ γ .

Since f takes values arbitrarily close to any α ∈ Ĉ near each point of γ , there is
some z0 ∈ D(γ) such that

(3.2) R+ 2 < |f(z0)| < 2R,

and, by (1.3),

(3.3) (1− |z0|2)f#(z0) <
1

1 + 4R2
.

Moreover, since f is an open mapping and ΓP (f, γ) has linear measure zero, we
can assume, by varying z0 slightly if necessary, that

(3.4) w0 = f(z0) does not belong to ΓP (f, γ).

From (3.2) and (3.3), we deduce that

(3.5) (1− |z0|2)|f ′(z0)| < 1.

For z ∈ D , let d(z) denote the radius of the maximal schlicht disc in the image
surface F of f centred at the point of F corresponding to f(z) . Since f is locally
univalent the surface F has no branch points, so this maximal schlicht disc has
a (linearly accessible) asymptotic value of f on its boundary corresponding to an
inverse function singularity of f . It follows from Schwarz’s lemma (see [21]) that
if f is analytic at z , then

(3.6) d(z) ≤ (1− |z|2)|f ′(z)|.

We claim that there is a path γ0 in D with one endpoint at z0 such that

(3.7) there exist distinct ζn ∈ γ0 such that f(ζn) = w0, for n = 1, 2, . . . ,

and

(3.8) |f(z)− w0| ≤ 2d(z0), for z ∈ γ0.

To prove this claim, let Σ0 denote the maximal schlicht disc in F centred at
the point of F corresponding to w0 = f(z0) and let w′0 be a singularity of f−1

on the boundary of Σ0 . Then |w′0 − w0| = d(z0) < 1 by (3.5) and (3.6). Also, let
Γ′0 denote the radius of Σ0 from w0 to w′0 .

Next let g denote the branch of f−1 such that g(w0) = z0 , so g is univalent
in Σ0 . Let Σ′0 denote the open disc in C with diameter along the line segment Γ′0 .
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Then Σ′0 has radius 1
2d(z0) and centre 1

2 (w0 + w′0) = w∗0 , say. We consider the

analytic continuation of g from near w0 along paths in C \ Σ′0 .
First suppose that such analytic continuation of g meets no singularities

of f−1 . Choose t0 such that

(3.9) w∗0 + 1
2d(z0)et0 = w0.

Then the function
h(t) = g

(
w∗0 + 1

2d(z0)et
)
,

can be analytically continued along any path in H = {Re(t) > 0} , starting near t0 .
Thus h is a single-valued analytic function in H , by the monodromy theorem, and
h(t0) = z0 . Two cases can then arise [18, p. 283], as follows.

(a) The function h is univalent in H .
(b) The function h is periodic with period 2πim , where m is a minimal positive

integer.

Once again, case (b) cannot occur in the present situation. Indeed, if case (b)
holds, then the function G(w) = g

(
w∗0 + (w − w∗0)m

)
must be univalent in ∆0 ={

|w − w∗0 | >
(

1
2d(z0)

)1/m}
, so it has a Laurent expansion there of the form

G(w) = a1(w − w∗0) + a0 + a−1(w − w∗0)−1 + · · · .

Since g takes values in D , we have a1 = 0. Hence G has a univalent extension
to ∆0 ∪ {∞} and so a−1 6= 0. Then G(∞) = a0 is a pole of f which must be
simple. Writing z = G(w) , we obtain f(z) = w∗0 + (w − w∗0)m and

z − a0 =
a−1

w − w∗0
(
1 + o(1)

)
as w →∞,

so

f(z) = w∗0 +
(a−1)m

(z − a0)m
(
1 + o(1)

)
as z → a0.

Thus m = 1, so g is univalent in ∆0 ∪{∞} . Because ∂∆0 \ {w′0} ⊂ Σ0 , it follows

that g is analytic in Σ0 ∪ (∆0 ∪ {∞}) = Ĉ \ {w′0} . Since g takes values in D ,
this contradicts Liouville’s theorem.

Thus case (a) occurs, so h is univalent in H . Moreover, we can find open
discs Dn with centres tn = t0 + 2πin , n ∈ Z , such that h is univalent in the
larger set

H ′ = H ∪ ⋃
n∈Z

Dn.

This follows from (3.9) and the fact that the analytic continuation of g along any
path in C \Σ′0 which ends at w0 can be extended to a neighbourhood of w0 ; for
otherwise w0 ∈ ΓP (f, γ) contrary to (3.4).
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We now take a simple path β0 in H ′ ∩ {Re(t) < 1} with one endpoint at t0 ,
passing through every tn, n = 0, 1, 2, . . . , and tending to ∞ . Then γ0 = h(β0) is
a simple path in D with one endpoint at z0 . Since f(h(t)) = w∗0 + 1

2d(z0)et , we
deduce that (3.7) holds, with ζn = h(tn) , and also (3.8) holds, as required.

Suppose, on the other hand, that the analytic continuation of g from w0

along some path Γ′′0 in C \ Σ′0 does encounter a singularity of f−1 , at w′′0 say.
Choose r0 > 0 such that r0 < min{d(z0),dist (w′0,Γ

′′
0)} . Then let Γ0 be a Jordan

curve in C which surrounds w′0 and consists of two chords through w0 of the
disc Σ′0 together with an arc of a circle {|w − w′0| = r} , where 0 < r < r0 . Since
ΓP (f, γ) has linear measure zero, it fails to meet almost all such chords and almost
all such circular arcs, so we can assume by (3.2) that Γ0 ⊂ {|w| > R} \ ΓP (f, γ) .
In particular, the branch g can be analytically continued from w0 around Γ0

arbitrarily far (in either direction). Note that by construction Γ0 , Γ′0 , Γ′′0 meet
only at w0 .

Let γ0 , γ′0 , γ′′0 denote the paths in D obtained by analytic continuation of
g along Γ0 , Γ′0 , Γ′′0 , respectively. Then γ′0 and γ′′0 are asymptotic paths meeting
only at z0 , so the path γ′0 ∪ γ′′0 forms a cross-cut of D . The path γ0 can meet
γ′0 ∪ γ′′0 only at z0 . Thus, by the local univalence of f , the path γ0 must pass
through z0 exactly once, as it crosses γ′0 ∪ γ′′0 . Also, if the part of γ0 on one side
of the cross-cut were to intersect itself, then at the first point of intersection there
would again be a contradiction to local univalence. It follows that γ0 is a simple
path passing through z0 such that (3.7) and (3.8) hold. Thus we have established
the claim.

It follows from (3.7) that |ζn| → 1 as n → ∞ . Hence d(ζn) → 0 as n → ∞
by (1.3) and (3.6), because f is bounded on γ0 by (3.8). Thus we can truncate
γ0 at a point, z1 say, chosen from the ζn , such that

f(z1) = w0, 1− |z1| < 1
2 and d(z1) ≤ 1

2d(z0) < 1
2 .

Now we repeat the above argument with z0 replaced by z1 to obtain a path
γ1 in D with one endpoint at z1 such that

there exist distinct ζn ∈ γ1 such that f(ζn) = w0, for n = 1, 2, . . . ,

and
|f(z)− w0| ≤ 2d(z1), for z ∈ γ1.

We then truncate γ1 at a point z2 such that

f(z2) = w0, 1− |z2| < 1
4 and d(z2) ≤ 1

2d(z1) < 1
4 .

By repeating this process, we obtain a sequence of such truncated paths γn ,
n = 0, 1, 2, . . . , such that f(z) tends to w0 along the path

γ∞ = γ0 ∪ γ1 ∪ γ2 ∪ · · · ,
and, by (3.2), |f(z)| > R for z ∈ γ∞ . By (3.1) the end of γ∞ must lie in γ , so γ∞
must tend to a point of γ because f has no Koebe arcs. Hence w0 ∈ ΓP (f, γ) ,
which contradicts (3.4). The proof of Theorem 2 is complete.
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Remarks. 1. The proof can be adapted to show that if, in any neighbourhood
of any point of γ , the locally univalent function f in N0 takes values arbitrarily
close to each α ∈ Ĉ , in the spherical metric, then ΓP (f, γ) has positive linear

measure in any neighbourhood of each point of Ĉ . This holds near ∞ by taking
R arbitrarily large in (3.1) and, for other points α , we consider the function in
N0 obtained by composing f with a rotation of the Riemann sphere taking α
to ∞ . It seems possible that under these circumstances we must actually have
ΓP (f, γ) = Ĉ .

2. An earlier version of this proof, which was more like the proof of Theorem 1,
examined the components of {z : |f(z)| > R} in D(γ) . This raised the question
of whether the level sets L(R) = {z : |f(z)| = R} , R > 0, end at points of C ,
in the sense of MacLane [14, p. 8]. In fact, the proof of Theorem A in [17] shows
that the ‘three asymptotic values’ obtained in each arc are linearly accessible. It
follows that if f satisfies the hypotheses of Theorem A, then every level set L(R) ,
R > 0, of f must end at points.

4. An example

We show here that the conclusion in Theorem 1 cannot be strengthened to
‘uncountable’.

Example 1. Let µ be an increasing function on [0, 1) such that µ(0) = 1
and µ(r) → ∞ as r → 1 . Then there exists a function f analytic and locally
univalent in D , such that

(4.1) M(r, f) ≤ µ(r), for 0 ≤ r < 1,

and the set of asymptotic values of f is countable.

Our approach is to follow the geometric construction of MacLane [13] for
an analytic function in D of ‘arbitrarily slow growth’ with level curves Cn ,
n = 1, 2, . . . , which are nested Jordan curves that expand towards C , on which
|f | = %n , n = 1, 2, . . . , where %n →∞ as n→∞ . The method is to construct the
image Riemann surface of the function by a process of successive enlargements,
and the main difference in our construction is that we replace MacLane’s adjoined
two-sheeted surfaces by adjoined logarithmic spirals.

We first fix a positive strictly increasing sequence %n , with %n → ∞ as
n→∞ , and put αn = n

√
2 , n = 1, 2, . . . . Then define

(4.2) an,k = %n exp(iθn,k), where θn,k = 2παn +
2πk

νn
, k = 1, 2, . . . , νn.

For n = 1, 2, . . . , the points an,k , k = 1, 2, . . . , νn , are equally spaced on the
circle {|w| = %n} and no two an,k , k = 1, 2, . . . , νn , n = 1, 2, . . . , are in the same
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direction from 0. The sequences %n and αn are fixed throughout, but νn will be
varied to determine the required Riemann surface.

Let

L(n, k) = {|w| ≥ %n, argw = θn,k}, k = 1, 2, . . . , νn, n = 1, 2, . . . ,

so the rays L(n, k) , k = 1, 2, . . . , νn , n = 1, 2, . . . , are mutually disjoint. The
required surface S is built in stages. We begin with the surface S1 consisting
of the w -plane slit along all rays L(1, k) , k = 1, 2, . . . , ν1 . Then the surface
S2 is constructed by first adjoining a half-logarithmic spiral to each edge of each
slit in S1 , and then making a slit over every ray L(2, k) , k = 1, 2, . . . , ν2 , in
all the resulting sheets. The surface S3 is constructed in an analogous manner
by adjoining half-logarithmic spirals to edges of existing slits in S2 wherever
possible and then making new slits over the rays L(3, k) , k = 1, 2, . . . , ν3 , wherever
possible.

Repeating this process indefinitely, we obtain a surface S without algebraic
branch points. The surface S is simply connected because at each stage the
addition of each pair of half logarithmic spirals preserves the property of being
simply connected, and S =

⋃∞
n=1 Sn . Now let Tn denote that component of

Sn over {|w| < %n} which contains the origin in S1 . If ν1, ν2, . . . , νn−1 are fixed
and ν = νn is variable, then as ν →∞ the sequence of surfaces Tn+1 = Tn+1(ν)
converges to its Carathéodory kernel, the unique maximal Riemann surface all
of whose compact subsets K can be embedded in Tn+1(ν) , for ν ≥ ν(K) . This
kernel is Tn . We now need the following generalisation of the Carathéodory kernel
theorem, due essentially to L. I. Volkovyskii; see [13].

Theorem B. Let Rn , n = 1, 2, . . . , be a sequence of positive numbers such
that limn→∞Rn = R , 0 < R < ∞ . Let Fn = {|z| < Rn} and F = {|z| < R} .
Let [Gn;Qn] be a sequence of Riemann surfaces over the w -plane, each containing
a schlicht disc of radius s0 > 0 about Qn , where Qn is a point of Gn over
w = 0 . Let w = Fn(z) be holomorphic in Fn and map Fn one-one onto Gn with
Fn(0) = Qn and F ′n(0) = 1 . Let Φn be the inverse of Fn . Then the following are
true.

(a) If Fn → F locally uniformly on F , then [Gn;Qn] converges to its kernel
[G ;Q] and F maps F one-one onto G , with F (0) = Q and F ′(0) = 1 .
Also, Φn → Φ locally uniformly on G and Φ is the inverse of F .

(b) If {Fn} is a normal family on F and if [Gn;Qn] converges to its kernel [G ;Q] ,
then Fn → F locally uniformly on F .

Now let fn map {|z| < rn} onto Tn , with fn(0) = 0 ∈ S and f ′n(0) = 1.
Since gn = f−1

n+1 ◦ fn maps {|z| < rn} into {|z| < rn+1} with gn(0) = 0 and
g′n(0) = 1, we deduce that

(4.3) rn < rn+1, for n = 1, 2, . . . .
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Let δn be any positive sequence such that

(4.4)

∞∑

n=1

δn <∞.

We shall show that the sequence νn , n = 1, 2, . . . , can be chosen so that

(4.5) rn+1 < rn + δn, for n = 1, 2, . . . .

To do this, suppose that ν1, ν2, . . . , νn−1 have already been chosen. As above, we
indicate dependence on ν = νn by writing Tn+1 = Tn+1(ν) , fn+1(z) = fn+1(z; ν)
and rn+1 = rn+1(ν) . Now choose a subsequence of values of ν so that

rn+1(ν)→ rn+1(∞) ≥ rn.

We claim that rn+1(∞) = rn . Indeed, the subsequence fn+1(z; ν) is defined
eventually on each compact subset of {|z| < rn+1(∞)} , is uniformly bounded by
%n+1 and hence forms a normal family. Also, the sequence Tn+1(ν) converges to
its kernel Tn . Thus, by Theorem B, part (b),

fn+1(z; ν)→ fn+1(z;∞) as ν →∞,

locally uniformly and, by Theorem B, part (a), fn+1(z;∞) maps {|z| < rn+1(∞)}
onto Tn with the same normalization as fn . Hence rn+1(∞) = rn . Thus we can
indeed choose νn so that (4.5) holds.

Now we apply Theorem B to the sequences fn and Tn . By (4.4), rn → R <
∞ and by construction Tn converges to its kernel S . To show that the sequence
fn is normal, let f∗ map {|z| < R∗} = D∗ onto S with f∗(0) = 0 ∈ S and
(f∗)′(0) = 1; here 0 < R∗ ≤ ∞ . Since Tn ⊂ S , the functions hn = (f∗)−1 ◦ fn
are conformal and normalised in the usual way. Thus the family {hn} is normal
and it follows that the family fn = f∗ ◦ hn is normal in {|z| < R} . Hence, by
Theorem B, part (b), fn → f locally uniformly in {|z| < R} , where f maps
{|z| < R} onto S , the kernel of the sequence Tn , with f(0) = 0 ∈ S1 and
f ′(0) = 1.

The proof that the sequence νn can be chosen in such a way that the condition
(4.1) holds, is based on (4.3) and (4.4), as in [13, Section 3]. Finally, it is clear
from the construction of S that the function f mapping {|z| < R} onto S is
locally univalent and has countably many finite asymptotic values, namely an,k ,
k = 1, 2, . . . , νn , n = 1, 2, . . . . This completes the proof of Example 1.
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