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Abstract. We provide a strengthening of an elementary technique in geometric measure
theory. Given an s -set S ⊂ Rn , in the language of tangent measures, this technique establishes
the existence of tangent measures to the measure Hs

bS on one side of an (n− 1) -plane.
If S is purely unrectifiable or of dimension less than n − 1 , our strengthening consists of

being able to find tangent measures on one side of an (n − 1) -plane containing a vector of our
choice. We give an application of this result to the problem of characterising removable sets for
harmonic functions.

1. Introduction

In this note we give a strengthening of a well-known technique in the subfield
of geometric measure theory known as “Rectifiability and densities”. Arguments
using this technique are usually called “touching point arguments”, they are used
to establish conical density theorems of the following type: Given set S , we can
(roughly speaking) show that for almost all points x ∈ S , there exists a sequence
of radii rn → 0 such that Brn(x) ∩ S lies mostly on one side of an (n− 1)-plane
intersecting x . This essentially follows from the existence of large empty sub-balls
in any ball centered on any point of S , which in turn follows from basic density
estimates. The technique originates from work of Besicovitch [1], and has been
used in an essential way in [6], [8] and [12].

For those familiar with the language of tangent measures, these arguments
establish the existence of a tangent measure to the measure Hs

bS that exists on

one side of an (n− 1)-plane. For sets S that are unrectifiable or of dimension less
than n− 1, our strengthening consists of being able to show that Brn(x) ∩ S lies
increasingly on one side of an (n − 1)-plane containing a vector in Sn−1 of our
choice.

This result comes from a reworking of the basic idea using Besicovitch–Federer
projection theorem instead of density estimates. The proof is intricate, but in our
opinion the method is classical. This work arose from the author’s attempts to
generalise rectifiability and density theorems outside Euclidean space, [5]. Our
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main lemma is an n -dimensional version of Lemma 14 from [5]. Touching point
arguments have application in a variety of geometrical problems. We hope the
results of this note might also be of some utility; by way of example, we apply the
theorem to the results of Mattila and Paramonov, to give a strengthening (under
more restrictive hypotheses) of one of their theorems related to the problem of
characterising removable sets for harmonic functions.

First some notation. Let Br(z) :=
{
y ∈ Rn : |y − z| < r

}
. Let Hs denote

Hausdorff s -measure. Let PV be the orthogonal projection onto subspace V .
We define the cone X(x, v, α) =

{
y ∈ Rn : α|Pv⊥(y − x)| ≤ |P〈v〉(y − x)|

}
;

see Figure 1. Let X+(x, v, α) =
{
y ∈ Rn : y ∈ X(x, v, α) and (y − x) · v > 0

}
.

Theorem 1. Given an integer n ≥ 3 and real numbers s ∈ (0, n − 1] and
% > 0 , let S ⊂ Rn be a set (purely unrectifiable in the case s = n− 1) of positive
finite Hs measure.

Then for any ψ ∈ Sn−1 we have that for Hs a.e. x ∈ S

(1) lim inf
r→0

Hs
(
Br(x) ∩ S ∩X+(x, φ, %)

)

rs
= 0

for some φ ∈ ψ⊥ ∩ Sn−1 .

Note that for a set S ⊂ R2 that is purely unrectifiable or of dimension s < 1 a
much stronger result holds: Given φ ∈ S1 and % > 0, for Hs a.e. x ∈ S equation
(1) holds true. This can be seen by simplified versions of the arguments of this
paper. However in higher dimensions this stronger result is not true, a counter
example is given by taking the cartesian product of a purely unrectifiable set with
a interval.

1.1. Application: Removable sets for harmonic functions. A compact
set E ⊂ C is said to be removable for bounded analytic functions if and only if
the following holds true:

If U ⊂ C is open, E ⊂ U and f : U\E → C is a bounded analytic function,
then f has an analytic extension to U .

The long standing problem of geometrically characterising removable sets was
resolved for sets of finite H1 measure in [2], building on work of [3] and [10]. It is
known and relatively easy to show that (see [9]) sets of zero H1 measure are re-
movable and sets of Hausdorff dimension greater than 1 are not removable. So the
characterisation is needed for sets of dimension 1. The complete characterisation
for sets of dimension 1 (i.e. including sets of infinite H1 measure) was achieved
in [13].

First some notation: An m -rectifiable set S in Rn is a set that can be covered
by countably many C1 submanifolds of dimension m . A purely m-unrectifiable
set T is a set with the property; Hm(T ∩ M) = 0 for all C1 m -dimensional
submanifolds M .
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It was proved in [2] that if S has finite H1 measure and is not removable then
S must have a 1-rectifiable subset with positive H1 measure. The converse is well
known, so sets of finite H1 measure are removable if and only if they are purely
1-unrectifiable. Analogous questions can be asked about harmonic functions.

Following [11] a compact subset E of Rn is called Lip1 -removable for har-
monic functions, (abbreviated L1RH ) if for each domain D ⊂ Rn every locally
Lipschitz function f : D → R which is harmonic in D\E is harmonic in D .

It would be reasonable to conjecture that E is Lip1 -removable if and only if
it is purely (n− 1) rectifiable.

The only results on this conjecture are from [11] (Theorem 5.5) where it is
proved:

Theorem 2 (Mattila–Paramonov). Let X ⊂ Rn be a compact set of finite
Hn−1 measure such that for some constant A > 0 ,

(2) Hn−1
(
X ∩Br(a)

)
≤ Arn−1

for a ∈ Rn and r > 0 . Suppose that the following holds at Hn−1 almost all
points a ∈ X : For every v ∈ Sn−1 there is a δ > 0 such that

(3) lim inf
r→0

r1−nHn−1
(
y ∈ X ∩Br(a) : |(y − a) · v| > δ|y − a|

)
> 0.

Then X is Lip1 -removable.

Given a set S of positive finite Hn−1 measure, if a ∈ S has the property
that

(4) lim inf
r→0

r1−nHn−1
(
y ∈ S ∩Br(a) : |(y − a) · v| > δ|y − a|

)
= 0

for any δ > 0 then we say S has a weak tangent V := v⊥ at a . Existence of weak
tangents is a well-known partial result to rectifiability (see [7] where the term was
coined); if the lim inf of (4) is replaced by a lim sup, then this condition holding for
almost every point a ∈ S and for any δ > 0 is equivalent to (n− 1)-rectifiability,
see [9].

So Theorem 2 says that any set (with density bound (2)) which is not Lip1 -
removable must have a subset B of positive Hn−1 measure such that for each
a ∈ B there exists v ∈ S1 with condition (4) holding for every δ > 0. Informally:
a non Lip1 removable set must have weak tangents on some subset of positive
measure. This result suggests that these sets should be rectifiable.

Suppose the conjecture for harmonic functions is not true for sets with den-
sity bound (2) and so we have a purely (n − 1) unrectifiable set X which is not
Lip1 -removable satisfying (2). Then by directly inserting the statement of Theo-
rem 1 into the proof of Theorem 5.5 of Mattila–Paramonov [11] (instead of their
Lemma 5.2) we have the following result:
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Theorem 3. Suppose S ⊂ Rn is a purely unrectifiable (n− 1) -set which is
not Lip1 -removable and has the property : For some constant A > 0

(5) Hn−1
(
S ∩Br(a)

)
≤ Arn−1

for all a ∈ Rn , r > 0 .
Then there must exist a subset B ⊂ S of positive Hn−1 measure such that

for any ψ ∈ Sn−1 we have that for almost all x ∈ B the set S must have a weak
tangent V at x with the property that ψ ∈ V .

So if there exists a purely unrectifiable (n− 1)-set S with density bound (5)
which is not Lip1 removable then it must have a subset B of positive measure
such that for almost every point z ∈ B there exists an infinite collection of (n−1)
subspaces

{
V z1 , V

z
2 , . . .

}
each of which is a weak tangent to S at z .

Acknowledgement. I would like to thank the referee for reading the paper
with great care and in particular for pointing out a hypothesis in Theorem 1 was
not necessary.

2. Background and notation

First we will need to introduce some more notation. If x ∈ v⊥ , v ∈ Sn−1 ,
s > 0, let K(x, v, s) := P−1

v⊥
(
Bs(x)∩ v⊥

)
be the standard definition of a cylinder.

We will also need to define a kind of double cone object, see Figure 1. Given
x ∈ Rn , v ∈ Sn−1 , s ∈ (0, 1) and r > 0 define:

Ψu(x, v, s, r) :=
{
z ∈ Br(x) : |Pv⊥(z − x)| ≤ s|Pv(z − (x+ rv))|

}
,

Ψd(x, v, s, r) :=
{
z ∈ Br(x) : |Pv⊥(z − x)| ≤ s|Pv(z − (x− rv))|

}
,

and Ψ(x, v, s, r) = Ψu(x, v, s, r) ∩Ψd(x, v, s, r) . Let A(x, α, β) := Bβ(x)\Bα(x) .

ψ

v

1

r

X(z,v,r)
sr

r

x

Ψ(x,  ,s,r)

Figure 1.
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3. Proof

We will first prove that Theorem 1 holds true for a.e. ψ ∈ Sn−1 (in the sense
of Hn−1 measure on Sn−1 ), and then show how this implies the result for every
ψ ∈ Sn−1 .

Suppose the statement of Theorem 1 was false for some set Y ⊂ Sn−1 of
positive measure. Then there must exist ψ ∈ Y for which the following two
statements hold true:

– We can take some subset S0 ⊂ S such that for some % > 0 and some λ1 > 0
we have for all φ ∈ ψ⊥ ∩ Sn−1

lim inf
r→0

Hs
(
Br(x) ∩X+(x, φ, %) ∩ S

)

rs
> 2λ1,

for all x ∈ S0 .
– By the fact that S is unrectifiable or of dimension less than n− 1, from the

Besicovitch–Federer projection theorem ([9, Theorem 18.1]) (or in the latter
case by an elementary result, ([9, Theorem 7.5])) we have

(6) L2
(
Pψ⊥(S)

)
= 0.

Now we can take a closed subset S1 ⊂ S0 and some small r0 > 0 such that

(7)
Hs
(
Br(x) ∩X+(x, φ, %) ∩ S

)

rs
> λ1

for all φ ∈ ψ⊥ ∩ Sn−1 , x ∈ S1 , r ∈ (0, r0) . And (using [9, Theorem 6.2] for the
upper bound on the density)

(8) λ1 <
Hs
(
Br(x) ∩ S

)

rs
< 2

for all x ∈ S1 , r ∈ (0, r0) .

First we prove the following.

Lemma 1. Given an integer n ≥ 3 and a real number s ∈ (0, n) suppose
we have a set S ⊂ Rn of positive finite Hs measure and a closed subset S1 ⊂ S
with the following two properties:

Firstly, there exists a vector ψ ∈ Sn−1 and a number r0 > 0 such that for
some small λ1 > 0 and % > 0 we have

Hs
(
Br(x) ∩X+(x, φ, %) ∩ S

)

rs
> λ1
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for all φ ∈ ψ⊥ ∩ Sn−1 and all x ∈ S1 , r ∈ (0, r0) .
Secondly, we have

(9) λ1 <
Hs
(
Br(x) ∩ S

)

rs
< 2

for all x ∈ S1 , r ∈ (0, r0) .
Then we can find constants κλ1

% > 0 and ϑλ1
% > 0 such that the following

statement holds true: Suppose x ∈ S1 and d ∈ (0, r0) is such that

(10)
Hs
(
B4d(x)\S1

)

ds
≤ ε

then for all z ∈ (ψ⊥ + x) ∩K(x, ψ, κλ1
% d) we have that

K
(
z, ψ, ε1/sϑλ1

% d
)
∩ S1 ∩B2d(x) 6= ∅.

Proof. Firstly to simplify the expressions, we let µ := Hs
bS . Let r ∈ (0, r0) .

We start by showing the following:
If a ∈ ∂K(x, ψ, r) let Wa denote the (n − 1)-dimensional tangent plane of

the boundary of the cylinder K(x, ψ, r) at point a . Let na ∈W⊥a ∩ Sn−1 be the
unit normal pointing “inwards” towards the center of cylinder K(x, ψ, r) .

Step 1: We will show that we have

(11) X+(a, na, %) ∩B2r%/(1+%)(a) ⊂ K(x, ψ, r).

x

a c

ψ

r

Figure 2.
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To see this, it makes the calculations a lot easier if we change our orthonormal
basis. Let ε1 = na and ε2 = ψ and complete this to get an orthonormal set of
vectors {εj} where

{
ε2, . . . , εn

}
span Wa . Let c = a + rε1 . See Figure 2. Now

in our new basis (using point c) the definition of the cylinder is as follows

K(x, ε2, r) =

{
z ∈ Rn :

(
(z − c) · ε1

)2
+

n∑

j=3

(
(z − c) · εj

)2
< r2

}
.

And in our basis we have that

X+(a, ε1, %) =

{
z ∈ Rn : (z − a) · ε1 ≥ %

√√√√
( n∑

k=2

(
(z − a) · εk

)2
)}

.

So if z ∈ X+(a, ε1, %) ∩ B2r%/(1+%)(a) we have that (z − a) · ε1 ∈ (0, 2r%/(1 + %))
and so as % is small (z − a) · ε1 ∈ (0, r) and we have

(12)

(
(z − c) · ε1

)2
+

n∑

k=3

(
(z − c) · εk

)2
=
(
(c− a) · ε1 − (z − a) · ε1

)2

+
n∑

k=3

(
(z − c) · εk

)2

=
(
r − (z − a) · ε1

)2
+

n∑

k=3

(
(z − c) · εk

)2

≤
(
r − %

√√√√
( n∑

k=2

(
(z − a) · εk

)2
))2

+

n∑

k=3

(
(z − c) · εk

)2

= r2 − 2r%

√√√√
( n∑

k=2

(
(z − a) · εk

)2
)

+ %2

( n∑

k=2

(
(z − a) · εk

)2
)

+
n∑

k=3

(
(z − c) · εk

)2
.
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Now as a = c− rε1 we know that (c− a) · εk = 0 for k ∈
{

2, 3, . . . , n
}

so

n∑

k=3

(
(z − a) · εk

)2
=

n∑

k=3

(
(z − c) · εk + (c− a) · εk

)2

=
n∑

k=3

(
(z − c) · εk

)2
.

So putting this into (12) we get that

(13)

(
(z − c) · ε1

)2
+

n∑

k=3

(
(z − c) · εk

)2 ≤ r2 − 2r%

√√√√
( n∑

k=2

(
(z − a) · εk

)2
)

+ (1 + %2)

( n∑

k=2

(
(z − a) · εk

)2
)
.

Thus if

(14) 2r%

√√√√
( n∑

k=2

(
(z − a) · εk

)2
)
≥ (1 + %2)

( n∑

k=2

(
(z − a) · εk

)2
)

then z ∈ K(x, ε2, r) . Now (14) is equivalent to

(15) 2r% ≥ (1 + %2)

√√√√
( n∑

k=2

(
(z − a) · εk

)2
)

and as z ∈ B2r%/(1+%2)(a) , (15) obviously holds and so (14) also holds and z ∈
K(x, ψ, r) ; we have shown Step 1.

Step 2: Now suppose a ∈ ∂K(x, ψ, r) and na ∈ Sn−1 ∩ ψ⊥ such that

X+(a, na, %) ∩Br%/(1+%2)(a) ⊂ K(x, ψ, r)

and we have that

(16) µ
(
X+(a, na, %) ∩Br%/(1+%2)(a) ∩ S1

)
≥ λ1

2

(
r%

(1 + %2)

)s
.

We will show there exists some number ζλ1
% > 0 with the property that

(17) Br%/(1+%2)(a) ∩X+(a, na, %) ∩K
(
x, ψ, (1− ζλ1

% )r
)
∩ S1 6= ∅.
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Now note that for any β > 0, if z ∈ X+(a, na, %) ∩ Bβ(a) then X+(a, na, %) ∩
Bβ(a) ⊂ B2β(z) . So if X+(a, na, %) ∩Bβ(a) ∩ S1 6= ∅ then by (9)

µ
(
X+(a, na, %) ∩Bβ(a)

)
≤ 2(2β)s

hence there exists some small number σλ1 ∈
(
0, 1

8%
)

such that

µ

(
A

(
a, σλ1r,

r%

(1 + %2)

)
∩X+(a, na, %) ∩ S1

)
≥ λ1

4

(
r%

(1 + %2)

)s
.

We are going to use this and (13) to show Step 2. Firstly let

g(p) = −2r%p+ (1 + %2)p2,

the two zeros of this quadratic are at 0 and 2r%/(1 + %2) . Since σλ1 is smaller than
1
8% its easy to see that g(σλ1r) =

(
(1 + %2)σ2

λ1
− 2%σλ1

)
r2 and g

(
r%/(1 + %2)

)
=

−(r%)2/(1 + %2) are both less than zero.
If we let

ζλ1
% =

1

2
min

{
−g(σλ1r)

r2
,−g

(
r%/(1 + %2)

)

r2

}

then we have that for q ∈
(
σλ1r, r%/(1 + %2)

)

g(q) ≤ −2ζλ1
% r2.

Let z ∈ A
(
a, σλ1r, r%/(1 + %2)

)
∩X+(a, na, %)∩S1 . Now in our notation inequality

(13) becomes

(
(z − c) · ε1

)2
+

n∑

j=3

(
(z − c) · εj

)2 ≤ r2 + g

(√√√√
n∑

k=2

(
(z − a) · εk

)2
)

≤ (1− 2ζλ1
% )r2

≤ (1− ζλ1
% )2r2

so z ∈ K
(
x, ψ, (1− ζλ1

% )r
)

and this establishes Step 2.

Let ξ% = %/(1 + %2) and let κλ1
% = ζλ1

% /ξ% . Given x ∈ S1 let d > 0 such that
for some small ε > 0

(18)
µ
(
B4d(x)\S1

)

ds
≤ ε.

Let z ∈ ψ⊥ + x be such that Ψ(z, ψ, κλ1
% , d) ⊂ B2d(x) .

Define
H(z, ψ⊥, α) :=

⋃
h∈(−α,α)

z + hψ + ψ⊥.

Let φk =
∑k
j=0 ξ%κ

λ1
% d(1− ζλ1

% )j where we let φ−1 = 0. Define

(19) Γk := H(z, ψ⊥, φk) ∩K
(
z, ψ, (1− ζλ1

% )kκλ1
% d
)
.
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Step 3: We will show

(20) Ψ(z, ψ, κλ1
% , d) ⊂

∞⋃
j=0

Γj .

See Figure 3.

We argue inductively. Firstly recall that φ0 = ξ%κ
λ1
% d and note that it is

obvious that

Ψ(z, ψ, κλ1
% , d) ∩H(z, ψ⊥, ξ%κ

λ1
% d) ⊂ Γ0.

Suppose we have that

(21) Ψ(z, ψ, κλ1
% , d) ∩H(z, ψ⊥, φk) ⊂

k⋃
j=0

Γj .

Let ϑk+1 be the radius of the two congruent spheres given by ∂Ψ(z, ψ, κλ1
% , d) ∩
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∂H(z, ψ⊥, φk) . So by definition of Ψ(z, ψ, κλ1
% , d) we know

(22)

ϑk+1 = κλ1
% d− κλ1

% φk

= κλ1
% d− κλ1

%

( k∑

j=0

ξ%κ
λ1
% d(1− ζλ1

% )j
)

= κλ1
% d− ξ%(κλ1

% )2d

( k∑

j=0

(1− ζλ1
% )j

)
.

And note
k∑

j=0

(1− ζλ1
% )j =

1

ζλ1
%

(
1− (1− ζλ1

% )k+1
)
.

Recall κλ1
% = ζλ1

% /ξ% so putting the above expression into (22) we get

ϑk+1 = κλ1
% d(1− ζλ1

% )k+1

which is exactly the width of the cylinder Γk+1 .
Now ϑk+1 is the biggest radius of the spheres given by ψ⊥ slices of

∂Ψ(z, ψ, κλ1
% , d) ∩

(
H(z, ψ⊥, φk+1)\H(z, ψ⊥, φk)

)
.

So we know that Ψ(z, ψ, κλ1
% , d)∩

(
H(z, ψ⊥, φk+1)\H(z, ψ⊥, φk)

)
is “thin” enough

to fit into Γk+1 . It is also, by definition, “short” enough to fit into Γk+1 . So by
inductive assumption (21) we have

Ψ(z, ψ, κλ1
% , d) ∩H(z, ψ⊥, φk+1) ⊂

k+1⋃
j=0

Γj .

This establishes Step 3.

Step 4: Recall z ∈ ψ⊥ + x such that Ψ(z, ψ, κλ1
% , d) ⊂ B2d(x) .

Suppose Ψ(z, ψ, κλ1
% , d)∩S1 6= ∅ . Let W :=

{
k : Γk∩Ψ(z, ψ, κλ1

% , d)∩S1 6= ∅
}

.

If W is finite we define k1 := max
{
k : k ∈W

}
, otherwise we define k1 to be any

positive integer such that λ1(1− ζλ1
% )s(k1+1)(ξ%κ

λ1
% d)s < 2εds .

In the case where W is finite we will show k1 is sufficiently big so that

λ1(1− ζλ1
% )s(k1+1)(ξ%κ

λ1
% d)s < 2εds.

Suppose not and

(23) λ1(1− ζλ1
% )s(k1+1)(ξ%κ

λ1
% d)s ≥ 2εds.
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We know that Γk1+1∩Ψ(z, ψ, κλ1
% , d)∩S1 = ∅ . Let y1 ∈ Γk1 ∩Ψ(z, ψ, κλ1

% , d)∩S1 ,
let h = |Pψ⊥(y1 − z)| so we know that

(24) h ∈
(
(1− ζλ1

% )k1+1κλ1
% d, (1− ζλ1

% )k1κλ1
% d
)
.

Now y1 ∈ Ψ(z, ψ, κλ1
% , d) ⊂ B2d(x) and as hξ% ≤ ξ%(1−ζλ1

% )k1κλ1
% d = ζλ1

% (1−ζλ1
% )d

so as in Step 1, letting ny1 be the “inwards” pointing unit normal of ∂K(z, ψ, h)
at point y1 , we have

(25) X+(y1, ny1 , %) ∩Bhξ%(y1) ⊂ Bd(y1) ⊂ B4d(x).

Now by the fact that y1 ∈ S1 (recall (7)) we know that

µ
(
Bhξ%(y1) ∩X+(y1, ny1 , %)

)
≥ λ1(ξ%h)s.

By using (23), (24) we know λ1(ξ%h)s ≥ 2εds and so from (25) and the density
estimate (10) we know that we have

µ
(
Bhξ%(y1) ∩X+(y1, ny1 , %) ∩ S1

)
≥ λ1(ξ%h)s − εds ≥ 1

2λ1(ξ%h)s

and so by equations (16) and (17) (recall ξ% = %/(1 + %2)) we can pick y2 ∈
X+(y1, ny1 , %) ∩Bhξ%(y1) ∩ S1 such that

(26) y2 ∈ K
(
z, ψ, (1− ζλ1

% )h
)
⊂ K

(
z, ψ, (1− ζλ1

% )k1+1κλ1
% d
)
.

Suppose y1 ∈ Ψu(z, ψ, κλ1
% , d) . This means

h = |Pψ⊥(y1 − z)| ≤ κλ1
% |P〈ψ〉(y1 − (z + dψ))|.

So from (26)

|Pψ⊥(y2 − z)| ≤ (1− ζλ1
% )h ≤ (1− ζλ1

% )κλ1
%

∣∣P〈ψ〉
(
y1 − (z + dψ)

)∣∣.

And since y2 ∈ Bhξ%(y1)

∣∣P〈ψ〉
(
y2 − (z + dψ)

)∣∣ ≥
∣∣P〈ψ〉

(
y1 − (z + dψ)

)∣∣− hξ%
≥
∣∣P〈ψ〉

(
y1 − (z + dψ)

)∣∣− ξ%κλ1
%

∣∣P〈ψ〉
(
y1 − (z + dψ)

)∣∣

=
∣∣P〈ψ〉

(
y1 − (z + dψ)

)∣∣(1− ζλ1
% ).

Putting these two together we have

|Pψ⊥(y2 − z)| ≤ κλ1
%

∣∣P〈ψ〉
(
y2 − (z + dψ)

)∣∣.
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So y2 ∈ Ψu(z, ψ, κλ1
% , d) and similarly

y1 ∈ Ψd(z, ψ, κλ1
% , d) implies y2 ∈ Ψd(z, ψ, κλ1

% , d)

so we have y2 ∈ Ψ(z, ψ, κλ1
% , d) .

Now we want to show that y2 ∈
(⋃∞

j=k1+1 Γj
)

. We know from (20) that y2 ∈⋃∞
j=1 Γj . However we also know from (26) that |Pψ⊥(y2 − z)| is sufficiently small

(recall the definition of Γk1+1 , see (19)) so that we must have y2 ∈
(⋃∞

j=k1+1 Γj
)

and hence

y2 ∈ Ψ(z, ψ, κλ1
% , d) ∩

( ∞⋃
j=k1+1

Γj

)
∩ S1,

contradicting the maximality of k1 . So we have established Step 4, and so we
know (recall (23)) that

(27) λ1(1− ζλ1
% )s(k1+1)(ξ%κ

λ1
% d)s < 2εds.

Let θ = (1− ζλ1
% )k1κλ1

% d and recall that this is the width of cylinder Γk1 . So

2εds > λ1(1− ζλ1
% )s(k1+1)(ξ%κ

λ1
% d)s = λ1(1− ζλ1

% )sξs%θ
s.

And so

θ <
(2ε)1/sd

λ
1/s
1 (1− ζλ1

% )ξ%
.

To summarise what we have proved: we have shown that for any z ∈ ψ⊥+x such
that Ψ(z, ψ, κλ1

% , d) ⊂ B2d(x) , if we know that

Ψ(z, ψ, κλ1
% , d) ∩ S1 6= ∅,

then

(28) K

(
z, ψ,

(2ε)1/sd

λ
1/s
1 (1− ζλ1

% )ξ%

)
∩B2d(x) ∩ S1 6= ∅.

As we know that for any z ∈ (ψ⊥+x)∩K(x, ψ, κλ1
% d) , (recall this is the hypothesis

on point z in the statement of Lemma 1), we have

x ∈ Ψ(z, ψ, κλ1
% , d)

and thus Ψ(z, ψ, κλ1
% , d) ∩ S1 6= ∅ and so by (28) for

ϑλ1
% =

21/s

λ
1/s
1 (1− ζλ1

% )ξ%

we have K(z, ψ, ε1/sϑλ1
% d) ∩ S1 ∩B2d(x) 6= ∅ which gives us the conclusion of the

lemma. Thus we have completed the proof.
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Proof of Theorem 1 continued

Let ε > 0 be some very small number. Again we simplify expressions by
letting µ := Hs

bS . Let x ∈ S1 be a density point of S1 , let d ∈ (0, r0) such that

(29)
µ
(
B16d(x)\S1

)

ds
≤ ε.

We can partition [2d, 4d] into M :=
[
2/4ε1/sϑλ1

%

]
subintervals. Call them I1 ,

I2, . . . , IM and let ck be the center of interval Ik . Now for k ∈
{

1, 2, . . . ,M
}

we

know the following is true: For all z ∈ (ψ⊥ + x) ∩K
(
x, ψ, κλ1

%
1
2ck
)

by Lemma 1
we have

(30) K
(
z, ψ, ε1/sϑλ1

%
1
2ck
)
∩ S1 ∩Bck(x) 6= ∅.

Now fix k ∈
{

1, 2, . . . ,M
}

. From (30) we have that for every z ∈ (ψ⊥ + x) ∩
K(x, ψ, κλ1

% d) we have K(z, ψ, 2ε1/sϑλ1
% d) ∩ S1 ∩Bck(x) 6= ∅ .

Let Ek = (ψ⊥ + x)\P−1
ψ⊥
(
Pψ⊥(S1 ∩Bck(x))

)
.

Now recall since S1 is purely unrectifiable or of Hausdorff dimension < n− 1
by our choice of ψ (recall we are first proving the theorem for a.e. ψ ∈ Sn−1 ,
see (5)) we have

Ln−1(Ek) ≥ Ln−1
(
B1(0)

)
(κλ1
% d)n−1.

Since S1 is closed, Ek is open. Thus for each z ∈ Ek we can find

(31) rz ∈ (0, 2ε1/sϑλ1
% d)

such that

– K(z, ψ, rz) ∩Bck(x) ∩ (ψ⊥ + x) ∩ S1 = ∅ ,
– ∂K(z, ψ, rz) ∩Bck(x) ∩ (ψ⊥ + x) ∩ S1 6= ∅ .

Now by the 5r covering theorem ([9, Theorem 2.1]) from the covering of Ek
given by

{
Brz (z) : z ∈ Ek

}
we can find a disjoint collection of balls

{
Brkm(zkm) : zkm ∈ Ek, m = 1, 2, . . . , Nk

}

which are centered on points of Ek and are such that

(32)

Nk∑

m=1

(rkm)n−1 >
(κλ1
% d)n−1

5n−1
.

Now each m ∈
{

1, 2, . . . , Nk
}

we can pick a point

xkm ∈ ∂K(zkm, ψ, r
k
m) ∩Bck(x) ∩ S1.
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x

Figure 4.

The essential point is that by the fact that the points
{
xkm : m = 1, 2, . . . , Nk

}

satisfy inequality (7) in every direction perpendicular to ψ , unless the points{
xkm : m = 1, . . . , Nk

}
are very near the surface of the ball Bck(x) , there will be

some fraction of the set S1 in the interior of the cylinders
{
K(zkm, ψ, r

k
m), m =

1, . . . , Nk
}

of Hausdorff measure approximately
∑Nk
k=1(rkm)s .

Now since s ∈ (0, n− 1] , by the well-known inequality ([4, Theorem 19])

(33)

( Nk∑

m=1

(rkm)s
)1/s

≥
( Nk∑

m=1

(rkm)n−1

)1/(n−1)

≥ κλ1
% d

5

so we see this can not happen too often, see Figure 4. Proceeding formally, for
each k ∈

{
1, 2, . . . ,M

}
, m ∈

{
1, 2, . . . , Nk

}
let nxkm denote the inner normal

to the boundary of the cylinder K(zkm, ψ, r
k
m) at point xkm . Again let us fix

k ∈
{

1, 2, . . . ,M
}

. We know that for each m ∈
{

1, . . . , Nk
}

(34) µ
(
X+(xkm, nxkm , %) ∩Bξ%rkm(xkm)

)
≥ λ1(ξ%r

k
m)s.

Let Ik1 =
{
m ∈ {1, 2, . . . , Nk} : X+(xkm, nxkm , %) ∩ Bξ%rkm(xkm) ⊂ Bck(x)

}
. Let

Ik2 =
{

1, 2, . . . , Nk
}
\Ik1 . Now firstly for any m ∈ Ik1 as

X+(xkm, nxkm , %) ∩Bξ%rkm(xkm) ⊂ K(zkm, ψ, r
k
m) ∩Bck(x)

and so X+(xkm, nxkm , %) ∩Bξ%rkm(xkm) ⊂ Bck(x)\S1 , thus we have

µ

( ⋃
m∈Ik1

X+(xkm, nxkm , %) ∩Bξ%rkm(xkm)

)
≤ εds.
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So ∑

m∈Ik1

(rkm)s ≤ εds

λ1ξs%
.

Thus given sufficient smallness of ε , from (33) we have

(35)
∑

m∈Ik2

(rkm)s ≥ 1

5s
(κλ1
% d)s − εds

λ1ξs%
≥ 1

2× 5s
(κλ1
% d)s.

However by definition of Ik2 we know that for k = 1, 2, . . . ,M (recall (31))

{
Bξ%rkm(xkm),m ∈ Ik2

}
⊂ N

2ε1/sϑ
λ1
% d

(
∂Bck(x)

)
.

So using the density estimate of subset S1 (i.e. (8)) and (35)

µ
(
B5d(x)

)
≥ µ

(
M⋃
k=1

N
2ε1/sϑ

λ1
% d

(
∂Bck(x)

))

≥
M∑

k=1

∑

m∈Ik2

µ
(
Bξ%rkm(xkm)

)

≥ λ1ξ
s
%

2

(
M

5s

)
(κλ1
% d)s

and since M can be made as large as we like by reducing ε (recall that M =[
2/4ε1/sϑλ1

%

]
) we end up contradicting the density bound (8) and thus Theorem 1

is proved for almost every ψ ∈ Sn−1 .
Now for arbitrary ψ ∈ Sn−1 we can argue in the following way: Suppose the

conclusion of Theorem 1 is false for ψ . Then as before we must have some subset
S1 ⊂ S and some % > 0, λ1 > 0 such that for all φ ∈ ψ⊥ ∩ Sn−1

lim inf
r→0

Hs
(
Br(x) ∩X+(x, φ, %) ∩ S

)

rs
> λ1,

for all x ∈ S1 .
Now by elementary geometry we can see that there exists a small number

a(%) > 0 such that any ψ̃ ∈ Sn−1 for which |ψ̃ − ψ| < a(%) has the following
property:

For any φ̃ ∈ Sn−1 ∩ ψ̃⊥ there exists φ ∈ Sn−1 ∩ ψ⊥ such that

(36) X+(z, φ, %) ⊂ X+
(
z, φ̃, 1

2%
)

for any z ∈ Rn .
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Since we have proved Theorem 1 for almost every ψ̃ ∈ Sn−1 we can certainly
find a ψ̃ ∈ Sn−1 for which it is true and |ψ̃−ψ| < a(%) . Then for Hn a.e. x0 ∈ S1

we have that for some φ̃ ∈ Sn−1 ∩ ψ̃⊥ :

lim inf
r→0

Hs
(
Br(x0) ∩X+

(
x0, φ̃,

1
2%
)
∩ S
)

rs
= 0.

However by (36) this implies that

lim inf
r→0

Hs
(
Br(x0) ∩X+(x0, φ, %) ∩ S

)

rs
= 0,

which contradicts the definition of S1 so we are done.
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[4] Hardy, G. H., J. E. Littlewood, and G. Pólya: Inequalities. - Cambridge Univ. Press,
1934.

[5] Lorent, A.: Rectifiability of measures with locally uniform cube density. - Proc. London
Math. Soc. (3) 86, 2003, 153–249.

[6] Marstrand, J. M.: Hausdorff two-dimensional measure in 3 space. - Proc. London Math.
Soc. (3) 11, 1961, 91–108.

[7] Marstrand, J. M.: The (φ, s) regular subsets of n -space. - Trans. Amer. Math. Soc.
113, 1964, 369–392.

[8] Mattila, P.: Hausdorff m -regular and rectifiable sets in n -space. - Trans. Amer. Math.
Soc. 205, 1975, 263–274.

[9] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. - Cambridge Stud.
Adv. Math., 1995.

[10] Mattila, P., M. S. Melnikov, and J. Verdera: The Cauchy integral, analytic capacity
and uniform rectifiability. - Ann. of Math. 144, 1996, 127–136.

[11] Mattila, P., and P. V. Paramonov: On geometric properties of harmonic Lip1 -capaci-
ty. - Pacific J. Math. 171, 1995, 469–491.

[12] Preiss, D.: Geometry of measures in Rn : distribution, rectifiability, and densities. - Ann.
of Math. 125, 1987, 537–643.
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