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Abstract. It is shown that every map of finite energy in the sense of Korevaar and Schoen
into a complete metric space Y (not necessarily locally compact) is quasicontinuous, the domain
space being an admissible Riemannian polyhedron. Assuming that Y is a geodesic space of up-
per bounded Alexandrov curvature, two inequalities are obtained for the energy of certain maps
associated with a given pair of maps. One of these inequalities is due to T. Serbinowski (unpub-
lished) and applied to establish existence and uniqueness of the solution to the variational Dirichlet
problem for harmonic maps into Y .

1. Introduction and preliminaries

In this article the hypothesis of local compactness of the target space is omit-
ted in certain results about maps of finite energy established in [EF], [F1], and [F2].

We first show (Theorem 1) that every finite energy map ϕ: X → Y is qua-
sicontinuous, i.e., continuous relative to the complement of open subsets of X of
arbitrarily small capacity, cf. [EF, p. 153]. The domain space is a Riemannian man-
ifold, or more generally an admissible Riemannian polyhedron (X, g) , dimX = m .
The target is a complete metric space (Y, dY ) . Under the extra hypothesis that
closed balls in Y be compact, the result was obtained in [EF, Theorem 9.1] by a
non-constructive compactness argument.

Basically following Serbinowski [Se] (Thesis, unpublished) we next establish
existence and uniqueness of the solution to the variational Dirichlet problem for
harmonic maps of X into suitable balls in Y , assuming that Y has upper bounded
Alexandrov curvature (Theorem 2). See Section 2 for a precise formulation.

Referring to [EF, Chapter 4] we recall that a (Lipschitz) polyhedron X is
defined as a metric space which is Lip homeomorphic to a connected locally finite
simplicial complex. Admissibility means that X is dimensionally homogeneous
and that (if m > 2) any two m -simplexes of X with a common face σ (dimσ =
0, 1, . . . ,m − 2) can be joined by a chain of m -simplexes containing σ , any two
consecutive ones of which have a common (m− 1)-face containing σ .
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The polyhedron X becomes a Riemannian polyhedron when endowed with
a Riemannian metric g , defined by giving on each open m -simplex s of X a
nondegenerate Riemannian metric g|s . We require that g be simplexwise smooth,
i.e., each g|s shall be smooth, and shall extend smoothly to the affine span of s ,
cf. [EF, Remark 4.1]. The associated volume measure on X is denoted by µg = µ ,
the intrinsic (Riemannian) distance on X by dgX = dX , and the closed ball with
centre x ∈ X and radius r by BX(x, r) .

Based on the work of Korevaar and Schoen [KS] a concept of energy of a map
ϕ of (X, g) into a metric space (Y, dY ) is developed in [EF, Chapter 9]. The map
ϕ is supposed first of all to be measurable with separable essential range, and to be
of class L2

loc(X,Y ) in the sense that the distance function dY
(
ϕ( · ), y

)
is of class

L2
loc(X,µ) for some and hence (by the triangle inequality) for any point y ∈ Y .

The approximate energy density eε(ϕ) ∈ L1
loc(X,µ) is then defined for ε > 0 at

every point x ∈ X by

(1.1) eε(ϕ)(x) =

∫

BX(x,ε)

d2
Y

(
ϕ(x), ϕ(x′)

)

εm+2
dµ(x′).

The energy of ϕ: (X, g)→ (Y, dY ) is defined as

(1.2) E(ϕ) = sup
f∈Cc(X,[0,1])

(
lim sup
ε→0

∫

X

feε(ϕ) dµ

)
(6∞),

where Cc stands for continuous functions of compact support. W 1,2
loc (X,Y ) de-

notes the space of all maps X → Y for which E(ϕ|U ) < ∞ for every relatively
compact connected open set U ⊂ X (equivalently: the above lim sup is finite for
every f ). If X is compact then (1.2) reduces to

E(ϕ) = lim sup
ε→0

∫

X

eε(ϕ) dµ.

If ϕ ∈ W 1,2
loc (X,Y ) (and only then), there exists a non-negative function

e(ϕ) ∈ L1
loc(X,µ) , called the energy density of ϕ (more precisely: the 2-energy

density), such that eε(ϕ) → e(ϕ) as ε → 0, in the sense of weak convergence as
measures:

(1.3) lim
ε→0

∫

X

feε(ϕ) dµ =

∫

X

fe(ϕ) dµ

for every f ∈ Cc(X) . In the affirmative case it follows from (1.2), (1.3) that

E(ϕ) =

∫

X

e(ϕ) dµ.
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For the above assertions, see Steps 2, 3, and 4 of the proof of [EF, Theorem 9.1].
These steps are independent of the general requirement in [EF] that also the target
of maps X → Y shall be locally compact. However, the proof of the second part
of Step 1, leading to quasicontinuity of ϕ , required compactness of closed balls
in Y .1 In the present article we show that this extra hypothesis can be omitted;
and that appears to be new even when the domain is a manifold.

A function u: X → R is of class W 1,2
loc (X,R) in the above sense (with Y = R)

if and only if u ∈ W 1,2
loc (X) as defined in [EF, p. 63] (cf. [F1, footnote 2] for the

uniqueness of ∇u). And if that is the case, the energy density of u equals

(1.4) e(u) = cm|∇u|2 = cmg
ij∂iu ∂ju a.e. in X ,

with the usual summation convention. Here cm = ωm/(m + 2), ωm being the
volume of the unit ball in Rm . See [EF, Corollary 9.2], which is based on [KS,
Theorem 1.6.2] (where X is a Riemannian domain in a Riemannian manifold),
and is also a particular case of [EF, Theorem 9.2].

2. Formulation of results

A version of a µ -measurable map ϕ arises when ϕ is redefined on some
µ -nullset.

Theorem 1. Every map ϕ ∈ W 1,2
loc (X,Y ) of an admissible Riemannian

polyhedron (X, g) into a complete metric space (Y, dY ) has a quasicontinuous
version. When dimX = 1 , ϕ has a Hölder continuous version with exponent 1

2 .

The proof of this theorem, given in Section 3, includes the following explicit
description of a quasicontinuous version ϕ∗: X → Y of ϕ : For any point a in
X less a certain set P (likewise explicitly described) of capacity 0, ϕ∗(a) is the
essential radial limit of ϕ(x) as x→ a along small rays issuing from a in almost
all directions. In the proof of the theorem (for m > 2) we employ the fine topology
of H. Cartan on Rm—the weakest topology in which every subharmonic function
in Rm is continuous. The fine topology is stronger than the metric topology.
We shall also use the following lemma on finite energy maps Rm → Y , likewise
established in Section 3, and drawing on Korevaar–Schoen’s study of directional
energies [KS].

Lemma 1. Let ϕ be a map of finite energy from Rm , m > 2 , into a complete
metric space (Y, dY ) . In terms of the 2 -energy density e(ϕ) ∈ L1(Rm) suppose
that ∫

Rm

|x|1−m
√
e(ϕ)(x) dx <∞.

1 At this point in [EF], local compactness of Y should be read as closed balls in Y being

compact. Furthermore, the reference to Remark 7.5 should be to Remark 7.6.
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For almost every open ray R in Rm issuing from 0 , the restriction ϕ|R: R → Y
has finite 1 -energy, and therefore possesses a version of bounded variation up to
the point 0 .

In the proof of Theorem 1 we shall furthermore need the potential theoretic
notion of “thinness” of a set, introduced by Brelot in 1939: A ⊂ Rm is thin at
a point x0 ∈ Rm \ A if either x0 /∈ Ā or there exists a superharmonic function
u > 0 in a neighbourhood ω of x0 in Rm such that

(2.1) u(x0) < lim inf
ω∩A3x→x0

u(x),

cf. [Br1, Sections 3, 11] or [Br2, p. 2]. It was this concept that led Cartan to
introducing the fine topology, having observed that the complements of the sets
A ⊂ Rm\{x0} which are thin at x0 are precisely the fine neighbourhoods of x0 , cf.
[Br1, Théorème 5] or [Br2, p. 3].—All this remains in force with Rm replaced more
generally by an admissible Riemannian polyhedron (X, g) , cf. [EF, Chapter 7].

In the rest of this section, the target (Y, dY ) is a complete geodesic space
(again not necessarily locally compact) of Alexandrov curvature 6 1. (The case
of curvature 6 K for a constant K > 0 reduces to the case K = 1 by rescaling
the metric on Y .) All maps are assumed to have essential range contained in
a closed geodesically convex ball B = BY (q,R) in Y of radius R < 1

2π and
satisfying bipoint uniqueness (i.e., geodesics in B shall be uniquely determined by
their endpoints and shall vary continuously with them). For the above concepts
see [EF, Chapter 2], [F1], [F2], and literature quoted there.

By way of preparation to Theorem 2 below we bring, in the following two pro-
positions, two inequalities connected with a pair of finite energy maps ϕ0, ϕ1: X →
B . Their distance function u(x) = dY

(
ϕ0(x), ϕ1(x)

)
, x ∈ X , is of class W 1,2

loc (X)
because ϕi ∈ L2

loc(X,Y ) (hence u ∈ L2
loc(X)), and u has finite Dirichlet integral

satisfying

(2.2)

∫

X

|∇u|2 dµ 6 2cm
(
E(ϕ0) + E(ϕ1)

)
,

as seen from (1.1), (1.2), and (1.4), by application of the triangle inequality:

|u(x)− u(x′)|2 6
( 1∑

i=0

dY
(
ϕi(x), ϕi(x

′)
))2

6 2

1∑

i=0

d2
Y

(
ϕi(x), ϕi(x

′)
)
.

Proposition 1. For any two finite energy maps ϕi: X → B , i = 0, 1 ,
and any function κ: X → [0, 1] with finite Dirichlet integral, the map ϕκ =
(1− κ)ϕ0 + κϕ1: X → B has finite energy satisfying

(2.3) E
(
(1− κ)ϕ0 + κϕ1

)
6 C

(
E(ϕ0) + E(ϕ1) +

∫

X

|∇κ|2 dµ
)
,

where B = BY (q,R) , and where C depends on R and dimX = m only.
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By abuse of notation, the map (1−κ)ϕ0 +κϕ1 is defined at a point x ∈ X as
the point of the geodesic segment [ϕ0(x), ϕ1(x)] at distance κ(x)dY

(
ϕ0(x), ϕ1(x)

)

from ϕ0(x) . The proof of Proposition 1 is given in Section 4.

Proposition 2 (Serbinowski’s inequality, [Se]). Given two finite energy maps
ϕ0, ϕ1: X → B with midpoint map ϕ1/2 = 1

2ϕ0 + 1
2ϕ1 and distance function

u = dY (ϕ0, ϕ1) (∈W 1,2
loc (X)), consider the finite energy map ϕ̂1/2: X → B given

by

(2.4) ϕ̂1/2 = (1− η)ϕ1/2 + ηq,

where the function η: X → [0, 1[ of class W 1,2
loc (X) is defined in terms of the

function % := dY
(
ϕ1/2( · ), q

)
∈W 1,2

loc (X) by

(2.5) sin[(1− η)%] = sin % cos
(

1
2u
)

at points x ∈ X where %(x) > 0 , and by 1− η = cos
(

1
2u
)

elsewhere. Then

(2.6) cm cos8R

∣∣∣∣∇
tan
(

1
2u
)

cos %

∣∣∣∣
2

6 1

2
e(ϕ0) +

1

2
e(ϕ1)− e(ϕ̂1/2)

µ -a.e. If u ∈W 1,2
0 (X \ bX) then dY (ϕ1/2, ϕ̂1/2) = η% ∈W 1,2

0 (X \ bX) .

By integration, (2.6) yields2

(2.7) cm cos8R

∫

X

∣∣∣∣∇
tan
(

1
2u
)

cos %

∣∣∣∣
2

dµ 6 1

2
E(ϕ0) +

1

2
E(ϕ1)− E(ϕ̂1/2).

Proposition 2 is an analogue of the inequality [EF, (11.2)], cf. [KS, (2.2iv)],
expressing strict convexity of the energy of maps into a simply connected complete
geodesic space of nonpositive curvature. The proof of Proposition 2 is based on the
theory of directional energies in [KS] and is given in Section 5 below, essentially
following [Se] (though of necessity invoking Proposition 1 above).

Theorem 2 is about the variational Dirichlet problem for energy minimizing
maps X → Y ; and the domain space X is therefore required to be compact with
nonvoid boundary bX (the union of all (m− 1)-simplexes of X contained in only

2 In [Se], X is a Riemannian domain (in a Riemannian manifold). That leads to (2.6) for the
present admissible Riemannian polyhedron X , simply by application to each open m -simplex of
X , the (m− 1) -skeleton being a µ -nullset. In [Se], and hence (sic!) in [EF], the inequality (2.7) is
unfortunately mis-stated, the “hat” over ϕ1/2 being missing (thereby invalidating the inequality,
even in the case of geodesics ϕ0, ϕ1 on the standard 2-sphere). The proof given in [Se] pertains of
course to the correct version as stated above.—The parenthetical statement in [EF, p. 201] about

avoiding directional energies if R < π/4 is dubious in the case of discontinuous maps.
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one m -simplex). We denote by W 1,2(X,B) the class of all maps X → B of finite
energy. The trace trbX ϕ on bX of a map ϕ ∈W 1,2(X,B) is defined by collecting
the traces trσ ϕ of ϕ on the various (m−1)-simplexes σ of bX . (If s denotes the
open m -simplex of X having σ as a face, trσ ϕ is defined as in [KS, Section 1.12]
applied to Ω = s , Γ = σ .) Then trbX ϕ is defined Hm−1 -a.e. on bX (Hm−1

denoting (m− 1)-dimensional Hausdorff measure). In terms of a quasicontinuous
version of ϕ (cf. Theorem 1), we have trbX ϕ = ϕ|bX Hm−1 -a.e. on bX , cf. [F2,
Section 2] (this will not be used in the present paper).

Given a map ψ ∈W 1,2(X,B) , consider the subclass

(2.8)
W 1,2
ψ (X,B) = {ϕ ∈W 1,2(X,B) : trbX ϕ = trbX ψ Hm−1-a.e.}

= {ϕ ∈W 1,2(X,B) : dY (ϕ,ψ) ∈W 1,2
0 (X \ bX)}.

For the latter equation see [F2, Lemma 1(b)] (applied to Γ = bX ), which of course
also shows that, for any two maps ϕ0, ϕ1 ∈ W 1,2

ψ (X,B) , the distance function

dY (ϕ0, ϕ1) is of class W 1,2
0 (X \ bX) because trbX ϕ0 = trbX ϕ1 Hm−1 -a.e.

Theorem 2 (Serbinowski [Se]). For any map ψ ∈W 1,2(X,B) there exists a
unique map ϕ ∈W 1,2

ψ (X,B) of least energy.

This map ϕ is called the solution to the variational Dirichlet problem, or the
variational solution to the Dirichlet problem. Its existence and uniqueness (µ -
a.e.) was established in [F2], assuming for existence that Y be locally compact.
Serbinowski’s proof [Se] of existence and uniqueness of the variational solution,
without local compactness of Y , is based on Proposition 2 above, but is otherwise
quite similar to the proof by Korevaar–Schoen of the analogous result for targets
of nonpositive curvature [KS, Theorem 2.2]. The proof in the present setting
with a polyhedral domain is also similar, again in view of Proposition 2: Write
dY (ϕ0, ϕ1) = u and

E0 = inf{E(ϕ) : ϕ ∈W 1,2
ψ (X,B)}.

For uniqueness, let ϕ0, ϕ1 ∈ W 1,2
ψ (X,B) . Then ϕ1/2 ∈ W 1,2

ψ (X,B) , by (2.8) and

Proposition 1, because dY (ϕ0, ϕ1/2) = 1
2u ∈ W

1,2
0 (X \ bX) . It follows similarly

that ϕ̂1/2 ∈ W 1,2
ψ (X,B) , and so E(ϕ̂1/2) > E0 , because dY (ϕ1/2, ϕ̂1/2) = η% ∈

W 1,2
0 (X \ bX) , by the final assertion of Proposition 2. (Alternatively, consider

the traces of these functions and maps on bX .) When ϕ0, ϕ1 are minimizers,
i.e., E(ϕ0) = E(ϕ1) = E0 , (2.7) shows that the function tan

(
1
2u
)
/ cos % of class

W 1,2
0 (X \bX) is constant, hence equals 0 µ -a.e. because 1 /∈W 1,2

0 (X \bX) by the
Poincaré inequality [F2, Lemma 1(c)]. Consequently, u = dY (ϕ0, ϕ1) = 0 µ -a.e.,
and so ϕ0 = ϕ1 µ -a.e.
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For existence consider a minimizing sequence (ϕi) in W 1,2
ψ (X,B) . Write

uij = dY (ϕi, ϕj), ϕij = 1
2ϕi + 1

2ϕj , %ij = dY (ϕij , q),

and define ηij as in (2.5) (now with η, %, u replaced by ηij , %ij , uij ). Defining

ϕ̂ij = (1 − ηij)ϕij + ηijq , cf. (2.4), we then have ϕij , ϕ̂ij ∈ W 1,2
ψ (X,B) , by the

same argument as above, and hence

E(ϕi) + E(ϕj)− 2E(ϕ̂ij) 6 E(ϕi) + E(ϕj)− 2E0,

so that the left-hand member converges to 0 as i, j →∞ . By (2.7) this implies

lim
i,j→∞

∫

X

∣∣∣∣∇
tan
(

1
2uij

)

cos %ij

∣∣∣∣
2

dµ = 0.

It follows by the quoted Poincaré inequality that tan
(

1
2uij

)
/ cos %ij → 0 in L2(X) .

The same therefore applies to uij itself, and so (ϕi) has a limit ϕ in the complete
metric space (L2(X,B), D ), where D2(ϕ′, ϕ′′) :=

∫
X
d2
Y (ϕ′, ϕ′′) dµ for ϕ′, ϕ′′ ∈

L2(X,B) , cf. [KS, Section 1.1]. Because the energy functional is lower semicontin-
uous, [EF, Lemma 9.1] (this does not depend on local compactness of the target),
we conclude that ϕ ∈ W 1,2(X,B) and that E(ϕ) 6 E0 . According to [F2,
Lemma 1(a)] (extending [KS, Theorem 1.12.2]) it follows that trbX ϕi → trbX ϕ in
L2(bX,B) (complete, with metric analogous to D above), and so trbX ϕ = trbX ψ
(=trbX ϕi ). Altogether, ϕ ∈W 1,2

ψ (X,B) , and we conclude that E(ϕ) = E0 .

Remark 1. The solution to the above variational problem is known to have a
Hölder continuous version in X \bX (continuous up to the boundary bX if trbX ψ
is continuous), provided that either R < 1

4π (rather than R < 1
2π ) or that Y is

locally compact, [EF, Theorem 11.4], [F1, Theorem 2], [F2, Theorem 3].

3. Proof of Lemma 1 and Theorem 1

Proof of Lemma 1. For 0 < α < β < ∞ consider the Euclidean Riemannian
domain Ωαβ = {x ∈ Rm : α < |x| < β} and the unit vector field

ω(x) = x/|x|, x ∈ Ωαβ ,

with associated directional 2-energy density ωe(ϕ) = |ϕ∗(ω)|2 6 C(m)2e(ϕ) Le-
besgue a.e. in Ωαβ , where |ϕ∗(ω)|(x) denotes the 1-energy density of ϕ in the
direction ω(x) , and C(m) depends on m only, [KS, Theorem 1.11]. In particular,
|ϕ∗(ω)| ∈ L2(Ωαβ) . Denoting by Sm−1 the unit sphere in Rm , with surface
measure σ , we therefore have

∫

Sm−1

dσ(ξ)

∫ β

α

rm−1r1−m|ϕ∗(ω)|(rξ) dr 6 C(m)

∫

Ωαβ

|x|1−m
√
e(ϕ)(x) dx.
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For α→ 0, β →∞ this leads, by the hypothesis of the lemma, to

(3.1)

∫ ∞

0

|ϕ∗(ω)|(rξ) dr <∞ for σ -a.e. ξ ∈ Sm−1.

We show that (again for σ -a.e. ξ ∈ Sm−1 ) the map ϕξ: R+ → Y , defined Lebesgue
a.e. by ϕξ(r) = ϕ(rξ) , has finite 1-energy, and its 1-energy density e(ϕξ) satisfies

(3.2) e(ϕξ)(r) 6 |ϕ∗(ω)|(rξ)

for Lebesque a.e. r ∈ R+ . It will then follow that ϕξ possesses a version of
bounded variation on every interval ]0, β[ (0 < β < ∞), cf. [KS, Lemma 1.9.2],
applied in dimension 1.

For 0 < 4ε < β − α the approximate 1-energy density ωeε(ϕ)(x) of ϕ at
x = rξ in the direction ω(x) = x/|x| = ξ is defined on Ωα+ε,β−ε for σ -a.e.
ξ ∈ Sm−1 by

ωeε(ϕ)(rξ) =
1

ε
dY
(
ϕ(rξ), ϕ

(
(r + ε)ξ

))
, α+ ε < r < β − ε.

As shown by Serbinowski [Se, Lemma 2.5] (his proof is reproduced below in the
proof of Lemma 2(a) in Section 5),

dY
(
ϕ(rξ), ϕ

(
(r + ε)ξ

))
6
∫ ε

0

|ϕ∗(ω)|
(
(r + t)ξ

)
dt

for σ -a.e. ξ ∈ Sm−1 and for Lebesgue a.e. r ∈ ]α+ 2ε, β − 2ε[ . For any function
f ∈ C+

c ( ]α, β[ ) it follows for small ε > 0 that

(3.3)

∫ β

α

ωeε(ϕ)(rξ)f(r) dr 6 1

ε

∫ ε

0

dt

∫ β

α

|ϕ∗(ω)|
(
(r + t)ξ

)
f(r) dr

→
∫ β

α

|ϕ∗(ω)|(rξ)f(r) dr

as ε → 0, the inner integral of convolution type on the right of the inequality
being continuous in t on ]0, ε[ in view of (3.1). Consequently, the lim sup of the

left-hand member of (3.3) for ε→ 0 is no bigger than
∫ β
α
|ϕ∗(ω)|(rξ)f(r) dr <∞ ,

and so ϕξ has indeed (for σ -a.e. ξ ∈ Sm−1 ) finite energy on ]α, β[ , with energy
density e(ϕξ) satisfying (3.2) there. Using (3.1) fully, this shows that E(ϕξ) <∞ ,
and that (3.2) holds for a.e. r ∈ R+ .



Finite energy maps to metric spaces 441

Proof of Theorem 1. The assertions are easily reduced to the case where
E(ϕ) < ∞ , i.e.,

√
e(ϕ) ∈ L2(X) . The case m = 1 is contained in [KS,

Lemma 1.9.2], so suppose m > 2. Topological notions relative to the Cartan fine
topology on X (mentioned early in Section 2) are indicated by adding “fine(ly)”.
Referring to [EF, Proposition 7.8] we recall that a map ϕ: X → Y is quasicontin-
uous if and only if ϕ is finely continuous quasi-eveywhere, i.e., everywhere except
in some polar set. A polar set is the same as a finely discrete and hence finely
closed set; it is also the same as a set of capacity 0. A polar set has µ -measure 0,
and a nonvoid finely open set has µ -measure > 0, cf. [F1, Section 8, Lemma 4].

Case 1. Let X = Rm with the Euclidean Riemannian metric. The set

(3.4) P ′ =

{
a ∈ X :

∫

X

|a− x|1−m
√
e(ϕ)(x) dx =∞

}

is polar, as shown by Deny [De2] with
√
e(ϕ) replaced by any function f ∈

L2(Rm) , f > 0. Consider a point a ∈ X \ P ′ and a fine neighbourhood U of a
in X . As shown in [De1], U contains for σ -a.e. ξ ∈ Sm−1 a straight line segment
[a, a + %(ξ)ξ] , %(ξ) > 0. According to Lemma 1 we may assume that the map
r 7→ ϕ(a + rξ) has a version of bounded variation over ]0, %(ξ)] , and so there
exists

(3.5) ϕ∗(a, ξ) := ess lim
0<r→0

ϕ(a+ rξ) ∈ Y

for σ -a.e. ξ ∈ Sm−1 , (Y, dY ) being complete.
Denote by ϕ∗(a, Sm−1) the σ -essential range of the map ξ 7→ ϕ∗(a, ξ) of

Sm−1 into Y ; it is independent of U .
In order next to prove that ϕ∗(a, Sm−1) consists of a single point, choose a

dense sequence (zn) in Y , and write for brevity

(3.6) dY
(
ϕ(x), zn

)
= v(x, zn).

By [EF, Corollaries 9.1, 9.2], v( · , zn) ∈ W 1,2(X,R) = W 1,2(X) , and hence
v( · , zn) has a quasicontinuous version v∗( · , zn) (see e.g. [EF, proof of Theo-
rem 7.2]). Thus there is a µ -nullset N such that, for all n ,

(3.7) v( · , zn) = v∗( · , zn) in X \N,

and a polar set P ′′ ⊂ X such that v∗( · , zn) is finely continuous in X \ P ′′ , [EF,
Proposition 7.8(c)]; then P := P ′ ∪ P ′′ is likewise polar.

Henceforth, let a ∈ X \P . Given ε > 0 and y ∈ ϕ∗(a, Sm−1) , choose i = i(y)
so that dY (y, zi) < ε ; then

(3.8) dY
(
ϕ∗(a, ξ), zi

)
< ε
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for points ξ ∈ Sm−1 forming a set of σ -measure > 0.
For U above take now any one of the following finely open sets containing a :

(3.9) Un,ε = {x ∈ X \ P : |v∗(x, zn)− v∗(a, zn)| < ε}.

By (3.6), (3.7), and (3.9),

(3.10)
∣∣dY
(
ϕ(x), zn

)
− v∗(a, zn)

∣∣ < ε

for every x = a+rξ ∈ Un,ε\N ; and hence for σ -a.e. ξ ∈ Sm−1 and for (Lebesgue)
a.e. small r > 0, by [De1], as noted above (because a+rξ /∈ N for σ -a.e. ξ ∈ Sm−1

and a.e. r > 0). For r → 0 this leads by (3.5) for σ -a.e. ξ ∈ Sm−1 to

(3.11)
∣∣dY
(
ϕ∗(a, ξ), zn

)
− v∗(a, zn)

∣∣ 6 ε.

Applying (3.11) with n = i from (3.8), and combining with (3.8), gives v∗(a, zi) <
2ε . For any other point y′ ∈ ϕ∗(a, Sm−1) choose similarly j = j(y′) so that
dY (y′, zj) < ε and hence v∗(a, zj) < 2ε . For x = a+ rξ ∈ Ui,ε ∩ Uj,ε \N ( 6= ∅)
we thus obtain from (3.10)

dY (zi, zj) 6 dY
(
ϕ(x), zi

)
+ dY

(
ϕ(x), zj

)
6 v∗(a, zi) + v∗(a, zj) + 2ε < 6ε.

Consequently, dY (y, y′) < dY (zi, zj) + 2ε < 8ε . This holds for any two y, y′ ∈
ϕ∗(a, Sm−1) and for any ε > 0. Thus y = y′ , and ϕ∗(a, Sm−1) , defined for
a ∈ X \ P , reduces indeed to a point ϕ∗(a) ∈ Y ; hence (3.5) holds with ϕ∗(a, ξ)
replaced by ϕ∗(a) .

Again for a ∈ X\P and for given ε > 0, choose i so that now dY
(
ϕ∗(a), zi

)
<

ε . Inserting ϕ∗(a, ξ) = ϕ∗(a) in (3.11) we obtain as above v∗(a, zi) < 2ε . For
x ∈ Ui,ε \ N , cf. (3.9), we therefore have dY

(
ϕ(x), zi

)
< 3ε in view of (3.10).

Hence, for such x ,

dY
(
ϕ(x), ϕ∗(a)

)
6 dY

(
ϕ(x), zi

)
+ dY

(
ϕ∗(a), zi

)
< 4ε.

Consequently, for every a ∈ X \ P ,

(3.12) ϕ(x)→ ϕ∗(a) as x→ a finely through X \N.

It follows by (3.6), (3.7), and (3.12) that, for every a ∈ X \ P and every n ,

(3.13) v∗(a, zn) = fine lim
X\N3x→a

dY
(
ϕ(x), zn

)
= dY

(
ϕ∗(a), zn

)
.

If a ∈ X \ (N ∪ P ) this implies ϕ(a) = ϕ∗(a) because

dY
(
ϕ(a), zn

)
= v(a, zn) = v∗(a, zn) = dY

(
ϕ∗(a), zn

)
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for every n , and because a point of Y is uniquely determined by its distances from
the points zn of a dense sequence in Y .

For a ∈ X\P and for given ε > 0 choose n = n(ε) so that dY
(
ϕ∗(a), zn

)
< ε ;

and let x ∈ Un,ε \ P . By (3.13) applied with a replaced by x , by (3.9), and by
(3.13) as it stands, it follows that

dY
(
ϕ∗(x), ϕ∗(a)

)
6 dY

(
ϕ∗(x), zn

)
+ ε = v∗(x, zn) + ε

< v∗(a, zn) + 2ε = dY
(
ϕ∗(a), zn

)
+ 2ε < 3ε.

Thus ϕ∗ is finely continuous at every point a of the finely open set X \ P .
Regardless of how ϕ∗ is defined in P we conclude that ϕ∗ is a quasicontinuous
version of ϕ , cf. [EF, Proposition 7.8(c)], because ϕ∗(a) = ϕ(a) for a not in the
µ -nullset N ∪ P .

Case 2. Let X be the union of closed halfspaces X1, . . . , Xk (in copies

X̃1, . . . , X̃k of Rm ), disjoint save for a common boundary hyperplane—a copy

X0 of Rm−1 . Let τi denote reflection of X̃i in X0 . We endow X with the
Euclidean Riemannian structure and associated intrinsic distance dX , cf. [EF,
Section 4]. Claims:

(i) A set A ⊂ Xi is polar relative to X if and only if A is polar relative to Xi ,

or equivalently: relative to X̃i = Xi ∪ τi(Xi) (= Rm ).
(ii) A set A ⊂ Xi is thin at a point x0 ∈ Xi if and only if A is thin at x0 relative

to Xi , or equivalently: relative to X̃i .

Note that, in case k = 2, X̃i is the same as the space X itself. A permutation
π of {1, . . . , k} induces an isometry π: X → X such that π|Xj (j ∈ {1, . . . , k})
is the obvious identification of Xj with Xπ(j) , leaving X0 pointwise fixed. Every
neighbourhood in X of a point of X0 contains an open neighbourhood ω of that
point such that ω is symmetric, i.e., π(ω) = ω for every π .

Ad (i). Suppose first that A ⊂ Xi is polar in X . Clearly, A\X0 is then polar
in Xi as well, so we may assume that A ⊂ X0 . There exists a superharmonic
function u > 0 on a symmetric neighbourhood ω in X , as above, such that
u =∞ on A ∩ ω . For any permutation π , u ◦ π has the same properties because
A ⊂ X0 , and so has u∗ :=

∑
π u◦π (> u). It remains to prove that u∗ , restricted

to ωi := ω ∩ Xi , is superharmonic relative to Xi . Any λ ∈ Lip+

c (ωi) extends
by symmetry across X0 to a symmetric (i.e., permutation invariant) function
λ∗ ∈ Lip+

c (ω) , and

k

∫

ωi

〈∇u∗,∇λ〉 dµ =

∫

ω

〈∇u∗,∇λ∗〉 dµ > 0

because u∗ is superharmonic and symmetric in ω relative to X . This shows
that (u∗)|ωi is weakly superharmonic, and even superharmonic. Indeed, there is
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a (unique) superharmonic function ũ on ωi and a µ -nullset N ⊂ ωi such that
ũ = u∗ in ωi\N . Actually we may take N ⊂ ωi∩X0 because u∗ is superharmonic
in the open set ωi \X0 . According to [EF, Proposition 7.8(d)] it follows for every
x0 ∈ ω ∩N = ωi ∩N that

(3.14) ũ(x0) = lim inf
ωi\N3x→x0

ũ(x) = lim inf
ωi\N3x→x0

u∗(x) = u∗(x0).

The first, respectively last, equation (3.14) holds because ũ , respectively u∗ , is
superharmonic in ωi , respectively ω , and because ωi \N is not thin at x0 relative
to Xi , respectively X , cf. (2.1) (for then the nullset N would be a fine neighbour-
hood of x0 in ωi , respectively the isometric images ωj \N of ωi \N , j = 1, . . . , k ,
would likewise be thin at x0 relative to X , and so would their union ω \N , i.e.,
N would again be a fine neighbourhood of x0 in X ). We conclude that ũ = u∗

holds not only in ωi \N , but also in ωi ∩N , by (3.14), and so u∗ = ũ is indeed
superharmonic in all of ωi relative to Xi .

Conversely, if A ⊂ Xi is polar relative to Xi then A \ X0 is polar also in
X , so we may assume again that A ⊂ X0 . There exists a superharmonic function
ui > 0 in some open neighbourhood ωi in Xi of a given point of X0 such that
ui =∞ on A∩ ωi . By symmetry across X0 , ωi extends to a symmetric open set
ω ⊂ X with ω ∩Xi = ωi , and ui extends to a symmetric weakly superharmonic
function u > 0 on ω with u =∞ on A∩ω = A∩ωi . It is shown much like above
(replacing now ωi, u

∗ by ω, u in (3.14) and exploiting the symmetry of ω and u)
that u is actually superharmomnic in ω .

Ad (ii). Thinness being a local property, we may assume that x0 ∈ X0 .
Suppose first that A ⊂ Xi is thin at x0 relative to X , and let u > 0 denote a
superharmonic function on a symmetric open neighbourhood ω of x0 in X such
that

(3.15) u(x0) < lim inf
A∩ω3x→x0

u(x),

cf. (2.1). Exactly as in the proof of (i), u∗ :=
∑
π u ◦ π > 0 is likewise superhar-

monic on ω ; and u∗ , restricted to ωi := ω ∩ Xi , is weakly superharmonic, and
indeed superharmonic. From (3.15) follows the same with ω replaced by ωi and
u by u∗|ωi . Because A ∩ ωi = A ∩ ω this is seen by adding over all permutations
π the inequalities

(u ◦ π)(x0) 6 lim inf
A∩ω3x→x0

(u ◦ π)(x),

valid by lower semicontinuity of u and hence of u ◦ π , noting that there is sharp
inequality for π = id (the identity permutation) by (3.15) as it stands. It follows
that A is indeed thin at x0 relative to Xi .

Conversely, if A ⊂ Xi is thin at x0 ∈ X0 relative to Xi , there exists a
superharmonic function ui > 0 on an open neighbourhood ωi of x0 in Xi such
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that (3.15) holds with ω, u replaced by ωi, ui . Exactly as in (i), by symmetry
across X0 , ωi extends to a symmetric open neighbourhood ω of x0 in X with
ω ∩ Xi = ωi , and ui extends to a superharmonic function u > 0 on ω . Then
(3.15) holds as it stands because u(x0) = ui(x0) and u = ui on ω ∩ A = ωi ∩ A .
Consequently, A is indeed thin at x0 relative to X .

Thus prepared, we now establish Theorem 1 in the present Case 2. The set

(3.16) P ′ =

{
a ∈ X :

∫

X

dX(a, x)1−m√e(ϕ)(x) dx =∞
}

(cf. (3.4)) is polar (in X ). Indeed, P ′ is covered by the sets P ′i ⊂ Xi obtained
by replacing X by Xi on the right-hand side of (3.16), i ∈ {1, . . . , k} ; and each

P ′i is polar in Xi by (i) above, being polar in X̃i = Xi ∪ τi(Xi) = Rm according
to Case 1 because

√
e(ϕ)|Xi ∈ L2(Xi)

+ can be extended to a function of class

L2(X̃i)
+ . Hence P ′i is polar in X , by (i), and so is therefore P ′ .

For any point a ∈ X \ P ′ , every fine neighbourhood U of a in X contains
small segments issuing from a in almost all directions, and the restriction of ϕ
to any of these segments has an essential limit at a . This follows at once from
Case 1 if a /∈ X0 , so we may assume that a ∈ X0 . For i ∈ {1, . . . , k} write

U ∩Xi = Ui , and denote Ũi = Ui ∪ τi(Ui) . Then X \ U is thin at a , and hence,
by (ii) above, Xi \ Ui = Xi \ U is thin at a relative to Xi and therefore also

relative to X̃i . It follows by symmetry that τi(Xi) \ τi(Ui) = τi(Xi \Ui) is thin at

a relative to X̃i , and so is therefore X̃i \ Ũi ⊂ (Xi \ Ui) ∪
(
τi(Xi) \ τi(Ui)

)
. This

means that Ũi is a fine neighbourhood of a in X̃i (= Rm ). Writing ϕ|Xi = ϕi ,
we have eε(ϕi)(x) 6 eε(ϕ)(x) for every x ∈ Xi (because BXi(x, ε) ⊂ BX(x, ε)).

For ε→ 0 it follows that e(ϕi) 6 e(ϕ) on Xi . Denote ϕ̃i: X̃i → Y the extension

of ϕi to X̃i by symmetry across X0 ; then e(ϕ̃i) is the “even” extension of e(ϕi)

from Xi to X̃i (this clearly holds in X̃i \X0 , hence a.e. in X̃i ). It follows that

E(ϕ̃i) 6 2E(ϕi) 6 2E(ϕ) , and (3.5) therefore holds with ϕ,U replaced by ϕ̃i, Ũi ,
or by ϕi, Ui in particular.

The rest of the proof of Theorem 1 in Case 1 now carries over to the present
Case 2, including the explicit description of a quasicontinuous version ϕ∗ of ϕ ,
whereby ϕ∗(a) (even for a ∈ X0 ) is the essential radial limit of ϕ(x) as x → a
in almost every direction (within each Xi ), provided that a ∈ X \P for a certain
polar set P = P ′ ∪ P ′′ ⊂ X .

Case 3. Let X be any admissible m -dimensional polyhedron, embedded
in some Euclidean space V , with each simplex affinely embedded, cf. [EF, Re-
mark 4.1]. We give X the Euclidean Riemannian metric induced by that of V .
The (m− 2)-skeleton X(m−2) is a polar set [EF, Proposition 7.6], and may there-
fore be disregarded. The assertion of the theorem being local, we are left with the
case of the star of an open (m− 1)-simplex of X ; and that is covered by Case 2.
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Case 4. This is the general case, where (X, g) is an arbitrary admissible
Riemannian polyhedron (g simplexwise smooth). We may assume that X is
compact; then g is equivalent with the Euclidean Riemannian metric ge induced
by that of a Euclidean space V in which X is embedded, as in Case 3. Simple
estimates involving the ellipticity constant Λ of g allow us to reduce the theorem
to Case 3 above, cf. [EF, Section 4 and Corollary 7.1, p. 120].

4. Proof of Proposition 1

Step 1. For any (ordered) quadruple PQRS in B = BY (q,R) (no restriction
on the perimeter of the corresponding quadrilateral) with midpoints M and N of
PS and QR , respectively, we show that

(4.1) MN 6 c

2
(PQ+RS) 6 c

√
PQ2 +RS2 , c =

π√
2 cosR

.

Here and elsewhere we write briefly PQ in place of dY (P,Q) for points P,Q ∈ Y .
Consider first the case PQ,RS < % := 1

2π − R . Then [F2, Lemma 2(a)]

applies and produces a (convex) comparison trapezoid P̃ Q̃R̃S̃ in the unit sphere
S2 in R3 , symmetric about a great circle γ̃ in S2 , and with side lengths

(4.2) P̃ S̃ = PS, Q̃R̃ = QR, P̃ Q̃ = R̃S̃ = PQ ¦RS,

where the “cosine mean” a ¦ b ∈
[
0, 1

2π
]

of two numbers a, b ∈
[
0, 1

2π
]

is defined
by

(4.3) cos(a ¦ b) = 1
2 (cos a+ cos b).

By [F2, Lemma 2(b)], MN 6M̃ Ñ (M̃ and Ñ denoting the midpoint of P̃ S̃ and

Q̃R̃ , respectively). Let Õ denote the pole of γ̃ in S2 on the same side of γ̃ as

R̃ and S̃ . The cosine relation for the spherical triangle P̃ Q̃Õ with angle θ at Õ
may be written

sin2
(

1
2 P̃ Q̃

)
= sin2

[
1
2 (ÕP̃ − ÕQ̃)

]
+ sin ÕP̃ sin ÕQ̃ sin2

(
1
2θ
)

(also if the triangle degenerates). Because MN 6 M̃ Ñ = θ < π and sin ÕP̃ =

cos
(

1
2 P̃ S̃

)
> cosR , etc., it follows by (4.2), (4.3) that

cos2R sin2
(

1
2MN

)
6 sin2

(
1
2 P̃ Q̃

)
= 1

2 sin2
(

1
2PQ

)
+ 1

2 sin2
(

1
2RS

)

6 1
8 (PQ2 +RS2) 6 1

8 (PQ+RS)2,

and so indeed MN cosR 6 π cosR sin
(

1
2MN

)
6
(
π/
√

8
)
(PQ+RS) .
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For an arbitrary quadruple PQRS in B , (4.1) now follows by partitioning
PQ , respectively SR , into n equal segments of length PQ/n,RS/n 6 2R/n < % .
It remains to apply (4.1) to each of the n smaller quadrilaterals thus obtained,
and to add up, using the triangle inequality. When applied to the quadrilateral

PQRS = ϕ0(x)ϕ0(x′)ϕ1(x′)ϕ1(x),

and hence M = ϕ1/2(x) , N = ϕ1/2(x′) , it follows from the latter inequality (4.1)
in view of (1.2) that

(4.4) E(ϕ1/2) 6 c2
(
E(ϕ0) + E(ϕ1)

)
.

Step 2. Suppose that u := dY (ϕ0, ϕ1) < % . Note that u ∈W 1,2(X) , by (2.2).
For any x ∈ X and x′ ∈ BX(x, ε) , [F2, Lemma 2] applies to the quadrilateral
PQRS defined in the preceding paragraph. That produces a comparison trapezoid
P̃ Q̃R̃S̃ in S2 , symmetric about a great circle γ̃ in S2 , and with sidelengths as
in (4.2). Write

ϕκ(x) =
(
1− κ(x)

)
ϕ0(x) + κ(x)ϕ1(x),

ϕκ′(x
′) =

(
1− κ(x′)

)
ϕ0(x′) + κ(x′)ϕ1(x′);

furthermore,

(4.5) dY
(
ϕi(x), ϕi(x

′)
)

= di (i = 0, 1), dY
(
ϕκ(x), ϕκ′(x

′)
)

= dκ,

and similarly with κ replaced by 1 − κ . Finally, write u(x) = u , u(x′) = u′ ,
κ(x) = κ , κ(x′) = κ′ , and consider in S2 the points

P̃κ = (1− κ)P̃ + κS̃, Q̃κ′ = (1− κ′)Q̃+ κ′R̃.

According to [F2, Lemma 2(b)], dκ ¦ d1−κ 6 P̃κQ̃κ′ , and since d0 ¦ d1 = P̃ Q̃ by
(4.2), we obtain

(4.6) 1
2 (cos d0 − cos dκ) + 1

2 (cos d1 − cos d1−κ) 6 cos P̃ Q̃− cos P̃κQ̃κ′ .

Let Õ denote the pole of γ̃ in S2 on the same side of γ̃ as R̃ and S̃ , and write

(4.7) d := d0 ¦ d1 = P̃ Q̃,

(4.8) v := ÕP̃ = 1
2 (π + u), v′ := ÕQ̃ = 1

2 (π + u′).

Then v, v′ ∈
[

1
2π,

1
2π +R

]
, and so 0 6 − cot v,− cot v′ 6 tanR .
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Define a function λ ∈W 1,2(X) , 0 6 λ 6 1, by λ = κu/v , and write λ(x) = λ ,

λ(x′) = λ′ . Then P̃ P̃κ = κu = λv = λÕP̃ and Q̃Q̃κ′ = λ′ÕQ̃ .

By the spherical cosine relation, applied to the triangles ÕP̃ Q̃ and ÕP̃κQ̃κ′ ,
we therefore obtain (cf. [EF, p. 193]), after eliminating the common angle at Õ ,

sin v sin v′ cos P̃κQ̃κ′ = sin(v − λv) sin(v′ − λ′v′) cos d

+ sin(v − λv) sin(λ′v′) cos v

+ sin v′ sin(λv) cos(v′ − λ′v′).

Insert this expression for cos P̃κQ̃κ′ in (4.6), together with cos P̃ Q̃ = cos d =
1
2 (cos d0 + cos d1) from (4.5), (4.7). After some manipulations serving to make
(1.2) through (1.4) applicable this leads to

(4.9) 1
2 (cos d0 − cos dκ) + 1

2 (cos d1 − cos d1−κ) 6 R(1) +R(2) +R(3) +R(4),

cf. [EF, equation (10.17)], [F1, equation (8.2)]. Here

R(1) := −2 sin2
(

1
2d
)(

1− sin(v − λv)

sin v

sin(v′ − λ′v′)
sin v′

)

6 C1(d2
0 + d2

1);(4.10)

R(2) := cos(λv) cos(λ′v′)(cos v − cos v′)

(
tan(λv)

sin v
− tan(λ′v′)

sin v′

)

6 C2

[
(cos v − cos v′)2 +

(
tan(λv)

sin v
− tan(λ′v′)

sin v′

)2]
;

R(3) := (cos v − cos v′)2 sin(λv)

sin v

sin(λ′v′)
sin v′

6 (cos v − cos v′)2;

R(4) := 2 sin2 λv − λ′v′
2

− 2 sin2 v − v′
2

sin(λv)

sin v

sin(λ′v′)
sin v′

6 1
2 (λv − λ′v′)2,

where C1, C2 and subsequent constants C3, . . . depend on R and dimX = m
only.

The power series of 1−cos t is alternating, with terms that decrease in absolute
value t2n/(2n)! , n > 1, when t2 < 4!/2! = 12. Since d0, dκ 6 2R < π <

√
12 , it

follows that 1
2d

2
0 > 1− cos d0 and 1

2d
2
κ − 1

24d
4
κ 6 1− cos dκ . Inserting 1− 1

12d
2
κ >

1− 1
12π

2 = C3 > 0, leads to

1
2C3d

2
κ 6 1

2d
2
0 + (cos d0 − cos dκ).

Adding to this the corresponding inequality with κ replaced by 1−κ , and 0 by 1,
we obtain for f ∈ Cc(X, [0, 1]) after dividing by 2εm+2 and invoking (1.1), (1.3),
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(4.3), and (4.9):

C3 lim sup
ε→0

∫

X

(
eε(ϕκ) + eε(ϕ1−κ)

)
f dµ 6 lim sup

ε→0

∫

X

(
eε(ϕ0) + eε(ϕ1)

)
f dµ

+ 4 lim sup
ε→0

∫

X

f(x) dµ(x)

∫

BX(x,ε)

1

εm+2

4∑

j=1

R(j) dµ(x′).(4.11)

Inserting the above estimates of R(1) , R(2) , R(3) , and R(4) in (4.11), we obtain by
application of (1.2) through (1.4) and viewing Cc(X, [0, 1]) as an upper directed
set:

C3

(
E(ϕκ) + E(ϕ1−κ)

)
6 (1 + 4C1)

(
E(ϕ0) + E(ϕ1)

)

+ 4C2

∫

X

(
|∇ cos v|2 +

∣∣∣∣∇
tan(λv)

sin v

∣∣∣∣
2)

dµ

+ 4

∫

X

|∇ cos v|2 dµ+ 2

∫

X

|∇(λv)|2 dµ

6 C4

(
E(ϕ0) + E(ϕ1) +

∫

X

(
|∇u|2 + |∇κ|2

)
dµ

)

after an easy reduction, invoking (2.2), (4.8), and λ = κu/v . This leads to (2.3)
in view of (2.2).

Step 3. In the general case we have, by (4.4), E(ϕ1/2) 6 c2
(
E(ϕ0) +E(ϕ1)

)
,

hence E(ϕ1/4), E(ϕ3/4) 6 (c2 +c4)
(
E(ϕ0)+E(ϕ1)

)
, etc. Choose an integer n > 1

so that 3·2−n2R < % . For any number α ∈ [0, 1] such that 2nα is an integer it
follows that

(4.12) E(ϕα) 6 C5

(
E(ϕ0) + E(ϕ1)

)
, C5 := c2 + · · ·+ c2n.

For integers i ∈ [−1, 2n + 1] write 2−ni = αi . For i ∈ [0, 2n − 1] and x ∈ X
define κi(x) ∈ [0, 1] as the number in the interval [αi−1, αi+2] nearest to κ(x) ;
then κi ∈ W 1,2(X) , by [EF, Proposition 5.1(c)]. Suppose κ ∈ Lip(X) (cf. Step 4

below). Let ϕ
(i)
κ denote the restriction of ϕκ to the open set

X(i) := κ−1( ]αi−1, αi+2[ )

in which κ = κi and hence ϕκ = ϕκi . Every connectivity component of X (i) is
an admissible Riemannian polyhedron, like X; and (in case i ∈ [1, 2n − 2])

ϕ(i)
κ = ϕκi = (1− η)ϕαi−1 + ηϕαi+2 in X(i)
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with η(x) = 1
32n
(
κ(x) − αi−1

)
∈ ]0, 1[ for x ∈ X(i) ; furthermore, η has finite

Dirichlet integral, like κ ; and

u(i) := dY (ϕαi−1 , ϕαi+2) = (αi+2 − αi−1)dY (ϕ0, ϕ1) = 3·2−nu < %,

by choice of n (since u := dY (ϕ0, ϕ1) 6 2R). We therefore obtain from the
case of (2.3) established in Step 2, but now applied with X,ϕ0, ϕ1, κ replaced by
X(i), ϕαi−1 , ϕαi+2 , η :

E(ϕ(i)
κ ) 6 C6

(
E(ϕαi−1) + E(ϕαi+2) +

∫

X(i)

|∇η|2 dµ
)
.

Here |∇η| = 1
32n|∇κ| . In view of (4.12) applied to α = αi−1, αi+2 , this establishes

(2.3) restricted to X(i) with i ∈ [1, 2n−2] ; the remaining cases i = 0 and i = 2n−1
are handled similarly. Because the X (i) , i ∈ [0, 2n − 1] , cover X we have now
proved (2.3) for the whole of X .

Step 4. Suppose first that X is compact, hence κ ∈W 1,2(X) . To remove the
extra hypothesis κ ∈ Lip(X) made in Step 3, we approximate κ in W 1,2 -norm
by a sequence of functions κj ∈ Lip(X) , 0 6 κj 6 1; then ϕκj → ϕκ in L2(X,B)
because dY (ϕκj , ϕκ) = |κj − κ|dY (ϕ0, ϕ1) with dY (ϕ0, ϕ1) 6 2R . Since (2.2)
holds for each κj in place of κ , and since

∫
X
|∇κj |2 dµ →

∫
X
|∇κ|2 dµ < ∞ , we

have supj E(ϕκj ) < ∞ . Consequently, (2.2) follows for j → ∞ (and with the
same constant C ) by lower semicontinuity of energy [EF, Lemma 9.1].

Finally, if X is noncompact, exhaust it by an increasing sequence of finite
subpolyhedra Xj . From (2.2) applied to the restrictions of ϕ0 , ϕ1 , and κ to each

Xj follows that ϕκ ∈ W 1,2
ψ (X,B) , and in the limit as j →∞ that (2.2) holds as

it stands.

5. Proof of Proposition 2

In our presentation of Serbinowski’s proof of his inequality (2.7) in Proposi-
tion 2 above we bring in Lemma 4 below a variant of the proof of [Se, Lemma 2.9];
and in the proof of Lemma 3 we bring some details underlying [Se, proof of
Lemma 1.10], drawing for that purpose on [F2, Lemma 2]. Furthermore Proposi-
tion 1 above is indispensable.

In this section the domain of maps will be a Riemannian domain (Ω, g) in
the sense of Korevaar and Schoen [KS, Section 1.1], i.e., a connected open subset
of a Riemannian manifold (M, g) such that the metric completion Ω is a compact
subset of M . The volume measure on M is denoted by µ = µg . We refer
to [KS, Section 1.7] for the class Γ(TΩ) of all Lipschitz vector fields ω on Ω,
and the associated directional energies ωE(ϕ) and directional energy densities
ωe(ϕ) = |ϕ∗(ω)|2 of maps ϕ ∈ W 1,2(Ω, Y ) , i.e., maps Ω → Y of finite 2-energy.
For any open set U ⊂ Ω write Uε = {x ∈ U : dΩ(x, ∂U) > ε} , ε > 0. We
sometimes abbreviate dY (P,Q) = PQ for points P,Q ∈ Y . In the following
lemma, Y may be any complete metric space.
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Lemma 2 ([Se, Lemmas 2.5, 2.6, 2.7]). Let ϕ ∈ W 1,2(Ω, Y ) , let ω ∈ Γ(TΩ)
be a unit vector field, and denote by

(
x̄(x, t)

)
t

the flow generated by ω . Then,
for ε > 0 ,

(a) dY
(
ϕ(x), ϕ

(
x̄(x, ε)

))
6
∫ ε

0
|ϕ∗(ω)|

(
x̄(x, t)

)
dt for µ -a.e. x ∈ Ω2ε .

(b) The functions x 7→ (1/ε)dY
(
ϕ(x), ϕ

(
x̄(x, ε)

))
are locally uniformly square

µ -integrable for small ε , and

(5.1)
1

ε
dY
(
ϕ(x), ϕ

(
x̄(x, ε)

))
→ |ϕ∗(ω)| in L2

loc(Ω) as ε→ 0.

(c) Defining for α > 0

(5.2) Aεα = Aεα(ϕ) =
{
x ∈ Ω2ε : dY

(
ϕ(x), ϕ

(
x̄(x, ε)

))
> α

}

we have for any f ∈ Cc(Ω)

(5.3) ωEϕ(f) :=

∫

Ω

|ϕ∗(ω)|2f dµ = lim
ε→0

∫

Ω\Aεα

d2
Y

(
ϕ(x), ϕ

(
x̄(x, ε)

))

ε2
f(x) dµ(x).

Proof. Ad (a). Let U ⊂ Ωε be a coordinate patch such that, in coordinates
xi on U , we have ω = ∂/∂x1 . Then dµ(x) =

√
det g(x) dx , and for f ∈ C+

c (Uε)

and n = 1, 2, . . . , writing f̃(x) = f(x)
√

det g(x) ,

∫

Ω

dY
(
ϕ(x), ϕ

(
x̄(x, ε)

))

ε
f(x) dµ(x) =

∫

U

dY
(
ϕ(x), ϕ(x+ εω)

)

ε
f̃(x) dx

6
∫

U

f̃(x)
1

ε

n−1∑

k=0

dY

(
ϕ

(
x+

k

n
εω

)
, ϕ

(
x+

k + 1

n
εω

))
dx

=

∫

U

1

n

n−1∑

k=0

f̃

(
x− k

n
εω

)
dY
(
ϕ(x), ϕ(x+ εω/n)

)

(ε/n)
dx.

By [KS, Theorem 1.8.1],

dY
(
ϕ(x), ϕ(x+ εω/n)

)

(ε/n)
→ |ϕ∗(ω)|(x)

weakly as measures for n→∞ . Furthermore,

1

n

n−1∑

k=0

f̃

(
x− k

n
εω

)
→ 1

ε

∫ ε

0

f̃(x− tω) dt
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uniformly for x ∈ U as n→∞ . Thus
∫

Ω

dY
(
ϕ(x), ϕ

(
x̄(x, ε)

))
f(x) dµ(x) 6

∫

U

∫ ε

0

f̃(x− tω)|ϕ∗(ω)|(x) dt dx

6
∫

Ω

f(x)

∫ ε

0

|ϕ∗(ω)|
(
x̄(x, t)

)
dt dµ(x),

and Part (a) of the lemma follows by varying f and U .

Ad (b). For δ > 0 define

(5.4) V (δ) = sup

{∫

A

|ϕ∗(ω)|2 dµ : A ⊂ Ω, A is µ -measurable, µ(A) 6 δ
}
.

Since |ϕ∗(ω)| ∈ L2(Ω) it follows that V (δ)↘ 0 as δ ↘ 0.
Let K b Ω be µ -measurable, and choose ε > 0 so that K b Ω2ε . For |t| 6 ε

define
Kt = {x̄(x, t) : x ∈ K} (b Ωε).

Then we have µ(Kt) 6 cµ(K) with c independent of ε and t . By Cauchy’s
inequality, applied to the integral in (a), we obtain after integrating over K

∫

K

d2
Y

(
ϕ(x), ϕ

(
x̄(x, ε)

))

ε2
dµ(x) 6 1

ε

∫

K

∫ ε

0

|ϕ∗(ω)|2
(
x̄(x, t)

)
dt dµ(x).

When combined with∫

K

|ϕ∗(ω)|2
(
x̄(x, t)

)
dµ(x) 6 C

∫

K−t
|ϕ∗(ω)|2 dµ,

with C independent of ε and t for |t| 6 ε , this leads to

(5.5)

∫

K

d2
Y

(
ϕ(x), ϕ

(
x̄(x, ε)

))

ε2
dµ(x) 6 1

ε

∫ ε

0

C V
(
µ(K−t)

)
dt 6 C V

(
cµ(K)

)
,

and the uniform (in small ε) square integrability over K follows.
For brevity, write (1/ε)dY

(
ϕ(x), ϕ

(
x̄(x, ε)

))
= uε(x) , x ∈ K. According

to [KS, Theorem 1.9.6], uε → |ϕ∗(ω)| pointwise µ -a.e. in K as ε → 0. By
Egoroff’s theorem there exists for any δ > 0 a µ -measurable set E ⊂ K such that
µ(K \ E) < δ and that uε → |ϕ∗(ω)| uniformly on E as ε→ 0. Then

∫

K

(
uε − |ϕ∗(ω)|

)2
dµ 6 µ(K) sup

E

(
uε − |ϕ∗(ω)|

)2

+ 2

∫

K\E
u2
ε dµ+ 2

∫

K\E
|ϕ∗(ω)|2 dµ,

and here the last two integrals are majorized by CV (cδ) and V (δ) , respectively,
by (5.5) (applied with K replaced by K \E , whereby we may keep C ) and (5.4).
Making first ε→ 0 and then δ → 0 leads to (5.1).
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Ad (c). We may assume that ϕ has been chosen within its equivalence class
so that the map [0, ε] 3 t 7→ ϕ

(
x̄(x, t)

)
is (Hölder) continuous for every x ∈ Ωε

off some µ -nullset N , [KS, Lemma 1.9.2]. Define for α > 0

Ãεα =
{
x ∈ Ω2ε : dY

(
ϕ(x), ϕ

(
x̄(x, t)

))
> α for some t ∈ [0, ε]

}
.

Then Aεα ⊂ Ãεα , and both sets are µ -measurable, the latter because it suffices to
consider rational t when x /∈ N . For ε → 0 through a decreasing sequence, Ãεα
decreases to

⋂
ε Ã

ε
α ⊂ N , and hence µ(Ãεα)→ 0 as ε→ 0; in particular,

(5.6) µ(Aεα)→ 0 as ε→ 0.

In proving (5.3) we may assume that f > 0. With integration over all of Ω,
this limit relation is contained in [KS, Theorem 1.8.1]. As it stands, (c) therefore
follows from (5.5) applied to K = Kε := Aεα ∩ supp f , taking ε small enough so
that supp f ⊂ Ω2ε :

∫

Aεα

d2
Y

(
ϕ(x), ϕ

(
x̄(x, ε)

))

ε2
f(x) dµ(x) 6 C‖f‖L∞V

(
cµ(Kε)

)
.

By (5.6), µ(Kε)→ 0, hence V
(
cµ(Kε)

)
→ 0 as ε→ 0.

It is not known to the author whether (b) and (c) in Lemma 2 have analogues
for the “full” energy functional Eϕ(f) =

∫
Ω
e(ϕ)f dµ in place of the directional

energy functional ωEϕ(f) . Actually, rather than using (5.3), we shall in the sequel
employ (5.6) combined with

(5.7) ess lim
ε→0

d2
Y

(
ϕ(x), ϕ

(
x̄(x, ε)

))

ε2
= |ϕ∗(ω)|2(x),

valid for µ -a.e. x ∈ Ω and for any ϕ ∈ W 1,2(Ω, Y ) , according to [KS, Theo-
rem 1.9.6]. For a Sobolev function u ∈W 1,2(Ω) this reads

(5.8) ess lim
ε→0

∣∣u(x)− u
(
x̄(x, ε)

)∣∣2

ε2
= |∇ωu|2(x)

for µ -a.e. x ∈ Ω, as is well known.

Henceforth we consider maps ϕ: Ω → B with (Y, dY ) and B = BY (q,R) as
in the paragraph containing (2.1); in particular R < 1

2π .

Lemma 3 ([Se, Lemma 2.8]). Let ϕ0, ϕ1 ∈ W 1,2(Ω, B) . For any unit vector
field ω ∈ Γ(TΩ) , generating a flow

(
x̄(x, t)

)
t
, we have

(5.9) |(ϕ1/2)∗(ω)|2 cos2
(

1
2u
)
6 1

2 |(ϕ0)∗(ω)|2 + 1
2 |(ϕ1)∗(ω)|2 − 1

4 |∇ωu|2

µ -a.e. in Ω , whereby u(x) = dY
(
ϕ0(x), ϕ1(x)

)
, while ∇ωu = 〈ω,∇u〉 is the

derivative of u ∈W 1,2(Ω) in the direction ω = ω(x) .
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It is the factor cos2
(

1
2u
)
6 1 in (5.9) which causes the need for considering

the map ϕ̂1/2 instead of ϕ1/2 in Serbinowski’s inequality (2.6).
Proof. Proposition 1 shows that ϕ1/2 ∈ W 1,2(Ω, B) , B being convex. Let

0 < α 6 1
2π − R . For ε > 0 and x ∈ Ω2ε \

(
Aεα(ϕ0) ∪ Aεα(ϕ1) ∪ Aεα(ϕ1/2)

)
, cf.

(5.2), hence

(5.10) di := dY
(
ϕi(x), ϕi

(
x̄(x, ε)

))
6 α, i = 0, 1, 1

2 ,

the ordered quadruple

P = ϕ0(x), Q = ϕ0

(
x̄(x, ε)

)
, R = ϕ1

(
x̄(x, ε)

)
, S = ϕ1(x)

defines a quadrilateral PQRS in Y , and 2 max{PQ,RS} + QR + SP < 2π .

According to [F2, Lemma 2(a)], PQRS has a comparison trapezoid P̃ Q̃R̃S̃ in the
unit sphere S2 in R3 , i.e., a convex spherical quadrilateral, symmetric about a
great circle γ̃ in S2 , and with side lengths

P̃ S̃ = PS = u(x), Q̃R̃ = QR = u
(
x̄(x, ε)

)
,

P̃ Q̃ = R̃S̃ = PQ ¦RS = d0 ¦ d1,

where the cosine mean d0 ¦ d1 ∈
[
0, 1

2π
]

of numbers d0, d1 ∈
[
0, 1

2π
]

is defined by

cos(d0 ¦ d1) = 1
2 (cos d0 + cos d1) , i.e., 2 sin2

[
1
2 (d0 ¦ d1)

]
= sin2

(
1
2d0

)
+ sin2

(
1
2d1

)
.

If Õ ∈ S2 denotes the pole of γ̃ on the same side of γ̃ as R̃ and S̃ , the
spherical cosine relation applied to P̃ Q̃Õ yields (also if P̃ Q̃R̃S̃ degenerates)

(5.11) 2 cos
u

2
cos

ū

2
sin2 θ

2
= sin2 d0

2
+ sin2 d1

2
− 2 sin2 u− ū

4
.

Here u = u(x), ū = u
(
x̄(x, ε)

)
, while θ denotes the angle at Õ , i.e., the spherical

distance between the midpoints M̃ , Ñ ∈ γ̃ of P̃ S̃ and Q̃R̃ , respectively. According
to [F2, Lemma 2(b)], the distance d1/2 = dY

(
ϕ1/2(x), ϕ1/2(x̄)

)
= MN between

the midpoints M and N of PS and QR , respectively, satisfies d1/2 6M̃ Ñ = θ .
By the triangle inequality, |u− ū| 6 d0 + d1 6 2α , cf. (5.10).

Becausee 2 sin2
(

1
2 t
)

= 1
2 t

2
(
1 − O(t2)

)
for t = d0, d1, d1/2 , and 1

2 |u − ū| (all

6 α), we obtain from (5.11) after division by 1
2ε

2 cos( 1
2u) cos( 1

2 ū) :

d2
1/2

ε2
6 1 +O(α)

cos2
(

1
2u
)
(
d2

0 + d2
1

2ε2
− (u− ū)2

4ε2

(
1−O(α2)

))

µ -a.e. in Ω2ε . Making first ε → 0 and then α → 0 leads in view of [KS, The-
orem 1.9.6] to (5.9). For this, apply (5.6), (5.7) to ϕ0 , ϕ1 , ϕ1/2 ; and (5.8) to

u ∈ W 1,2(Ω), cf. (2.2), whilst noting that 1/ cos2
(

1
2u
)

is bounded and measur-
able.
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Lemma 4 ([Se, Lemma 2.9]). Let ϕ ∈ W 1,2(Ω, B) (B = BY (q,R)) , and
write dY

(
ϕ(x), q

)
= %(x) , x ∈ Ω . For any function η ∈ W 1,2(Ω) , 0 6 η < 1 , the

map ϕ̂ := (1− η)ϕ+ ηq ∈W 1,2(Ω, B) satisfies

(5.12) |ϕ̂∗(ω)|2 6 sin2(%− η%)

sin2 %

(
|ϕ∗(ω)|2 − |∇ω%|2

)
+ |∇ω(%− η%)|2

µ -a.e. in Ω for any unit vector field ω ∈ Γ(TΩ) generating a flow
(
x̄(x, t)

)
t
.

Proof. Proposition 1 shows that ϕ̂ ∈ W 1,2(Ω, B) , B being convex; and
(2.2) shows that % ∈ W 1,2(Ω). Given ε > 0 and 0 < α 6 1

2π − R , let x ∈
Ω2ε \

(
Aεα(ϕ) ∪Aεα(ϕ̂)

)
, cf. (5.2). Write η(x) = η , %(x) = % , x̄(x, ε) = x̄ , and

dY
(
ϕ(x), ϕ(x̄)

)
= d, dY

(
ϕ̂(x), ϕ̂(x̄)

)
= d̂, η(x̄) = η̄, %(x̄) = %̄.

Then d, d̂ 6 α . At points x where d̂ > d we find that

(5.13)
1

2!
(d̂ 2 − d2)− 1

4!
(d̂ 4 − d4) 6 cos d− cos d̂

because d 6 d̂ 6 π <
√

15 . Indeed, in the series (with terms of alternating signs)

∞∑

n=2

(−1)n
d̂ 2n − d2n

(2n)!
= cos d̂− cos d+

d̂ 2 − d2

2!

the terms do not increase in absolute value because

d̂ 2n+2 − d2n+2 6 (d̂ 2n − d2n)(d̂ 2 + d2)

and d̂ 2 + d2 6 2π2 < 30 6 (2n + 1)(2n + 2) for n > 2. The sum of the series is

therefore no bigger than its first term 1
4! (d̂

4 − d4) , as claimed in (5.13).

By triangle comparison for the triangle ϕ(x)ϕ(x̄)q we obtain d̂ 6 d+ 1
2π|η−η̄| ,

cf. [F1, equation (8.1)], and hence d̂ 4 − d4 6 (d2 + |η̄ − η|2)O(|η − η̄|) . Inserting
this in (5.13) yields

(5.14) 1
2 d̂

2 6 1
2d

2 + (cos d− cos d̂ ) + (d2 + |η̄ − η|2)O(|η − η̄|).

The same holds for d̂ 6 d , even without the remainder term, as shown by applying
the meanvalue theorem to the function − cos

√
t with derivative 6 1

2 for t > 0.3

3 Arguments and estimates corresponding to those of the paragraphs containing (5.13) and
(5.14) should have been used in the remainder term in [F1, equation (8.3)] and in the former
inequality [EF, equation (10.17)], both of which therefore should be replaced (without further
consequences) by

1
2 (d2

λ − d2)6 (cos d− cos dλ) + (d2 + |λ− λ′|2)‖λ‖LipO(ε).
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Now combine (5.14) with the following analogue of (4.9) (cf. [EF, equa-
tion (10.17)] or [F1, equation (8.2)]):

(5.15) cos d− cos d̂ 6 R(1) +R(2) +R(3) +R(4),

where the R(j) are defined by the respective former expression in (4.10), etc.
(and likewise defined in [EF, p. 193]), now with v, λ replaced by %, η . Note that
2 sin2

(
1
2d
)

= 1
2d

2
(
1−O(α)

)
, and that the function [sin(%−η%)]/ sin % of % ∈ ]0, R[

and η ∈ [0, 1[, extends smoothly to [0, R]× [0, 1] , and therefore is of class W 1,2(Ω)
as a function of x ∈ Ω, along with % and η , by the chain rule [EF, Lemma 5.2].
Inserting these expressions for the R(j) in (5.15) combined with (5.14), dividing
by 1

2ε
2 , and making first ε→ 0 whilst using (5.6), (5.7), (5.8), and then α → 0,

we obtain µ -a.e. in Ω (cf. end of proof of the preceding lemma):

|ϕ̂∗(ω)|2 6 sin2(%− η%)

sin2 %
|ϕ∗(ω)|2 + 2 cos2(η%)

〈
∇ω cos %,∇ω

tan(η%)

sin %

〉

+ 2
sin2(η%)

sin2 %
|∇ω cos %|2 + |∇ω(η%)|2 − sin2(η%)

sin2 %
|∇ω%|2.

After further applications of the chain rule this reduces to (5.12) because

sin2(%− η%) + 2 sin % sin(η%) cos(%− η%) ≡ sin2 %+ sin2(η%).

Proof of Proposition 2 (cf. [Se]). In proving (2.6) and hence (2.7), it suffices
to consider each m -simplex of X separately, and so we may assume that X is an
open simplex and hence a Riemannian domain Ω, cf. footnote 2 to (2.7). In view
of Lemma 4 (to be applied to ϕ1/2 ∈ W 1,2(Ω), cf. Proposition 1) we define the
function η on Ω, 0 6 η < 1, by (2.5):

(5.16)
sin[(1− η)%]

sin %
= cos

u

2
,

understood so that η(x) = 1− cos
(

1
2u(x)

)
when %(x) = 0. Then

1− η =
1

%
Arcsin

(
cos
(

1
2u
)

sin %
)

extended to a smooth function of (%, u) ∈ [0, R]×[0, 2R] . Since %, u ∈W 1,2(Ω), cf.
(2.2), it follows by the chain rule [EF, Lemma 5.2] that η ∈ W 1,2(Ω). Moreover,
(1− η)% ∈W 1,2(Ω), and

|∇ω[(1− η)%]|2 =

∣∣∇ω
(
cos
(

1
2u
)

sin %
)∣∣2

1− cos2
(

1
2u
)

sin2 %
.
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By Lemma 4, applied to ϕ1/2 , and Lemma 3 we obtain, after inserting (5.16),

(5.17)

|(ϕ̂1/2)∗(ω)|2 6 1
2 |(ϕ0)∗(ω)|2 + 1

2 |(ϕ1)∗(ω)|2 − 1
4 |∇ωu|2

− cos2 u

2
|∇ω%|2 +

∣∣∇ω
(
cos
(

1
2u
)

sin %
)∣∣2

1− cos2
(

1
2u
)

sin2 %
.

Simple computations show that

1

4
|∇ωu|2 + cos2 u

2
|∇ω%|2 −

∣∣∇ω
(
cos
(

1
2u
)

sin %
)∣∣2

1− cos2
(

1
2u
)

sin2 %

=
cos4 % cos4

(
1
2u
)

1− sin2 % cos2
(

1
2u
)
∣∣∣∣∇ω

tan
(

1
2u
)

cos %

∣∣∣∣
2

> cos8R

∣∣∣∣∇ω
tan
(

1
2u
)

cos %

∣∣∣∣
2

.

Inserting this in (5.17) leads to

|(ϕ̂1/2)∗(ω)|2 6 1

2
|(ϕ0)∗(ω)|2 +

1

2
|(ϕ1)∗(ω)|2 − cos8R

∣∣∣∣∇ω
tan
(

1
2u
)

cos %

∣∣∣∣
2

µ -a.e. in Ω. And integrating that with respect to ω over the unit sphere Sm−1

in Rm establishes (2.6), by [KS, Theorem 1.8.1]:

(5.18) e(ϕ̂1/2) 6 1

2
e(ϕ0) +

1

2
e(ϕ1)− cm cos8R

∣∣∣∣∇
tan
(

1
2u
)

cos %

∣∣∣∣
2

µ -a.e. in Ω. Writing ∇
[(

tan( 1
2u)
)
/ cos %

]
= ξ ∈ T (Ω), we have in fact

∫

Sm−1

〈ω, ξ〉2 dσ(ω) = |ξ|2
∫

Sm−1

ω2
1 dσ(ω) =

|ξ|2
m
|Sm−1| = |ξ|2ωm,

where ωm denotes the volume of the unit ball in Rm . This leads to (5.18) with
cm = ωm ; and that is the same as (2.6). 4

4 Actually, we have defined cm = ωm/(m+ 2) in [EF] because it was chosen, in the definition
of the approximate energy density eε(ϕ) in [EF, (9.2)], (cf. (1.1) above) to suppress the factor
m+2 (occurring as n+p with p = 2 in [KS, (1.2vii)]). In [EF, Corollary 9.2], cm is inadvertently
written as ωm/(m + 1) , while the correct expression cm = ωm/(m + 2) is written elsewhere in

[EF], in particular on [EF, pp. 168, 171].
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Finally suppose that u ∈ W 1,2
0 (X) , and let us establish that σ := η% =

dY (ϕ1/2, ϕ̂1/2) ∈ W 1,2
0 (X) . From sin(% − σ) = sin % cos

(
1
2u
)

, by (5.16), we easily
obtain

(5.19) sin
(

1
2σ
)

cos
(
%− 1

2σ
)

= sin % sin2
(

1
4u
)
,

where % − 1
2σ = (1 − 1

2η)% < R < 1
2π . It follows that 1/ cos

(
% − 1

2σ
)
∈ W 1,2(X)

and hence sin
(

1
2σ
)
∈W 1,2

0 (X) , so that indeed σ ∈W 1,2
0 (X) . Finally, by (5.19),

η =
σ

%
=

σ

sin
(

1
2σ
) sin %

%

sin2
(

1
4u
)

cos
(
%− 1

2σ
) ∈W 1,2

0 (X)

after removing the singularities of σ/ sin
(

1
2σ
)

and (sin %)/% .
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