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Abstract. We study nonlinear potential theory related to quasiminimizers on a metric
measure space equipped with a doubling measure and supporting a Poincaré inequality. Our
objective is to show that quasiminimizers create an interesting potential theory with new features
although from the potential theoretic point of view they have several drawbacks: They do not
provide a unique solution to the Dirichlet problem, they do not obey the comparison principle
and they do not form a sheaf. However, many potential theoretic concepts such as harmonic
functions, superharmonic functions and the Poisson modification have their counterparts in the
theory of quasiminimizers and, in particular, we are interested in questions related to regularity,
convergence and polar sets.

1. Introduction

Quasiminimizers minimize a variational integral only up to a multiplicative
constant. More precisely, let Ω ⊂ Rn be an open set, K ≥ 1 and 1 < p <∞ . In
the case of the p -Dirichlet integral, a function u belonging to the Sobolev space
W 1,p

loc (Ω) is a K -quasiminimizer, if

(1.1)

∫

Ω′
|∇u|p dx ≤ K

∫

Ω′
|∇v|p dx

for all functions v ∈W 1,p(Ω′) with v−u ∈W 1,p
0 (Ω′) and for all open sets Ω′ with

compact closure in Ω. A 1-quasiminimizer, called a minimizer, is a weak solution
of the corresponding Euler equation

(1.2) div(|∇u|p−2∇u) = 0.

Clearly being a weak solution of (1.2) is a local property. However, being a K -
quasiminimizer is not a local property as one-dimensional examples easily show.
This indicates that the theory for quasiminimizers usually differs from the theory
for minimizers and that there are some unexpected difficulties.

Quasiminimizers have been previously used as tools in studying regularity
of minimizers of variational integrals, see [GG1–2]. The advantage of this ap-
proach is that it covers a wide range of applications and that it is based only
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on the minimization of the variational integral instead of the corresponding Euler
equation. Hence regularity properties as Hölder continuity and Lp -estimates are
consequences of the quasiminimizing property. For us an important fact is that
nonnegative quasiminimizers satisfy the Harnack inequality, see [DT].

Instead of using quasiminimizers as tools, our objective is to show that quasi-
minimizers have a fascinating theory themselves. In particular, they form a basis
for nonlinear potential theoretic model with interesting features. From the poten-
tial theoretic point of view quasiminimizers have several drawbacks: They do not
provide unique solutions to the Dirichlet problem, they do not obey the compari-
son principle, they do not form a sheaf and they do not have a linear structure even
when the corresponding Euler equation is linear. However, quasiminimizers form
a wide and flexible class of functions in calculus of variations under very general
circumstances. To emphasize this we study potential theory of quasiminimizers in
metric measure spaces although most of the results are new even in the Euclidean
setup. Observe that the quasiminimizing condition (1.1) applies not only to one
particular variational integral but the whole class of variational integrals at the
same time. For example, if a variational kernel F (x,∇u) satisfies

(1.3) α|h|p ≤ F (x, h) ≤ β|h|p

for some 0 < α ≤ β <∞ , then the minimizers of

∫
F (x,∇u) dx

are quasiminimizers of the p -Dirichlet integral

(1.4)

∫
|∇u|p dx.

Hence the potential theory for quasiminimizers includes all minimizers of all vari-
ational integrals similar to (1.4). The essential feature of the theory is the control
provided by the bounds in (1.3). We also mention that quasiminimizers are pre-
served under a bilipschitz change of coordinates, but the constant K may change.

This work is organized as follows. In Section 2 we recall the basic properties
of the Sobolev spaces on metric measure spaces. Quasiminimizers and quasisu-
perminimizers are studied in Section 3. Quasisuperminimizers replace the class of
superminimizers in the classical setup.

In Section 4 we introduce the Poisson modification of a quasisuperminimizer.
The Poisson modification lies below the original quasisuperminimizer, but it need
not be a minimizer inside the set of modification.

A minimizer satisfies a Harnack inequality and is locally Hölder continuous
after a redefinition on a set of measure zero. In Section 5 we show, using the cel-
ebrated De Giorgi method adapted to metric spaces, that a quasisuperminimizer
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satisfies the weak Harnack inequality. From this it follows that quasisupermini-
mizers are lower semicontinuous.

Section 6 is devoted to convergence properties of quasisuperminimizers. We
show that the class of quasisuperminimizers is closed under monotone convergence,
provided the limit function is locally bounded. This will be a crucial fact for us
in Section 7 where we define quasisuperharmonic functions. Quasisuperharmonic
functions play a central role in the potential theory of quasiminimizers. However,
it is not obvious how quasisuperharmonic functions should be defined. The stan-
dard definition based on the comparison principle is useless because the Dirichlet
problem does not have a unique solution. Our definition has a global nature be-
cause of the lack of the sheaf property. In Section 8 we study equivalent definitions
of superharmonicity. The Poisson modification of a quasisuperharmonic function
is considered in Section 9. Finally, Section 10 deals with polar sets.

2. Newtonian spaces

Let X be a metric space and let µ be a Borel measure on X . Throughout the
paper we assume that the measure of every nonempty open set is positive and that
the measure of every bounded set is finite. Later we impose further requirements
on the space and on the measure, see 2.9.

2.1. Upper gradients. Let u be a real-valued function on X . A non-
negative Borel measurable function g on X is said to be an upper gradient of u
if for all rectifiable paths γ joining points x and y in X we have

(2.2) |u(x)− u(y)| ≤
∫

γ

g ds.

See [C], [He] and [Sh1] for a discussion on upper gradients.
A property is said to hold for p-almost all paths, if the set of paths for which

the property fails is of zero p -modulus. If (2.2) holds for p -almost all paths γ ,
then g is said to be a p-weak upper gradient of u .

2.3. Newtonian spaces. Let 1 ≤ p < ∞ . We define the space Ñ1,p(X)
to be the collection of all p -integrable functions u on X that have a p -integrable
p -weak upper gradient g on X . This space is equipped with the seminorm

‖u‖
Ñ1,p(X)

= ‖u‖Lp(X) + inf ‖g‖Lp(X),

where the infimum is taken over all p -weak upper gradients of u .
We define an equivalence relation in Ñ1,p(X) by saying that u ∼ v if

‖u− v‖
Ñ1,p(X)

= 0.
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The Newtonian space N1,p(X) is defined to be the space Ñ1,p(X)/ ∼ with the
norm

‖u‖N1,p(X) = ‖u‖
Ñ1,p(X)

.

For basic properties of the Newtonian spaces we refer to [Sh1]. Cheeger [C] gives
an alternative definition which leads to the same space when 1 < p <∞ , see [Sh1].

We recall that if 1 < p <∞ , every function u that has a p -integrable p -weak
upper gradient has a minimal p-integrable p-weak upper gradient in X , denoted
gu , in the sense that if g is another p -weak upper gradient of u , then gu ≤ g
µ -almost everywhere in X .

2.4. Capacity. The p-capacity of a set E ⊂ X is defined by

Cp(E) = inf
u
‖u‖pN1,p(X),

where the infimum is taken over all functions u ∈ N 1,p(X) , with u = 1 on E . The
discussion in [KM2] can easily be adapted to show that the capacity is an outer
measure, see also [Sh1]. The p -capacity is the natural measure for exceptional sets
of Sobolev functions.

Let Ω be an open subset of X . We say that a subset E of Ω is compactly
contained in Ω, abbreviated E b Ω, if the closure of E is a compact subset of Ω.
Let Ω ⊂ X be bounded and E b Ω. The relative p-capacity of E with respect
to Ω is the number

Cp(E,Ω) = inf

∫

X

gpu dµ,

where the infimum is taken over all functions u ∈ N 1,p(X) such that u = 1 on E
and u = 0 on X \ Ω.

2.5. Newtonian spaces with zero boundary values. Let E be an
arbitrary subset of X . We define N 1,p

0 (E) to be the set of functions u ∈ N 1,p(X)
for which

Cp
(
{x ∈ X \ E : u(x) 6= 0}

)
= 0.

The space N1,p
0 (E) equipped with the norm

‖u‖N1,p
0 (E) = ‖u‖N1,p(X),

is the Newtonian space with zero boundary values. The norm is unambiguously
defined by [Sh1] and the space N 1,p

0 (E) with this norm is a Banach space.

2.6. Local Newtonian spaces. Let Ω be an open subset of X . We say
that u belongs to the local Newtonian space N 1,p

loc (Ω) if u ∈ N1,p(E) for every

measurable set E b Ω. If u ∈ N 1,p
loc (Ω) with 1 < p < ∞ , then u has a minimal

p -weak upper gradient gu in Ω in the following sense: If Ω′ b Ω is an open set
and g is the minimal upper gradient of u in Ω′ , then gu = g µ -almost everywhere
in Ω′ .
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2.7. Doubling property. The measure µ is doubling, if there is a constant
cd ≥ 1 so that

µ
(
B(z, 2r)

)
≤ cdµ

(
B(z, r)

)

for every open ball B(z, r) in X . The constant cd is called the doubling constant
of µ .

A metric space X is said to be doubling if there is a constant c < ∞ such
that every ball B(x, r) , x ∈ X , r > 0, can be covered by at most c balls with the
radii r/2. If X is equipped with a doubling measure, then X is doubling.

2.8. Poincaré inequalities. Let 1 ≤ q < ∞ . The space X is said to
support a weak (1, q)-Poincaré inequality if there are constants c > 0 and τ ≥ 1
such that ∫

B(z,r)

|u− uB(z,r)| dµ ≤ cr
(∫

B(z,τr)

gq dµ

)1/q

for all balls B(z, r) in X , for all integrable functions u in B(z, τr) and for all q -
weak upper gradients g of u . In a doubling measure space a weak (1, q)-Poincaré
inequality implies a weak (t, q)-Poincaré inequality for some t > q possibly with
a different τ , see [BCLS] and [HaK].

2.9. Assumptions. Throughout the work we make the following rather
standard assumptions:

From now on we assume, without further notice, that the complete metric
measure space X is equipped with a doubling Borel measure for which the measure
of every nonempty open set is positive and the measure of every bounded set is
finite. Furthermore we assume that the space supports a weak (1, q)-Poincaré
inequality for some q with 1 < q < p .

The assumption on the Poincaré inequality is needed in the regularity theory
for quasiminimizers of variational integrals on metric spaces, see [KS1].

3. Quasiminimizers and quasisuperminimizers

Suppose that Ω ⊂ X is open and 1 < p < ∞ . Let K ≥ 1. A function
u ∈ N1,p

loc (Ω) is called a K -quasiminimizer if for all open Ω′ b Ω and all functions

v ∈ N1,p
loc (Ω) with v − u ∈ N1,p

0 (Ω′) we have

(3.1)

∫

Ω′
gpu dµ ≤ K

∫

Ω′
gpv dµ.

Here gu and gv are the minimal p -weak upper gradients of u and v in Ω, respec-
tively.

A function u ∈ N1,p
loc (Ω) is called a K -quasisuperminimizer if (3.1) holds for

all open Ω′ b Ω and all functions v ∈ N 1,p
loc (Ω) such that v ≥ u µ -almost every-

where in Ω′ and v−u ∈ N1,p
0 (Ω′) . A function u is called a K -quasisubminimizer
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if −u is a K -quasisuperminimizer. It is easy to see that a function is a K -
quasiminimizer if and only if it is both K -quasisubminimizer and K -quasisuper-
minimizer. In this work we concentrate on properties of K -quasisuperminimizers.

If K = 1, then 1-quasiminimizers and 1-quasisuperminimizers are called
minimizers and superminimizers, respectively. If Cp(X \Ω) > 0 and f ∈ N1,p(Ω),

then there is a unique minimizer u ∈ N 1,p(Ω) such that u−f ∈ N1,p
0 (Ω). In other

words, the Dirichlet problem has a unique solution with the given boundary values,
see [C], [KM2] and [Sh2]. Observe, that for minimizers and superminimizers it is
enough to test (3.1) with Ω′ = Ω.

The next lemma shows that open sets in (3.1) can be replaced by µ -measur-
able sets.

3.2. Lemma. A function u ∈ N 1,p
loc (Ω) is a K -quasisuperminimizer if and

only if for all µ -measurable sets E b Ω and all functions v ∈ N 1,p
loc (Ω) such that

v ≥ u µ -almost everywhere in E and v − u ∈ N 1,p
0 (E) we have

(3.3)

∫

E

gpu dµ ≤ K
∫

E

gpv dµ.

Proof. Only the converse needs a proof. For this let E b Ω be µ -measurable,
v ∈ N1,p

loc (Ω) such that v ≥ u µ -almost everywhere in E and v − u ∈ N 1,p
0 (E) .

Define ṽ: Ω→ [−∞,∞] ,

ṽ(x) =

{
v(x), x ∈ E,
u(x), x ∈ Ω \ E.

Let ε > 0 and choose an open set Ω′ so that E ⊂ Ω′ b Ω and

∫

Ω′\E
gpṽ dµ <

ε

K
.

Then ṽ − u ∈ N1,p
0 (Ω′) and ṽ ≥ u µ -almost everywhere in Ω′ . Therefore we can

apply (3.1) and we obtain

∫

E

gpu dµ ≤
∫

Ω′
gpu dµ ≤ K

∫

Ω′
gpṽ dµ

≤ K
∫

E

gpṽ dµ+K

∫

Ω′\E
gpṽ dµ ≤ K

∫

E

gpv dµ+ ε.

Since ε > 0 is arbitrary we obtain (3.3).

The condition (3.3) can be stated in a slightly different form. Observe that
this is immediate for K = 1.
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3.4. Lemma. A function u ∈ N 1,p
loc (Ω) is a K -quasisuperminimizer if and

only if for all open Ω′ b Ω and all functions v ∈ N 1,p
loc (Ω) such that v ≥ u

µ -almost everywhere in Ω′ and v − u ∈ N1,p
0 (Ω′) we have

(3.5)

∫

Ω′∩{v>u}
gpu dµ ≤ K

∫

Ω′∩{v>u}
gpv dµ.

Proof. First suppose that (3.5) holds. Since gu = gv µ -almost everywhere on
the set {x ∈ Ω′ : u(x) = v(x)} and v ≥ u µ -almost everywhere on Ω′ , we have

∫

Ω′
gpu dµ =

∫

Ω′∩{v>u}
gpu dµ+

∫

Ω′∩{v=u}
gpu dµ

≤ K
∫

Ω′∩{v>u}
gpv dµ+

∫

Ω′∩{v=u}
gpv dµ ≤ K

∫

Ω′
gpv dµ.

Then suppose that u is a K -quasisuperminimizer. Let v ∈ N 1,p
loc (Ω) be such

that v ≥ u µ -almost everywhere in Ω′ and v − u ∈ N1,p
0 (Ω′) . Then the set

E = {x ∈ Ω′ : v(x) > u(x)}

is µ -measurable, v ≥ u µ -almost everywhere in E and v − u ∈ N 1,p
0 (E) . From

Lemma 3.2 we conclude that
∫

E

gpu dµ ≤ K
∫

E

gpv dµ

and this is what we wanted to prove.

We observe that if u is a K -quasisuperminimizer, then αu and u + β are
K -quasisuperminimizers when α ≥ 0 and β ∈ R . However, the sum of two
K -quasisuperminimizers is not a K -quasisuperminimizer in general.

3.6. Lemma. Suppose that ui is a Ki -quasisuperminimizer in Ω , i = 1, 2 .
Then min(u1, u2) is a (K1 +K2) -quasisuperminimizer in Ω .

Proof. Let u = min(u1, u2) . Since N1,p
loc (Ω) is a lattice we have u ∈ N 1,p

loc (Ω).

Let Ω′ b Ω be an open set, and let v ∈ N 1,p
loc (Ω) be such that v − u ∈ N1,p

0 (Ω′)
and v ≥ u µ -almost everywhere in Ω′ . Set

E1 = {x ∈ Ω′ : v(x) ≥ u1(x)} and E2 = {x ∈ Ω′ : v(x) > u2(x)}.

Then ∫

Ω′
gpu dµ ≤

∫

Ω′∩{u1≤u2}
gpu1

dµ+

∫

Ω′∩{u1>u2}
gpu2

dµ

≤
∫

E1

gpu1
dµ+

∫

E2

gpu2
dµ.
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We observe that v−u1 ∈ N1,p
0 (E1) , v ≥ u1 µ -almost everywhere on E1 , v−u2 ∈

N1,p
0 (E2) , v ≥ u2 µ -almost everywhere on E2 . Then Lemma 3.2 implies

∫

Ω′
gpu dµ ≤ K1

∫

E1

gpv dµ+K2

∫

E2

gpv dµ ≤ (K1 +K2)

∫

Ω′
gpv dµ.

This completes the proof.

3.7. Lemma. Suppose that ui is a Ki -quasisuperminimizer in Ω , i = 1, 2 .
Then min(u1, u2) is a K1K2 -quasisuperminimizer in Ω .

Proof. Let u and v be as in the proof of Lemma 3.6. Then
∫

Ω′
gpu dµ ≤

∫

Ω′∩{u1≤u2}
gpu1

dµ+

∫

Ω′∩{u1>u2}
gpu2

dµ.

Let w = max
(
min(u2, v), u1

)
. Then w − u1 ∈ N1,p

0 (Ω′ ∩ {u1 ≤ u2}) , w ≥ u1

µ -almost everywhere in Ω′ and since u1 is a K1 -quasisuperminimizer we have
∫

Ω′∩{u1≤u2}
gpu1

dµ ≤ K1

∫

Ω′∩{u1≤u2}
gpw dµ

≤ K1

∫

Ω′∩{u1≤u2}∩{v<u2}
gpv dµ+K1

∫

Ω′∩{u1≤u2}∩{v≥u2}
gpu2

dµ.

This implies that
∫

Ω′
gpu dµ ≤K1

∫

Ω′∩{u1≤u2}∩{v<u2}
gpv dµ+K1

∫

Ω′∩{u1≤u2}∩{v≥u2}
gpu2

dµ

+

∫

Ω′∩{u1>u2}
gpu2

dµ

≤K1

∫

Ω′∩{u1≤u2}
gpv dµ+K1

∫

Ω′∩{v≥u2}
gpu2

dµ.

Since max(u2, v) − u2 ∈ N1,p
0 (Ω′ ∩ {v ≥ u2}) and max(u2, v) ≥ u2 µ -almost

everywhere in Ω′ , we obtain
∫

Ω′∩{v≥u2}
gpu2

dµ ≤ K2

∫

Ω′∩{v≥u2}
gpv dµ

and we conclude that
∫

Ω′
gpu dµ ≤ K1

∫

Ω′∩{u1≤u2}∩{v<u2}
gpv dµ+K1K2

∫

Ω′∩{v≥u2}
gpv dµ

≤ K1K2

∫

Ω′
gpv dµ.

From Lemmas 3.6 and 3.7 we obtain:
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3.8. Corollary. Suppose that ui is a Ki -quasisuperminimizer in Ω , i = 1, 2 .
Then min(u1, u2) is a min(K1 +K2,K1K2) -quasisuperminimizer in Ω .

The next corollary is important in our constructions. It provides a construc-
tion method which does not increase the constant K . Recall that 1-quasisuper-
minimizers are called superminimizers.

3.9. Corollary. Suppose that u is a K -quasisuperminimizer and that h is
a superminimizer in Ω . Then min(u, h) is a K -quasisuperminimizer in Ω .

Corollary 3.9 applied to constant functions h gives the following result.

3.10. Lemma. Suppose that u ∈ N 1,p
loc (Ω) . Then u is a K -quasisupermini-

mizer if and only if min(u, c) is a K -quasisuperminimizer for every c ∈ R .

Proof. If u is a K -quasisuperminimizer, then it follows from Corollary 3.9
that min(u, c) is a K -quasisuperminimizer for each c ∈ R , since constants are
minimizers.

For the converse let Ω′ b Ω, v−u ∈ N1,p
0 (Ω′) and v ≥ u µ -almost everywhere

in Ω′ . Write vi = min(v, i) and ui = min(u, i) , i = 1, 2, . . . . Then vi − ui ∈
N1,p

0 (Ω′) and vi ≥ ui µ -almost everywhere in Ω′ . By assumption ui is a K -
quasisuperminimizer and hence

∫

Ω′
gpui dµ ≤ K

∫

Ω′
gpvi dµ

for i = 1, 2, . . . . Since u, v ∈ N 1,p(Ω′) , we obtain

∫

Ω′
gpu dµ ≤ K

∫

Ω′
gpv dµ

as i→∞ . This shows that u is a K -quasisuperminimizer in Ω.

4. Poisson modification of a quasisuperminimizer

Suppose that u is a superminimizer, i.e. 1-quasisuperminimizer, in Ω and
that Ω′ b Ω is open. Define

P (u,Ω′)(x) =

{
h(x), x ∈ Ω′,
u(x), x ∈ Ω \ Ω′,

where h is a minimizer in Ω′ with h − u ∈ N1,p
0 (Ω′) . Then P (u,Ω′) ∈ N1,p

loc (Ω)
and the next lemma is well known in classical potential theory.

4.1. Lemma. Suppose that u is a superminimizer in Ω and that Ω′ b Ω is
open. Then the function P (u,Ω′) is a superminimizer in Ω and u ≥ h µ -almost
everywhere in Ω′ .
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Proof. We first show that u ≥ h µ -almost everywhere in Ω′ . Let

A = {x ∈ Ω′ : u(x) < h(x)}.
Now u− h ∈ N1,p

0 (A) and by the superminimizing property of u

(4.2)

∫

A

gpu dµ ≤
∫

A

gph dµ.

Now (4.2) holds as an equality because h is a minimizer in A with boundary
values u and this means that u and h are both minimizers in A with the same
boundary values. Since the minimizer with given boundary values is unique, see
Theorem 7.14 in [C], this means that µ(A) = 0 as required.

To prove the superminimizing property of P (u,Ω′) write w = P (u,Ω′) and
let Ω′′ b Ω be open and let v ∈ N1,p

loc (Ω) such that v ≥ w µ -almost everywhere

with w − v ∈ N1,p
0 (Ω′′) . We show that

(4.3)

∫

Ω′′
gpw dµ ≤

∫

Ω′′
gpv dµ.

To this end let A1 = {x ∈ Ω′′ : v(x) ≥ u(x)} and A2 = Ω′′ \ A1 . Then
A2 ⊂ Ω′ and define

(4.4) v1(x) =

{
v(x), x ∈ A2,
u(x), x ∈ (Ω′ ∩ Ω′′) \A2.

Since
v1 = min(v, u) = min

(
max(h, v), u

)

in Ω′ ∩Ω′′ , it follows that v1 − h ∈ N1,p
0 (Ω′ ∩Ω′′) . The minimizing property of h

in Ω′ ∩ Ω′′ implies
∫

Ω′∩Ω′′
gph dµ ≤

∫

Ω′∩Ω′′
gpv1

dµ =

∫

A2

gpv dµ+

∫

(Ω′∩Ω′′)\A2

gpu dµ

and the superminimizing property of u in A1 gives
∫

Ω′′\Ω′
gpu dµ+

∫

Ω′∩Ω′′∩A1

gpu dµ =

∫

A1

gpu dµ ≤
∫

A1

gpv dµ

because v ≥ u in A1 and v − u ∈ N1,p
0 (A1) . Combining these inequalities we

obtain∫

Ω′′
gpw dµ =

∫

Ω′′\Ω′
gpu dµ+

∫

Ω′′∩Ω′
gph dµ

≤
∫

A1

gpv dµ−
∫

Ω′∩Ω′′∩A1

gpu dµ+

∫

A2

gpv dµ+

∫

(Ω′∩Ω′′)\A2

gpu dµ

=

∫

Ω′′
gpv dµ,

since Ω′ ∩ Ω′′ ∩A1 = (Ω′ ∩ Ω′′) \A2 . This is (4.3) and the lemma follows.
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The next theorem shows how the counterpart of the Poisson modification is
constructed for K -quasisuperminimizers.

4.5. Theorem. Suppose that u is a K -quasisuperminimizer in Ω and that
Ω′ b Ω is open. If h is a minimizer in Ω′ with h−u ∈ N1,p

0 (Ω′) , then the function
w: Ω→ [−∞,∞] ,

(4.6) w(x) =

{
min

(
u(x), h(x)

)
, x ∈ Ω′,

u(x), x ∈ Ω \ Ω′,

is a K -quasisuperminimizer in Ω . Moreover, w ≤ u in Ω .

Proof. Clearly w ≤ u in Ω and it remains to show the K -quasisuperminimi-
zing property of w . To this end, let Ω′′ b Ω be an open set and v ∈ N 1,p

loc (Ω) such

that v ≥ w µ -almost everywhere in Ω′′ and v − w ∈ N1,p
0 (Ω′′) . We show that

∫

Ω′′
gpw dµ ≤ K

∫

Ω′′
gpv dµ.

Let

U1 = {x ∈ Ω′′ : v(x) < u(x)} and U2 = {x ∈ Ω′′ : v(x) ≥ u(x)}.
Then v − u ∈ N1,p

0 (U2) . Since v ≥ u in U2 , the quasisuperminimizing property
of u and Lemma 3.2 give

(4.7)

∫

U2

gpu dµ ≤ K
∫

U2

gpv dµ.

We define h = u in Ω \ Ω′ . Let D = {x ∈ Ω′′ : u(x) > h(x)} . Then U1 ⊂ D and
we define

ψ(x) =

{
v(x), x ∈ U1,
u(x), x ∈ D \ U1.

Then ψ−h ∈ N1,p
0 (D) . Since D ⊂ Ω′ and h is a minimizer in Ω′ , h is a minimizer

in D as well and we obtain

(4.8)

∫

D

gph dµ ≤
∫

D

gpψ dµ.

The inequality (4.7) implies

K

∫

Ω′′
gpv dµ = K

∫

U2

gpv dµ+K

∫

U1

gpv dµ

≥ K
∫

U2

gpv dµ+

∫

U1

gpv dµ

≥
∫

U2

gpu dµ+

∫

U1

gpv dµ+

∫

D\U1

gpu dµ−
∫

D\U1

gpu dµ

=

∫

U2

gpu dµ+

∫

D

gpψ dµ−
∫

D\U1

gpu dµ.
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Since U1 ⊂ D , the above inequality together with (4.8) imply

(4.9)

K

∫

Ω′′
gpv dµ ≥

∫

U2

gpu dµ+

∫

D

gph dµ−
∫

D\U1

gpu dµ

=

∫

U2\(D\U1)

gpu dµ+

∫

D

gph dµ.

Finally we observe that Ω′′ \ D ⊂ U2 \ (D \ U1) , because if x ∈ Ω′′ \ D , then
x belongs either to U2 \D or to U1 \D . However, we have U1 ⊂ D and hence
x ∈ U2 \D and x ∈ U2 \ (D \ U1) . This shows that

∫

U2\(D\U1)

gpu dµ ≥
∫

Ω′′\D
gpu dµ

and together with (4.9) this implies

K

∫

Ω′′
gpv dµ ≥

∫

Ω′′\D
gpu dµ+

∫

D

gph dµ =

∫

Ω′′
gpw dµ.

This is the required inequality.

As for the minimizers we write P (u,Ω′) = w . This is the Poisson modification
of u in Ω′ . Note that there is no ambiquity with the previous definition of P (u,Ω′)
for a minimizer u since the definitions coincide for a minimizer u by Lemma 4.1.

The Poisson modification P (u,Ω′) of a K -quasisuperminimizer u in Ω′ b Ω
has the following properties:

(1) P (u,Ω′) is a K -quasisuperminimizer in Ω,
(2) P (u,Ω′) = u in Ω \ Ω′ ,
(3) P (u,Ω′) ≤ u in Ω,
(4) P (u,Ω′) = h , if P (u,Ω′) < u , and where h is the minimizer with boundary

values u in Ω′ .

Note that in contrast to the classical potential theory there is no semicontinuity
requirements for P (u,Ω′) . Also Ω′ can be any open set such that Ω′ b Ω and it
need not be regular for the Dirichlet problem.

5. Reqularity of quasisuperminimizers

Quasiminimizers satisfy the Harnack inequality and are locally Hölder con-
tinuous after redefinition on a set of measure zero, see [KS1]. Here we show that
quasisuperminimizers satisfy the weak Harnack inequality and are lower semicon-
tinuous as in the case of supersolutions and superharmonic functions. Our proof is
based on the De Giorgi method. The basic work has been done in [KS1] and [KM2]
since for this regularity result the cases K > 1 and K = 1 are similar.
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We begin by recalling the definition of the De Giorgi class. Let k0 ∈ R and
0 < % < R . A function u ∈ N 1,p

loc (Ω) belongs to the De Giorgi class DGp(Ω, k0) , if
there is a constant c <∞ such that for all k ≥ k0 , z ∈ Ω such that B(z,R) b Ω
the function u satisfies

∫

Az(k,%)

gpu dµ ≤ c(R− %)−p
∫

Az(k,R)

(u− k)p dµ

where
Az(k, r) = {x ∈ B(z, r) : u(x) > k}

and gu is the minimal p -weak upper gradient of u in Ω. If the inequality above
holds for all k ∈ R , then we simply write u ∈ DGp(Ω).

5.1. Lemma. Suppose that u is a K -quasisuperminimizer in Ω . Then −u
belongs to DGp(Ω) .

The proof of Lemma 5.1 is similar to the proof of Lemma 4.1 in [KM2].

The next result shows that a nonnegative quasisuperminimizer satisfies a weak
Harnack inequality.

5.2. Lemma. Suppose that u ≥ 0 is a K -quasisuperminimizer in an open
set Ω ⊂ X . Then for every ball B(z,R) with B(z, 5R) ⊂ Ω we have

(∫

B(z,R)

uσ dµ

)1/σ

≤ c ess inf
B(z,3R)

u,

where c <∞ and σ > 0 depend only on K and on the constants in the doubling
condition and Poincaré inequality.

For the proof we refer to the proof of Lemma 4.7 in [KM2].

Next we observe that a quasisuperminimizer has a lower semicontinuous rep-
resentative. We denote

ess lim inf
y→x

u(y) = lim
r→0

ess inf
B(x,r)

u.

5.3. Lemma. Suppose that u is a K -quasisuperminimizer in Ω . Then the
function u∗: Ω→ [−∞,∞] defined by

u∗(x) = ess lim inf
y→x

u(y)

is a lower semicontinuous function in Ω and it belongs to the same equivalence
class as u in N1,p

loc (Ω) .

The proof is similar to the proof of Theorem 5.1 in [KM2].
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6. Convergence results for quasisuperminimizers

We show that the quasisuperminimizing property is preserved under increas-
ing convergence if the limit function is locally bounded above or belongs to N 1,p

loc (Ω).
The corresponding result for superminimizers has been studied in [KM2]. There
are some unexpected difficulties for quasiminimizers and the argument is more
involved in this case.

6.1. Theorem. Suppose that (ui) is an increasing sequence of K -quasi-
superminimizers in Ω and u = limi→∞ ui such that either

(i) u is locally bounded above or
(ii) u ∈ N1,p

loc (Ω) .

Then u is a K -quasisuperminimizer in Ω .

We first consider the case (i). In this case it follows from the De Giorgi type
upper bound

∫

B(x,%)

gpui dµ ≤ c(R− %)−p
∫

B(x,R)

(ui − k)p dµ,

where
k < − sup

{
ess sup
B(x,R)

ui : i = 1, 2, . . .
}
,

0 < % < R and B(x,R) b Ω, that the sequence (gui) is uniformly bounded in
Lp(Ω′) for every Ω′ b Ω. This implies that u ∈ N 1,p

loc (Ω) and we may assume that
(gui) converges weakly to gu in Lp(Ω′) , where gu is an upper gradient of u .

We need a couple of lemmas. The first one is technical.

6.2. Lemma. Let u ∈ N1,p
loc (Ω) and K ≥ 1 . Suppose that for every open

set Ω′ b Ω and for every v ∈ N1,p
loc (Ω) such that v − u ∈ N1,p

0 (Ω′) and v ≥ u
µ -almost everywhere in Ω′ we have

∫

Ω′
gpu dµ ≤ K

∫

Ω′
gpv dµ.

Then for every open set Ω′′ b Ω and for every v ∈ N1,p
loc (Ω) such that v − u ∈

N1,p
0 (Ω′′) and v ≥ u µ -almost everywhere in Ω′′ we have

∫

Ω′′
gpu dµ ≤ K

∫

Ω′′
gpv dµ.

Proof. Let Ω′′ b Ω be open and v ∈ N1,p
loc (Ω) such that v − u ∈ N1,p

0 (Ω′′)
and v ≥ u µ -almost everywhere in Ω′′ . Let ε > 0. By Theorem 5.2.5 of [Sh1]
there is a Lipschitz function ϕ ≥ 0 such that sptϕ b Ω′′ and

‖ϕ− (v − u)‖N1,p(Ω′′) < ε.
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Choose an open set Ω′ such that sptϕ b Ω′ b Ω′′ .
By the assumption

(∫

Ω′
gpu dµ

)1/p

≤ K1/p

(∫

Ω′
gpu+ϕ dµ

)1/p

≤ K1/p

[(∫

Ω′′
gpv dµ

)1/p

+

(∫

Ω′
gpϕ−(v−u) dµ

)1/p]

≤ K1/p

(∫

Ω′′
gpv dµ

)1/p

+K1/pε.

Since µ(Ω′′\Ω′) can be made arbitrarily small, we see from the absolute continuity
of the integral that

(∫

Ω′′
gpu dµ

)1/p

≤ K1/p

(∫

Ω′′
gpv dµ

)1/p

+K1/pε.

We obtain the claim by letting ε→ 0.

6.3. Lemma. Let u and ui be as in Theorem 6.1. Then for every ball
B(x, r) b Ω we have

lim sup
i→∞

∫

B(x,r)

gpui dµ ≤ c
∫

B(x,r)

gpu dµ,

where the constant c depends only on K and p .

Proof. Let B(x, %) b B(x, r) b Ω and choose a Lipschitz cut-off function η
such that 0 ≤ η ≤ 1, η = 0 in Ω \B(x, r) and η = 1 in B(x, %) . Let

wi = ui + η(u− ui), i = 1, 2, . . . .

Then wi − ui ∈ N1,p
0

(
B(x, r)

)
and wi ≥ ui µ -almost everywhere in B(x, r) .

Hence the quasisuperminimizing property of ui gives

∫

B(x,%)

gpui dµ ≤
∫

B(x,r)

gpui dµ ≤ K
∫

B(x,r)

gpwi dµ

≤ αK
(∫

B(x,r)

(1− η)pgpui dµ+

∫

B(x,r)

gpη(u− ui)p dµ+

∫

B(x,r)

ηpgpu dµ

)
,

where α = 2p−1 and we used the fact that

gwi ≤ (1− η)gui + gη(u− ui) + ηgu,
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see Lemma 2.4 in [KM2]. Adding the term

αK

∫

B(x,%)

gpui dµ

to both sides and taking into account that η = 1 in B(x, %) we obtain

(6.4)

(1 + αK)

∫

B(x,%)

gpui dµ ≤ αK
∫

B(x,r)

gpui dµ+ αK

∫

B(x,r)

gpη(u− ui)p dµ

+ αK

∫

B(x,r)

gpu dµ.

Set Ψ:
(
0,dist(x, ∂Ω)

)
→ R ,

Ψ(r) = lim sup
i→∞

∫

B(x,r)

gpui dµ.

Since −ui belongs to the De Giorgi class (see Lemma 5.1), we observe that Ψ is
a finite-valued and increasing function of r . Hence the points of discontinuities
form a countable set. Let r , 0 < r < dist(x, ∂Ω), be a point of continuity of Ψ.
Letting i→∞ , we obtain from (6.4) the estimate

(6.5) (1 + αK)Ψ(%) ≤ αKΨ(r) + αK

∫

B(x,r)

gpu dµ,

because ∫

B(x,r)

gpη(u− ui)p dµ→ 0

as i→∞ . Since r is a point of continuity of Ψ, we conclude from (6.5) that

(1 + αK)Ψ(r) ≤ αKΨ(r) + αK

∫

B(x,r)

gpu dµ,

or in other words

(6.6) Ψ(r) ≤ αK
∫

B(x,r)

gpu dµ.

This holds at each point of continuity of Ψ. Since Ψ is increasing and

r 7→
∫

B(x,r)

gpu dµ

is a continuous function of r , it is easy to see that (6.6) holds for every r with
0 < r < dist(x, ∂Ω). This is the required estimate.
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Proof of Theorem 6.1. Case (i). As noted before u ∈ N 1,p
loc (Ω) and hence it

suffices to prove inequality (3.1). To this end let Ω′ b Ω be open and v ∈ N1,p
loc (Ω′) ,

v ≥ u µ -almost everywhere and v − u ∈ N 1,p
0 (Ω′) . By Lemma 6.2 it suffices to

show that ∫

Ω′
gpu dµ ≤ K

∫

Ω′
gpv dµ.

Choose an open set Ω′′ such that Ω′ b Ω′′ b Ω and a Lipschitz cut-off function
η with the properties η = 1 on Ω′ , 0 ≤ η ≤ 1 and η = 0 on Ω \ Ω′′ . Set

wi = ui + η(v − ui), i = 1, 2, . . . .

Then wi − ui ∈ N1,p
0 (Ω′′) and wi ≥ ui . By Lemma 2.4 in [KM2] we have

gwi ≤ (1− η)gui + ηgv + gη(v − ui),

and we obtain

(∫

Ω′′
gpwi dµ

)1/p

≤
(∫

Ω′′

(
(1− η)gui + ηgv

)p
dµ

)1/p

+

(∫

Ω′′
gpη(v − ui)p dµ

)1/p

= αi + βi.

Now (αi + βi)
p ≤ αpi + pβi(αi + βi)

p−1 and hence

(6.7)

∫

Ω′′
gpwi dµ ≤

∫

Ω′′
(1− η)gpui dµ+

∫

Ω′′
ηgpv dµ+ pβi(αi + βi)

p−1,

where we also used the convexity of the function t 7→ tp . We estimate the terms
on the right-hand side separately.

First, since gη = 0 µ -almost everywhere in Ω′ , by the Lebesgue monotone
convergence theorem

(6.8) βpi =

∫

Ω′′\Ω′
gpη(v − ui)p dµ→ 0

as i→∞ , because v = u in Ω′′ \ Ω′ and ui → u in Ω.
Next we consider ∫

Ω′′
(1− η)gpui dµ.

Since η = 1 on Ω′ , we obtain

(6.9)

∫

Ω′′
(1− η)gpui dµ ≤

∫

Ω′′\Ω′
gpui dµ.
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Choose balls B(xj , rj) , j = 1, 2, . . . , such that B(xj , rj) ⊂ Ω′′ \ Ω′ ,

Ω′′ \ Ω′ ⊂
∞⋃
j=1

B(xj , rj) and
∞∑

j=1

χB(xj ,rj) ≤ N <∞,

where N depends only on the doubling constant, see [He].
Define

Ψxj (r) = lim sup
i→∞

∫

B(xj ,r)

gpui dµ

and let ε > 0. By Lemma 6.3

Ψxj (r) ≤ c
∫

B(xj ,rj)

gpu dµ

and letting i→∞ we obtain

(6.10)

lim sup
i→∞

∫

Ω′′\Ω′
gpui dµ ≤ lim sup

i→∞

∞∑

j=1

∫

B(xj ,rj)

gpui dµ

≤
∞∑

j=1

Ψxj (rj) ≤ c
∞∑

j=1

∫

B(xj ,rj)

gpu dµ

≤ c
∞∑

j=1

∫

Ω′′\Ω′
χB(xj ,rj)g

p
u dµ ≤ cN

∫

Ω′′\Ω′
gpu dµ.

Next we choose µ(Ω′′ \ Ω′) so small that

∫

Ω′′\Ω′
gpu dµ < ε

and from (6.9) and (6.10) we obtain

(6.11) lim sup
i→∞

∫

Ω′′
(1− η)gpui dµ ≤ cNε.

Note that c and N are independent of ε . Since αi remains bounded as i→∞ ,
we obtain from (6.7), (6.8) and (6.11) that

(6.12) lim sup
i→∞

∫

Ω′′
gpwi dµ ≤ cNε+

∫

Ω′′
ηgpv dµ.

Now ui is a K -quasisuperminimizer and hence
∫

Ω′
gpui dµ ≤

∫

Ω′′
gpui dµ ≤ K

∫

Ω′′
gpwi dµ.
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Together with the lower semicontinuity of the Lp -norm, p > 1, and (6.12) we have

∫

Ω′
gpu dµ ≤ lim sup

i→∞

∫

Ω′
gpui dµ ≤ KcNε+K

∫

Ω′′
ηgpv dµ

≤ KcNε+K

∫

Ω′
gpv dµ+K

∫

Ω′′\Ω′
gpv dµ.

We can still choose µ(Ω′′ \ Ω′) so small that

∫

Ω′\Ω′′
gpv dµ < ε

and hence ∫

Ω′
gpu dµ ≤ KcNε+Kε+K

∫

Ω′
gpv dµ.

Finally letting ε→ 0 we obtain the claim. This completes the proof of the case (i).

Proof of Theorem 6.1. Case (ii). In Case (ii) we consider functions

ui,c = min(ui, c), i = 1, 2, . . . , c ∈ R.

Since ui,c is a K -quasisuperminimizer, it follows from Case (i) that uc = min(u, c)

is a K -quasisuperminimizer. Finally, since u ∈ N 1,p
loc (Ω), Lemma 3.10 implies that

u is a K -quasisuperminimizer.

7. Quasisuperharmonic functions

In the classical potential theory a superharmonic function can be defined as a
limit of an increasing sequence of supersolutions of the Laplace equation, provided
the limit is not identically ∞ . If u is a superharmonic function, then one of
the aforementioned sequences is min(u, i) , i = 1, 2, . . . . Our defininition for a
quasisuperharmonic function has a global nature. We show later that the cutoff
method leads to an equivalent definition for quasisuperharmonic functions.

7.1. Definition. Let Ω ⊂ X be open and K ≥ 1. We say that a function
u: Ω→ (−∞,∞] is K -quasisuperharmonic in Ω, if u is not identically ∞ in any
component of Ω and there is a sequence of open sets Ωi and K -quasiminimizers
vi: Ωi → (−∞,∞] such that

(i) Ωi b Ωi+1 ,
(ii)

⋃∞
i=1 Ωi = Ω,

(iii) vi ≤ vi+1 in Ωi ,
(iv) limi→∞ v∗i = u in Ω.

Here v∗i is the lower semicontinuous representative of vi given by Lemma 5.3.

Since v∗i is lower semicontinuous, a K -quasisuperharmonic function is lower
semicontinuous.
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7.2. Proposition. If u is a K -quasisuperminimizer in Ω such that

u(x) = ess lim inf
y→x

u(y)

for every x ∈ Ω , then u is K -quasisuperharmonic in Ω .

Proof. Let Ωi be any sequence of open sets satisfying (i) and (ii) in Defi-
nition 7.1. Choose vi = u∗ for i = 1, 2, . . . . Then vi satisfy (iii) and (iv) in
Definition 7.1.

7.3. Theorem. Suppose that u is a K -quasisuperharmonic function in Ω
and u is locally bounded above. Then u ∈ N 1,p

loc (Ω) and u is a K -quasisuper-
minimizer in Ω .

Proof. It suffices to show that u is a K -quasisuperminimizer in each open
Ω′ b Ω. Let Ω′ b Ω. Then there is an increasing sequence of K -quasisupermini-
mizers vi in Ω′ such that u = limi→∞ v∗i in Ω′ . Since u is locally bounded above,
Theorem 6.1 implies that u is a K -quasisuperminimizer in Ω′ .

7.4. Theorem. Suppose that u is a K -quasisuperharmonic function in Ω
and h is a continuous minimizer in Ω . Then min(u, h) is a K -quasisuperminimizer
and K -quasisuperharmonic in Ω .

Proof. First we show that min(u, h) is K -quasisuperharmonic. Since min(u, h)
is lower semicontinuous and locally bounded, it suffices to check the conditions (i)–
(iv) in Definition 7.1. Let Ωi and vi be as in Definition 7.1. Then each min(v∗i , h)
is a K -quasisuperminimizer in Ωi by Corollary 3.9 and

min(vi, h) = min(v∗i , h)→ min(u, h)

in Ω as i → ∞ . Hence min(u, h) is K -quasisuperharmonic and by Theorem 6.1
it is also a K -quasisuperminimizer in Ω.

7.5. Corollary. Suppose that u is a K -quasisuperharmonic function in Ω
and c ∈ R . Then min(u, c) is a K -quasisuperminimizer and K -quasisuperhar-
monic in Ω .

If u is K -quasisuperharmonic, then αu and u+β are K -quasisuperharmonic
when α ≥ 0 and β ∈ R . However, the sum of two quasisuperharmonic functions
is not quasisuperharmonic in general.

7.6. Theorem. Suppose that uj is Kj -quasisuperharmonic in Ω , j = 1, 2 .
Then min(u1, u2) is min(K1 +K2,K1K2) -quasisuperharmonic.

Proof. Clearly min(u1, u2) is lower semicontinuous. Let Ωj,i and vj,i be as
in Definition 7.1 for uj , j = 1, 2. Then Ωi = Ω1,i ∩ Ω2,i , i = 1, 2, . . . , is an
increasing sequence of open sets and min(v1,i, v2,i) is a min(K1 + K2,K1K2)-
quasisuperminimizer in Ωi by Lemmas 3.6 and 3.7. Moreover

min(v1,i, v2,i)
∗ = min(v∗1,i, v

∗
2,i)→ min(v, v)

in Ω as i→∞ . This proves the claim.
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7.7. Theorem. Suppose that u is K -quasisuperharmonic in Ω . Then u
is locally integrable to a power σ > 0 and, in particular, |u| < ∞ µ -almost
everywhere in Ω .

Proof. Let z ∈ Ω be such that u(z) <∞ . Let Ω′ b Ω such that B(z, 5R) b
Ω′ . Let Ωi and vi be as in Definition 7.1. Then infB(z,R) u < ∞ whenever
R > 0 is such that B(z,R) ⊂ Ω′ . By Lemma 5.2 for every ball B(z,R) with
B(z, 5R) ⊂ Ω′ we have

(∫

B(z,R)

vσi dµ

)1/σ

≤ c inf
B(z,3R)

vi ≤ c inf
B(z,3R)

v,

where c <∞ and σ > 0 are as in Lemma 5.2. In particular, they are independent
of i . Letting i→∞ we conclude that

(∫

B(z,R)

uσ dµ

)1/σ

≤ c inf
B(z,3R)

u <∞.

We can use the same reasoning as in [KM2] and obtain the following two
results.

7.8. Theorem. If u is K -quasisuperharmonic in Ω , then

u(x) = ess lim inf
y→x

u(y)

for every x ∈ Ω .

7.9. Theorem. If u and v are K -quasisuperharmonic in Ω and u = v
µ -almost everywhere in Ω , then u = v in Ω .

We close this section by a characterization of K -quasisuperharmonic functions
and by a description of K -quasisuperminimizers among K -quasisuperharmonic
functions.

7.10. Theorem. Suppose that u: Ω→ (−∞,∞] is not identically ∞ in any
component of Ω . Then u is K -quasisuperharmonic if and only if min(u∗, k) is a
K -quasisuperminimizer for every k ∈ R .

Proof. First suppose that u is K -quasisuperharmonic in Ω. It follows from
Theorem 7.8 and Corollary 7.5 that min(u∗, k) is a K -quasisuperminimizer in Ω
for every k ∈ R .

Then suppose that min(u∗, k) is a K -quasisuperminimizer for every k ∈ R .
If Ωi is a sequence of open sets satisfying (i) and (ii) in Definition 7.1, then the
sequence vi = min(u∗, i) , i = 1, 2, . . . , satisfies (iii) and (iv) in Definition 7.1.
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7.11. Theorem. Suppose that u is K -quasisuperharmonic in Ω . Then u
is a K -quasisuperminimizer in Ω if and only if there is v ∈ N 1,p

loc (Ω) such that
u ≤ v µ -almost everywhere.

Proof. If u is a K -quasisuperminimizer, then we can choose v = u . For
the converse let v ∈ N1,p

loc (Ω) with u ≤ v µ -almost everywhere. Fix Ω′ b Ω and
choose a Lipschitz cutoff function ϕ such that 0 ≤ ϕ ≤ 1, ϕ = 1 in Ω′ and sptϕ
is compact in Ω. By the lower semicontinuity of u we may assume that u > 0 on
sptϕ . Fix c > 0 and write

A = {x ∈ sptϕ : u(x) ≤ ϕ(x)v(x)}.
Now A is µ -measurable and A b Ω. The function uc = min(u, c) is a K -
quasisuperminimizer and uc− (ϕv)c ∈ N1,p

0 (A) . The quasiminimizing property of
uc yields

∫

A

gpuc dµ ≤ K
∫

A

gp(ϕv)c
dµ ≤ K

∫

A

gpϕv dµ ≤ K
∫

sptϕ

gpϕv dµ = M <∞.

Since A ∩ {u < c} ⊃ Ω′ ∩ {u < c} , we obtain
∫

Ω′∩{u<c}
gpuc dµ ≤M.

Letting c → ∞ and noting that µ({u = ∞}) = 0 by Theorem 7.7 we see that
gu = limc→∞ guc defines an Lp(Ω′)-function. Since u ≤ v µ -almost everywhere,
v ∈ Lp(Ω′) and u is locally bounded below, u belongs to Lp(Ω′) and since it is easy
to see that gu is a weak upper gradient of u in Ω′ , it follows that u ∈ N 1,p(Ω′) .
The definition of quasisuperharmonicity together with Theorem 6.1 implies that
u is a K -quasisuperminimizer.

8. Definitions of superharmonicity

There are alternative definitions for 1-quasisuperminimizers. One possible
choice has been studied in [KM2]. In this section we study how these definitions
are related to Definition 7.1. We begin with a definition, which is slightly different
from that of [KM2].

8.1. Definition. A function u: Ω→ (−∞,∞] is called superharmonic in Ω,
if

(i) u is lower semicontinuous in Ω,
(ii) u is not identically ∞ in any component of Ω,

(iii) for every open Ω′ b Ω the comparison principle holds: if v ∈ C(Ω′)∩N1,p(Ω′)
and v ≤ u on Ω′ , then O(v,Ω′) ≤ u in Ω′ .

Here O(v,Ω′) denotes the unique solution to the Kv,v(Ω
′)-obstacle problem in Ω′ .

This means that the function O(v,Ω′) minimizes the p -Dirichlet integral among
all functions w such that w − v ∈ N 1,p

0 (Ω′) and w ≥ v µ -almost everywhere in
Ω′ , see [KM2].
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Observe that O(v,Ω′) is a superminimizer and continuous in Ω′ by [KM2,
Theorem 5.5].

8.2. Lemma. Suppose that u is a superharmonic function in Ω and let
Ω′ be an open set such that Ω′ b Ω . Then there is an increasing sequence of
continuous superminimizers ui , i = 1, 2, . . . , in Ω′ such that u = limi→∞ ui
everywhere in Ω′ .

The proof of this lemma is similar to the proof of [KM2, Theorem 7.7].

8.3. Lemma. If u is a superminimizer in Ω such that

u(x) = ess lim inf
y→x

u(y)

for every x ∈ Ω , then u is superharmonic.

Proof. It suffices to prove the comparison principle (iii) in Definition 8.1. Let
Ω′ be an open set such that Ω′ b Ω and v ∈ C(Ω′) ∩N1,p(Ω′) and v ≤ u on Ω′ .
Let

A = {x ∈ Ω′ : O(v,Ω′)(x) > u(x)}.
Since v − O(v,Ω′) ∈ N1,p

0 (Ω′) and u ≥ v , we have O(v,Ω′)− u ∈ N1,p
0 (A) . Now

O(v,Ω′) ≥ u in A and the minimizing property of u yields

(8.4)

∫

A

gpO(v,Ω′) dµ ≥
∫

A

gpu dµ.

On the other hand O(v,Ω′) is the unique solution to the obstacle problem Kv,v(Ω
′)

and hence (8.4) holds as an equality. This implies that O(v,Ω′) = u µ -almost
everywhere in A and thus µ(A) = 0. This means that O(v,Ω′) ≤ u µ -almost
everywhere in Ω′ . Since u satisfies

u(x) = ess lim inf
y→x

u(y)

for every x ∈ Ω and since O(v,Ω′) is continuous in Ω′ , the condition O(v,Ω′) ≤ u
µ -almost everywhere in Ω′ implies O(v,Ω′) ≤ u everywhere in Ω′ .

Next we show that the condition (iii) is stronger than the comparison condi-
tion:

(iii ′ ) for every open Ω′ b Ω the comparison principle holds: if v ∈ C(Ω′)∩N1,p(Ω′)
and v ≤ u on ∂Ω′ , then H (v,Ω′) ≤ u in Ω′ .

Here H (v,Ω′) denotes the unique harmonic function in Ω′ with v −H (v,Ω′) ∈
N1,p

0 (Ω′) .

8.5. Lemma. Suppose that u is superharmonic in the sense of Definition 8.1.
Then u satisfies (iii ′ ).
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Proof. Let v ∈ C(Ω′) ∩ N1,p(Ω′) with v ≤ u on ∂Ω′ . For every ε > 0 we
construct a function v1 such that v − ε− v1 ∈ N1,p

0 (Ω′) , v1 ∈ C(Ω′) and v1 ≤ u
in Ω′ .

Since the function u is lower semicontinuous, there is m > −∞ such that
u(x) ≥ m in Ω′ . Let ε > 0. The set

U1 = {x ∈ Ω′ : v(x)− ε < u(x)}

is open in Ω′ and contains ∂Ω′ . Choose another open set U2 in Ω′ such that
∂Ω′ b U2 b U1 . Let

λ(x) = min
(
1,dist

(
x, (X \ U1) ∩ Ω′

)
/dist

(
U2, (X \ U1) ∩ Ω′

))
.

Then λ is a Lipschitz continuous function in Ω′ , λ = 1 in U2 and λ = 0 in
(X \ U1) ∩ Ω′ . Let

v1(x) =
(
1− λ(x)

)
m+ λ(x)

(
v(x)− ε

)
.

Then v1 ∈ C(Ω′) and v−ε−v1 ∈ N1,p
0 (Ω′) because v−ε = v1 in a neighbourhood

of ∂Ω′ in Ω′ . Moreover, it easily follows that v1 ≤ u in Ω′ .
Now (iii) in Definition 8.1 implies that O(v1,Ω

′) ≤ u in Ω′ . On the other
hand O(v1,Ω

′) ≥H (v1,Ω
′) in Ω′ . Since v−ε−v1 ∈ N1,p

0 (Ω′) and the minimizer
is unique, we obtain

H (v1,Ω
′) = H (v − ε,Ω′) = H (v,Ω′)− ε.

Hence

H (v,Ω′)− ε ≤ O(v1,Ω
′) ≤ u

in Ω′ . Since ε > 0 was arbitrary, we conclude that H (v,Ω′) ≤ u in Ω′ as
required.

8.6. Remark. Lemma 8.5 shows that all results in [KM2] which deal with
superharmonic functions apply to superharmonic functions in the sense of Defini-
tion 8.1.

8.7. Lemma Suppose that u: Ω→ (−∞,∞] is superharmonic in Ω and Ωi

is a sequence of open sets such that Ω1 b Ω2 b · · · and
⋃∞
i=1 Ωi = Ω . Then there

is a sequence (vi) of functions such that

(i) vi ∈ C(Ωi) ∩N1,p(Ωi) ,
(ii) vi is a superminimizer in Ωi ,

(iii) vi ≤ vj in Ωi if j ≥ i ,
(iv) limi→∞ vi = u in Ω .
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Proof. Let Ωi be a sequence of open sets satisfying the assumptions of the
lemma. By the lower semicontinuity of u for every i there is a sequence of functions
ϕi,j : Ωi → R such that ϕi,j < ϕi,j+1 in Ωi , ϕi,j is Lipschitz and limj→∞ ϕi,j = u
in Ωi . Set v1 = O(ϕ1,1,Ω1) and if v1, . . . , vi have been chosen, then choose j
such that ϕi+1,j ≥ vi in Ωi and take vi+1 = O(ϕi+1,j ,Ωi+1) . The sequence (vi)
has the required properties.

In particular, Lemma 8.7 implies that if u is superharmonic in the sense of
Definition 8.1, then it is 1-quasisuperharmonic in the sense of Definition 7.1. The
converse is also true:

8.8. Theorem. A function is superharmonic in the sense of Definition 8.1 if
and only if it is 1 -quasisuperharmonic in the sense of Definition 7.1.

Proof. Let u be 1-quasisuperharmonic. It suffices to prove (iii) in Defini-
tion 8.1. To this end, fix an open set Ω′ b Ω and let v ∈ C(Ω′) ∩N1,p(Ω′) with
v ≤ u on Ω′ . By Definition 7.1 there is Ω′′ with Ω′ b Ω′′ b Ω and an increasing
sequence of 1-quasisuperminimizers (that is, superminimizers) v∗i in Ω′′ such that
v∗i → u in Ω′′ .

Now for each ε > 0 there is i such that v∗i ≥ v − ε in Ω′ . To prove this, let
ε > 0. If there are points xi , i = 1, 2, . . . , in Ω′ such that v∗i (xi) < v(xi) − ε ,
then possibly passing to a subsequence we may assume that xi → x0 ∈ Ω′ . For
j ≤ i we have

v∗j (xi) ≤ v∗i (xi) < v(xi)− ε
and since v is continuous in Ω′ , this yields

lim inf
i→∞

v∗j (xi) ≤ v(x0)− ε ≤ u(x0)− ε

for each j = 1, 2, . . . . Now each v∗j is lower semicontinuous and thus

v∗j (x0) ≤ v(x0)− ε ≤ u(x0)− ε
for each j . If u(x0) <∞ , then this is impossible because

lim
j→∞

v∗j (x0) = u(x0) > u(x0)− ε,

and if u(x0) = ∞ , then this is also impossible because v(x0) < ∞ . Hence there
is i such that v∗i ≥ v − ε in Ω′ .

Consider the function O(v,Ω′) . Now O(v − ε,Ω′) = O(v,Ω′) − ε and the
function min(O(v,Ω′) − ε, v∗i ) is a superminimizer (the minimum of two super-
minimizers is a superminimizer by Lemma 3.7). If O(v,Ω′)− ε > v∗i in some open
subset of Ω′ , then this leads to a contradiction with the uniqueness of the solution
to an obstacle problem. Consequently O(v,Ω′)− ε ≤ v∗i in Ω′ . We thus have

O(v,Ω′)− ε ≤ v∗i ≤ u
in Ω′ . Since this holds for all ε > 0, we obtain O(v,Ω′) ≤ u in Ω′ as required for
(iii) in Definition 8.1. This completes the proof.



484 Juha Kinnunen and Olli Martio

9. Poisson modification of a quasisuperharmonic function

Suppose that u: Ω→ (−∞,∞] is a K -quasisuperharmonic function and that
Ω′ b Ω is open. Then there are sequences Ωi and vi as in Definition 7.1. Fix i0
such that Ω′ b Ωi for i ≥ i0 . Let P (vi,Ω

′) denote the Poisson modification of vi
in Ω′ , see Section 4. Then P (vi,Ω

′) is a K -quasisuperminimizer in Ωi .
Let P (vi,Ω

′)∗ denote the lower semicontinuous representative of P (vi,Ω
′) in

Ωi as in Lemma 5.3. Then

P (vi+1,Ω
′)∗ ≥ P (vi,Ω

′)∗

in Ωi and
P (u,Ω′) = lim

i→∞
P (vi,Ω

′)∗

defines a K -quasisuperharmonic function in Ω. Note that P (u,Ω′) ≤ u in Ω and
hence P (u,Ω′) cannot be ∞ in any component of Ω. The function P (u,Ω′) is
called the Poisson modification of u in Ω′ . The following theorem summarizes
the properties of P (u,Ω′) .

9.1. Theorem. Suppose that u: Ω→ (−∞,∞] is a K -quasisuperharmonic
function and that Ω′ b Ω is open. The function P (u,Ω′): Ω→ (−∞,∞] has the
properties:

(1) P (u,Ω′) is K -quasisuperharmonic in Ω ,
(2) P (u,Ω′) = u in Ω \ Ω′ ,
(3) P (u,Ω′) ≤ u in Ω , and
(4) P (u,Ω′) is a minimizer in the open set A = {x ∈ Ω′ : P (u,Ω′)(x) < u(x)} .

Proof. Only the property (4) needs a proof. Let vi and Ωi , i = 1, 2, . . . , be as
above. We may assume that Ω′ b Ωi for all i and that Ω′ is connected, otherwise
we consider a component of Ω′ . Let hi be the minimizer with boundary values vi
in Ω′ .

Suppose that x0 ∈ A . Then P (u,Ω′)(x0) < u(x0) and, in particular, we have
P (u,Ω′)(x0) < ∞ . The sequence (hi) is an increasing sequence of minimizers in
Ω′ and let h = limi→∞ hi . Now

(9.2) h(x0) = P (u,Ω′)(x0) <∞

since

P (u,Ω′)(x0) = lim
i→∞

P (vi,Ω
′)∗(x0) = lim

i→∞
min(vi, hi)(x0) = lim

i→∞
hi(x0) = h(x0),

because x0 ∈ Ω′ and

lim
i→∞

vi(x0) = u(x0) > P (u,Ω′)(x0).
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The Harnack convergence theorem, see [KM2], and (9.2) imply that h is a mini-
mizer in Ω′ .

Suppose that u(x0) <∞ and write

ε = u(x0)− P (u,Ω′)(x0) > 0.

Since u is lower semicontinuous and h is continuous, there is a neighbourhood U
of x0 such that

u(x) > u(x0)− 1
2ε and h(x) < h(x0) + 1

2ε

for x ∈ U . Because P (vi,Ω
′)∗ ≤ hi in Ω′ , we have P (u,Ω′) ≤ h in Ω′ and thus

for all x ∈ U we have

u(x) > u(x0)− 1
2ε = P (u,Ω′)(x0) + 1

2ε = h(x0) + 1
2ε > h(x) ≥ P (u,Ω′)(x).

Hence U ⊂ A and thus A is open. An obvious modification takes care of the case
u(x0) =∞ . Now (9.2) holds for each x ∈ A and (4) follows.

10. Polar sets

Here we show that the set where a quasisuperharmonic function is equal to ∞
is of zero p -capacity. For superharmonic functions on metric spaces this question
has been studied in [KS2]. We start with a lemma which gives a characterization
of compact sets of zero p -capacity. See 2.4 for the definition of the relative p -
capacity.

10.1. Lemma. Suppose that C ⊂ X is a compact set. Then Cp(C) > 0 if
and only if

(10.2) lim
t→0

Cp(C,Ct) =∞.

Here Ct = {x ∈ X : dist(x,C) < t} .

Proof. If (10.2) holds, then clearly Cp(C) > 0. Suppose then that Cp(C) > 0.
For t > 0, let E(t) denote the condenser (C,Ct) and for 0 < t < r , let E(t, r)
be the the condenser (Ct, Cr) . We claim that

(10.3) lim
t→0

Cp
(
E(t, r)

)
= Cp

(
E(r)

)
.

Indeed, let u be an admissible Lipschitz function for the condenser E(r) . For
ε > 0 the function (1 + ε)u is admissible for E(t, r) provided t is small and hence

Cp
(
E(t, r)

)
≤ (1 + ε)p

∫

X

gpu dµ.
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Now X is proper and thus admissible Lipschitz functions are dense in the class of
admissible functions for E(r) , see [KaS]. Hence we obtain

Cp
(
E(t, r)

)
≤ (1 + ε)p Cp

(
E(r)

)

for small t . This implies

lim
t→0

Cp
(
E(t, r)

)
≤ Cp

(
E(r)

)

and since Cp
(
E(t, r)

)
≥ Cp

(
E(r)

)
for every t , 0 < t < r , we obtain (10.3).

Then we claim that

(10.4) Cp
(
E(r)

)−1/(p−1) ≥ Cp
(
E(t)

)−1/(p−1)
+ Cp

(
E(t, r)

)−1/(p−1)
.

Indeed, let uE(t) and uE(t,r) be the capacitary potentials of E(t) and E(t, r) , re-
spectively. This means that uE(t) is the unique minimizer in Ct\C with boundary
values 0 in X \ Ct and 1 in C . Let

u = αuE(t) + βuE(t,r),

where α, β ≥ 0, α+ β = 1. Then u is admissible for E(r) and hence

Cp
(
E(r)

)
≤ αp Cp

(
E(t)

)
+ βp Cp

(
E(t, r)

)
.

Note that guE(t)
= 0 µ -almost everywhere in X \C(t) and guE(t,r)

= 0 µ -almost

everywhere in C(t) . If Cp
(
E(t)

)
> 0 and Cp

(
E(t, r)

)
> 0, we set

α = Cp
(
E(t)

)−1/(p−1)(
Cp
(
E(t)

)−1/(p−1)
+ Cp

(
E(t, r)

)−1/(p−1))−1

and

β = Cp
(
E(t, r)

)−1/(p−1)(
Cp
(
E(t)

)−1/(p−1)
+ Cp

(
E(t, r)

)−1/(p−1))−1

and the claim follows. If either Cp
(
E(t)

)
= 0 or Cp

(
E(t, r)

)
= 0, then (10.4) is

obvious.
Letting t → 0 we obtain from (10.3) and (10.4) that limt→0 Cp

(
E(t)

)
= ∞

as required.

We make the following assumptions:

(1) C is a compact set in X ,
(2) v is a K -quasisuperminimizer in X such that v ≥ 1 on C , and
(3) v ≥ 0 on Cr , r > 0.

We let uE(r) be the capacitary potential of the condenser E(r) .
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10.5. Lemma. If Cp(C) > 0 , then there exist t , 0 < t < r , r > 0 , and a
point x0 such that d(x0, C) = t with the property that any neighbourhood of x0

contains a set A with µ(A) > 0 where

v(x) ≥ 1
4uE(r)(x).

The number t depends on C and K and on the other data but not on the function
v otherwise. The point x0 and the set A depend on v .

Proof. Let 0 < t < r , 0 < ε < 1 and suppose that

εuE(r)(x) ≥ v(x), x ∈ ∂Ct.

Since uE(r) ≤ 1, this implies that ε ≥ v(x) , x ∈ ∂Ct . Let w = min(v, uE(r)) ,
then the function (1− ε)−1(w − ε) is admissible for the condenser E(t) . Thus

Cp
(
E(t)

)
≤ (1− ε)−p

∫

Ct\C
gpw dµ

= (1− ε)−p
(∫

(Ct\C)∩{uE(r)<v}
gpuE(r)

dµ+

∫

(Ct\C)∩{uE(r)≥v}
gpv dµ

)
.

The K -quasisuperminimizing property of v yields
∫

(Ct\C)∩{uE(r)≥v}
gpv dµ ≤ K

∫

(Ct\C)∩{uE(r)≥v}
gpuE(r)

dµ.

Note that uE(r)− v ∈ N1,p
0

(
(Cr \C)∩{uE(r) ≥ v}

)
because v ≥ 1 ≥ uE(r) on C ,

v ≥ 0 and uE(r) = 0 in X \ Cr . From this we conclude that

Cp
(
E(t)

)
≤ (1− ε)−p

(∫

Cr\C
gpuE(r)

dµ+K

∫

Cr\C
gpuE(r)

dµ

)

≤ 1 +K

(1− ε)p
∫

Cr\C
gpuE(r)

dµ =
1 +K

(1− ε)p Cp
(
E(r)

)
.

This implies that

(1− ε)p ≤ (1 +K)
Cp
(
E(r)

)

Cp
(
E(t)

) ,

or in other words,

ε ≥ 1−
[
(1 +K)

Cp
(
E(r)

)

Cp
(
E(t)

)
]1/p

.

Since Cp(C) > 0, by Lemma 10.1 we have

lim
t→0

Cp
(
E(t)

)
=∞
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and we can choose t , independent of v , such that

[
(1 +K)

Cp
(
E(r)

)

Cp
(
E(t)

)
]1/p

≤ 1

2
.

Then ε ≥ 1
2 and this means that there is a point x0 ∈ ∂Ct such that v(x0) > 1

4
and hence

1
4uE(r)(x0) ≤ 1

4 < v(x0).

Since v is a K -quasisuperminimizer, by Lemma 5.3 we may assume that

ess lim inf
x→x0

v(x) = v(x0).

From this we conclude that there exists in any neighbourhood of x0 a set A of
positive measure such that

1
4uE(r)(x) < v(x), x ∈ A.

This completes the proof.

We say that a set C0 ⊂ X is K -polar, if there is an open neighbourhood Ω of
C0 and a K -quasisuperharmonic function u in Ω such that u(x) = ∞ for every
x ∈ C0 .

The following theorem is the main result of this section.

10.6. Theorem. If C0 is a K -polar set, then Cp(C0) = 0 .

Proof. Let C0 be a K -polar set in X . Then there is an open set Ω such
that C0 ⊂ Ω and a K -quasisuperharmonic function u0 in Ω such that u0 = ∞
on C0 . By Definition 7.1 there are open sets Ωi and K -quasisuperminimizers
vi , i = 1, 2, . . . , satisfying the properties (i)–(iv) in Definition 7.1. Because the
statement of the theorem is local and the functions vi are lower semicontinuous
we may assume that Ωi = Ω and vi > 0 for every i = 1, 2, . . . .

We observe that

C0 =
∞⋂
j=j0

∞⋃
i=i0

Ci,j ,

where Ci,j = {x ∈ Ω : vi(x) > j} for any integers j0 and i0 . To see this let
x0 ∈ C0 . Then vi(x0) → ∞ as i → ∞ and hence for any j there are arbitrary
large i such that vi(x0) > j . Consequently x0 ∈

⋂∞
j=j0

⋃∞
i=i0

Ci,j . For the

converse, let x0 ∈
⋂∞
j=j0

⋃∞
i=i0

Ci,j . Then for every j ≥ j0 there is i such that
vi(x0) > j . Since vi is an increasing sequence, vi′(x0) > j for i′ ≥ i . This means
that limi→∞ vi(x0) =∞ and hence x0 ∈ C0 .

Note that the set Ci,j is open by the lower semicontinuity of vi and hence
C0 is a Gδ -set.
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Suppose that Cp(C0) > 0. Then there is a compact set C ⊂ C0 such that

Cp(C) > 0. This is due to the fact that the p -capacity is a Choquet capacity,
see [KM1]. This means that if we choose r > 0 such that r < dist(C,X \Ω), then

Cp(C,Ct) > 0. For every j = 1, 2, . . . , we have

C ⊂
∞⋃
i=i0

Ci,j

for arbitrarily large i0 . Now the sets Ci,j are open and C is compact. Hence for
any fixed j and i0 there is i′ = i′(j, i0) such that

C ⊂
i′⋃
i=i0

Ci,j .

On the other hand, we have Ci,j ⊂ Ci+1,j and hence C ⊂ Ci′,j .
Let E(r) , r > 0, denote the condenser (C,Cr) and uE(r) the capacitary

function of E(r) . We can now apply Lemma 10.5 to the K -quasiminimizer vi′/j .
By Lemma 10.5 there are t , 0 < t < r , independent of i′ and j , and a point
x0 such that dist(x0, C) = t and any neighbourhood of x0 contains a set A with
µ(A) > 0 and

vj′(x)

j
≥ 1

4
uE(r)(x), x ∈ A.

Since vi is an increasing sequence, this means that

(10.7)
vi(x)

j
≥ 1

4
uE(r)(x), x ∈ A,

for all i ≥ i′ .
By Theorem 7.7 we have u0(x) < ∞ for µ -almost every x ∈ Ω. Since

vi(x) ≤ u0(x) for all x and since (10.7) holds, we can pick x̃0 ∈ A such that
u(x̃0) <∞ , (10.7) holds at x̃0 for i ≥ i′ and

t− ε1 < dist(x̃0, C) < t+ ε1,

where ε1 = min(t, r − t)/10.
By (10.7) this implies

u0(x̃0)

j
≥ 1

4
uE(r)(x̃0)

for each j . Letting j → ∞ we obtain that uE(r)(x̃0) = 0 and by the Harnack
inequality uE(r) = 0 in a component U of Ct \C containing x̃0 . Since the above
reasoning can be applied to each such component, this means that uE(r) = 0 in
Ct \C , but this implies that Cp(C) = 0, which is a contradiction. This completes
the proof.
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