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Abstract. In this paper we derive an algorithm that computes, for a given algebraic hyper-
elliptic plane curve C of genus p , p > 1 , defined by a polynomial y2 = (x−λ1) · · · (x−λ2p+2) , an
approximation of a Fuchsian group G acting in the unit disk D such that C = D/G . The method
allows us also to approximate the projection mapping π: D → D/G = C , thus giving a solution to
the problem of numerical uniformization in the case of hyperelliptic curves. The method is based
on work of P. J. Myrberg that appeared already in 1920 but did not get much attention at that
time.

1. Introduction

The problem of numerical uniformization of an algebraic plane curve C de-
fined by an affine polynomial equation P (x, y) = 0 consists of:

– Finding a domain Γ in the Riemann sphere and a discontinuous group G of
Möbius transformations acting in Γ such that Γ/G = C .

– Finding an explicit form of the uniformizing mapping π: Γ → C .

By the uniformization theorem, we know that such a presentation is possible.
Explicit constructions for uniformization have been difficult to find in spite of huge
efforts to solve this problem already for more than hundred years ago.

Burnside ([1], see also [18]) found perhaps the first explicit uniformization in
a special case.

Later several examples of algebraic curves, for which it has been possible to
determine a uniformizing group G , have been found by many persons. Hence,
for these curves, the first part of the numerical uniformization problem has been
solved. These curves are typically characterized by the fact that they have a large
number of authomorphisms. Kulkarni has studied such curves (cf. [13]). More
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examples have been found most recently by Rub́ı Rodŕıguez and Vı́ctor González-
Aguilera [19]. They found a 1-dimensional family of Fuchsian groups uniformizing
a 1-dimensional pencil of algebraic curves (without giving explicit uniformizations
for curves in the pencil). Common to these examples is that it has not been possible
to find or even to approximate the uniformizing projection π: Γ → C .

One approach to solving the numerical uniformization problem is afforded by
so called accessory parameters. These are related to the fact that the inverse of the
uniformizing projection satisfies a Schwarzian differential equation that depends
on these parameters. The accessory parameters have been studied by Dennis
Hejhal (cf. [6], [7], [8]) Linda Keen et al. ([10], [11]), Irwin Kra ([12]), P. G. Zograf
and L. A. Takhtajan ([21], [24]), J. M. Whittaker ([23]) and others ([5], [20]) but
relatively little is known about them and the uniformization problem has been
solved in some very special cases only using this method.

In this paper we study a method of P. J. Myrberg ([15]) that can be used
to approximate a Schottky uniformization of a given hyperelliptic curve. Myr-
berg’s iterative method allows one to write down the projection map as a certain
limit. This projection map is not of the type that Linda Keen meant in the above
statement. Myrberg’s method leads to a Schottky uniformization for which the
projection is a mapping from an infinitely punctured sphere onto the given hyper-
elliptic curve.

Instead of Schottky uniformization, one would like to be able to approximate
a Fuchsian uniformization of a given curve. In comparison with the Schottky uni-
formization, the Fuchsian uniformization has the advantage that it allows one to
study the hyperbolic geometry of the curve in an explicit fashion. The hyperbolic
metric of a disk (which is the domain of the action of a Fuchsian uniformizing
group) is well understood and subject to explicit computations, while the hy-
perbolic metric of the domain of the action of a Schottky group is much more
complicated and no explicit formulae for the metric exist. Hence it is desirable
to find numerical approximations of Fuchsian uniformizations of algebraic curves.
Here this is done, for the first time, for a non-trivial family of curves, namely for
hyperelliptic algebraic curves.

Myrberg’s work appeared in 1920. He credits Poincaré ([16]) for the main
idea in the construction. Similar methods for uniformization, based on the ideas
of Poincaré, have been presented by E. T. Whittaker ([23]) but Myrberg appears to
have developed them further. Myrberg’s work was also later discussed by Fernanda
Esser in an unpublished manuscript [4].

In another direction, Peter Buser and Robert Silhol ([3]) have recently devel-
oped methods that allow one to find a Fuchsian group uniformizing a given real
hyperelliptic curve. They are also able to compute equations for certain surfaces
having given geometric properties. Buser has further studied differential geomet-
ric methods to calculate lengths of closed geodesic curves on given (hyperelliptic)
curve. A Fuchsian group uniformizing the curve can be approximated in this way
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also. These methods are subject to generalizations. A former student of Buser,
Matthias Wagner ([22]), has developed explicit differential-geometric methods to
uniformize hyperelliptic algebraic curves.

2. Preliminaries

Myrberg’s method for numerical uniformization [15] allows one to find a
Möbius group G uniformizing a hyperelliptic curve C defined by the affine poly-
nomial

(1) y2 =

2p+2∏

j=1

(x− λj), λj 6= λi for i 6= j.

More precisely, given the polynomial defining the curve C , Myrberg derived a
numerical method to approximate the generators gj of a Möbius group G such
that

C = Γ(G)/G,

where Γ(G) is the domain of discontinuity of the group G . Furthermore, the
method allows one to approximate the uniformizing mapping Γ → Γ/G = C .

In Myrberg’s construction, the group G is freely generated by p−1 loxodromic
Möbius transformations gj . If all the λj ’s in the polynomial defining the curve C
are real, then the generating transformations gj are actually hyperbolic and they
map the upper half-plane onto itself. In this case the limit set of the group G is
a nowhere dense subset of the real line.

In this paper

(1) we recall Myrberg’s construction,
(2) show that it actually converges (convergence is fast), and
(3) extend it to yield a way to approximate a Fuchsian uniformization of a given

hyperelliptic curve.

The last step amounts to solving the following problem. Let G be a given
finitely generated Schottky group with limit set in the real axis. Let Γ be the do-
main of discontinuity of G , and assume that Γ/G is a Riemann surface of genus
p > 1. Find a Fuchsian group F which is of the first kind, acts in the upper half-
plane U and for which U/F = Γ/G . This passing from a Schottky uniformization
to Fuchsian uniformization uses quasiconformal mappings. Possible implementa-
tions depend on being able to approximate a µ -quasiconformal self-mapping of the
upper half-plane onto itself for a given Beltrami differential µ . This clearly can be
done using numerical methods. For the purposes of the implementations of this
algorithm, it is important to find as good approximations of the µ -quasiconformal
mappings as possible. This problem is not considered here.



6 Mika Seppälä

3. Iteration of the opening of the slots

Assume now that C is a hyperelliptic plane algebraic curve defined by the
affine equation (1). The projection C → Ĉ, (x, y) → x , of the curve C onto the

Riemann sphere Ĉ is ramified exactly over the points λj . Assume that all these
points are real, and that λ1 < λ2 < · · · < λ2p+2 . We will later get rid of this
assumption.

From equation (1), one can solve y in terms of x locally uniquely off the
points λj . If one continues such a solution along a closed curve going around an
odd number of the points λj , then the sign of the solution changes. Hence there
are no global solutions. This difficulty disappears, if one cuts the Riemann sphere
open in such a way that it is not anymore possible to find closed loops going around
an odd number of points λj . This limits the domain of the variable x . In this
smaller domain a global solution (of y in terms of x) to (1) can be found, i.e., in
this smaller domain

(2) y =

√√√√
2p+2∏

j=1

(x− λj)

can be uniquely defined. Clearly there are two choices for the branch of the square
root. Either of them will do.

One way to achieve this is to consider the complement S of the union of the
intervals

Ij = [λ2j−1, λ2j], j = 1, . . . , p+ 1.

We view S as a domain in the Riemann sphere Ĉ, and observe that any closed
curve going around some points λj must go around an even number of such points.
Hence, for x in S , y satisfying equation (1) can be represented as a function of x .
There are two solutions, let y = π(x) denote one of them. Then the other solution
is y = −π(x).

In the domain S , π is a well defined holomorphic function. Let γj be the
curve on C going through the points λ2j−1 and λ2j , j = 1, . . . , p+ 1, and corre-
sponding the values x ∈ Ij . Considering C as a Riemann surface with a hyperbolic
metric, γj is a simple closed geodesic curve going through two hyperelliptic branch
points. Observe that, on each γj , y takes purely imaginary values.

The complement of the curves γj consists of two planar Riemann surfaces with
p+ 1 boundary curves. The mapping π: S → C maps S conformally onto one of
these components, and the hyperelliptic involution exchanges these components.

Next we wish to extend the mapping π so that the image of π becomes the
whole curve C . This is clearly not possible without modifying the domain S .
The iterative modification of S , which we proceed to describe, is an idea of P. J.
Myrberg ([15]). It is based on an auxiliary mapping that opens the slots Ij con-
formally. That mapping is introduced in the next subsection.
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3.1. The opening mapping. Consider a mapping, called opening mapping,
which maps the exterior of an interval in the complex plane onto the exterior of a
disk. We will define it in the following way.

Let:

(1) α and β be two different points in the complex plane;
(2) I denote the closed interval having α and β as end-points;
(3) m = 1

2
(α+ β) and s = 1

4
(β − α).

We assume that the real part of s is non-negative. In the applications con-
sidered here, the α and β will be real and we simply assume that α < β .

Consider the equation

(3)
z − (m+ 2s)

z − (m− 2s)
=

(
w − (m+ s)

w − (m− s)

)2

.

A suitable choice of the square-root gives us, by equation (3), a mapping

(4) φ: C \ I → C \D,

where D is a disk centered at m with radius |s| . This mapping extends to
the end-points α and β of the interval I by setting φ(α) = 1

4
(3α + β) and

φ(β) = 1

4
(α+ 3β). So the mapping φ halves the distance of the points α and β .

This mapping φ plays a central role in our construction and it is, therefore,
necessary to take a closer look at it.

We observe that the following lemmata hold:

Lemma 1. The mapping φ determined by equation (3) is given by

(5) φ(x) = x+
x−m

2

(√
1 − 4

s2

(x−m)2
− 1

)
for |x−m| ≥ 2|s| ,

or

(6) φ(x) = x− s
(
t+ t3 + t5 + O(t7)

)
,

where t = s/(x−m) and |x−m| ≥ 2|s| .

Lemma 2. Assume that the α and β are real and α < β . Then m is also

real and s > 0 . In this case the mapping φ moves points of the real axis outside

of the interval [m− 2s,m+ 2s] towards the mid-point m . For |x−m| ≥ 2|s| , let

(7) δ(x) = |x− φ(x)|

or

(8) δ(x) = |x−m|
(
t2 + t4 + 2t6 +O(t8)

)
,
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where t = s/(x−m) .
Then, for x ≥ m+ 2s , δ(x) is strictly decreasing, and, for x ≤ m− 2s , δ(x)

is strictly increasing. The function δ(x) attains its maximum for x = m+ 2s and

for x = m− 2s . The maximum value is

(9) δ(m± 2s) = s.

Furthermore,

(10) lim
x→±∞

δ(x) = 0.

Both of the above lemmata are simple straightforward technical computations
and proofs are left to the reader.

In the above, the mapping φ was determined by equation (3) and by requiring
that φ maps the complement of the interval I onto the complement of the disk
D with m as center and |s| as radius.

The other choice of the sign of the square root (when solving w in terms of
z from equation (3)) yields a mapping φ̃: C \ I → D . The mapping

(11) e(z) =
mz − (m+ s)(m− 2)

z −m

is the elliptic rotation, with angle π , of the complex plane keeping the finite points
m− s and m+ s fixed. It maps the complement of D onto D and we have

(12) φ̃ = e ◦ φ.

In the subsequent considerations we use this mapping φ with varying param-
eters α and β to perform the desired iteration.

3.2. Opening the slots. We now consider a curve C 1 given by equation
(1) in which all the branch-points λj are real and arranged in an increasing order,
i.e.,

λ1 < λ2 < · · · < λ2p+2.

Then the closed intervals Ij = [λ2j−1, λ2j ] , j = 1, . . . , p+ 1, are disjoint. We call
these intervals slots or, more precisely, first generation slots.

Let φ1 be the mapping φ defined by equation (3) with α = λ1 and β = λ2 .
The mapping φ1 opens up the first slot I1 replacing it by a disk D1 and maps all
other slots onto new slots φ1(Ij) which are still intervals in the real axis.

The corresponding elliptic rotation e1 , defined by (11), maps the complement
of D1 onto D1 . In particular, e1 maps the deformed slots φ1(I2), φ1(I3), . . . onto

1 C : y2 = (x − λ1)(x − λ2) · · · (x− λ2p+2) .
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e

mφ(λ2j−1) φ(λ2j)

s s s δ

φ

λ1 λ2j−1 λ2j

Figure 1. The mapping φ opens a slot of length 4s and replaces it by a disk D of radius s .

The higher generation slots are obtained as images of the other slots under an elliptic Möbius

transformation e mapping the complement of the closure of disk D onto D itself. Also the other

slots move towards the mid-point m of the slot that is being opened. The function δ measures

this movement. The points φ(λ2j−1) and φ(λ2j ) are the fixed points of the elliptic transformation

ej corresponding to this opening of a slot.

new slots e1
(
φ1(Ij)

)
, j = 2, 3, . . ., in D1 . These are the first 2nd -generation slots.

Let us denote them by I2
j .

The opening of a slot and the creation of 2nd generation slots is illustrated
in Figure 1.

Next, let φ2 be the mapping φ defined by the equation (3) with α = φ1(λ3)
and β = φ1(λ4). The mapping φ2

– opens up the slot φ1(I2) and replaces it by a disk D2 ;
– maps the boundary of the disk D1 onto a Jordan curve going through the

points φ2

(
φ1(λ1)

)
and φ2

(
φ1(λ2)

)
;

– maps the deformed slots φ1(Ij) onto new slots φ2

(
φ1(Ij)

)
; these are still

intervals in the real axis.

Let e2 be the corresponding elliptic rotation, defined by (11) with

(13) m = 1

2

(
φ1(λ3) + φ1(λ4)

)
and s = 1

4

(
φ1(λ4) − φ1(λ3)

)
.

The rotation e2 maps the slots φ2

(
φ1(I3)

)
φ2

(
φ1(I4)

)
, . . . onto new 2nd -

generation slots I2
j , j = p+ 1, . . . , 2p , inside the disk D2 . The images e2

(
φ2(I

2
j )
)

of the first 2nd -generation slots I2
j , j = 1, . . . , p , inside D2 are referred to as

3rd -generation slots I3
j .

Repeat this procedure until all the first generation slots have been opened
and new higher generation slots have been formed.

In this way, when opening slots, one forms iteratively new slots which are
divided into generations. Order these slots by generation and within a generation
from left to right (these slots are always disjoint intervals in the real line). Later
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we will show that this ordering is actually irrelevant; the ordering of these slots
is related to selecting a certain fundamental domain for the action of a group.
For purposes of effectiveness of implementations, one should rather order the slots
according to their size.

Continue with opening the slots in the order fixed above. Iterating this pro-
cedure we get a sequence of conformal mappings

ψj = φj ◦ φj−1 ◦ . . . ◦ φ1: S → Ĉ.

At this point we deliberately restrict the domain of definition of the mappings φk

so that we view the composed mapping as being defined in S , the complement of
the union of the slots.

Theorem 3. The sequence (ψj) has a converging subsequence (ψjk
) and the

limit mapping ψ∞ is a conformal mapping of the domain S onto a domain in the

Riemann sphere. Furthermore the limit mapping does not depend on the choice

of the converging subsequence.

Proof. Assume that all the first generation slots are contained in the interval
[−M,M ] , i.e., that −M < λ1 < · · · < λ2p+2 < M . Let x < −M or x > M . By
Lemma 2, we conclude that

– the sequence
(
ψj(x)

)
(of real numbers) converges, and

– limj→∞ ψj(x) 6= limj→∞ ψj(y) for x 6= y .

In fact, by Lemma 2, for x < −M or x > M , the points ψj(x), j = 1, 2, 3, . . .,
move towards the slots Ik which are contained in the interval [−M,M ] . But these
points cannot cross the initial slots, they always stay at the same side of them.
Hence the convergence. The points closer to the slots move faster. This means
that if x and y are both either < −M or > M , then the distance of the iterated
points ψj(x) and ψj(y) grows as j → ∞ . This means that the limit points cannot
be the same, implying the second statement.

By [14, Theorem II.5.1] the sequence (ψj) is a normal family. This follows
from the above-quoted result, since

(
ψj(x)

)
converges for real x with sufficiently

large |x| .
We conclude that (ψj) has a converging subsequence such that the limit

mapping ψ∞ is either a conformal homeomorphism of S , a constant mapping or
a mapping of S onto two points. By the above remarks, the latter two possibilities
are excluded. Hence we conclude that ψ∞ is a conformal mapping of S onto a
domain ψ∞(S).

Assume now that ξ∞ is the limit mapping of another converging subsequence
of the sequence (ψj). Since the sequence

(
ψj(x)

)
converges for x < −M or

x > M (and x real), it follows that ξ∞(x) = ψ∞(x) for x < −M or x > M .
Since the limit mappings are both conformal, they must agree everywhere.

A more detailed analysis of the sequence (ψj) implies that the whole sequence
(and not only a subsequence) converges to the limit mapping ψ∞ .
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At this point, a normalization is useful. The limit mapping ψ∞ is a conformal
mapping of S into the Riemann sphere Ĉ. The mapping ψ∞ extends to the points
λj , j = 1, . . . , 2p+ 2. Normalize the limit mapping ψ∞ by requiring that

(14) ψ∞(λ1) = ∞, ψ∞(λ2) = 0 and ψ∞(λ3) = 1.

This normalization can always be achieved replacing ψ∞ by g ◦ ψ∞ where g is
a suitable Möbius transformation mapping the upper half-plane onto itself. When
we later consider the limit mapping ψ∞ we always assume that it is normalized
in the above manner.

4. Schottky uniformization

It turns out that we can uniformize the curve C defined by equation (1) by
a Schottky group G generated freely by p hyperbolic Möbius transformations
mapping the real axis onto itself. The domain of discontinuity Γ of this group G
contains both the upper and the lower half-planes, and the original curve C is the
quotient Γ/G . Let proj: Γ → C be the projection.

To construct the group G , we actually construct the projection first; the group
G is then the cover group of this projection. We construct the projection so that
we first construct its inverse (locally), namely a mapping of a part of the algebraic
curve C onto a domain in the Riemann sphere. That allows us to construct the
complete projection and the group G .

Previously we observed that, for x in S , one can solve y in terms of x from
the equation (1). The solutions were denoted by y = ±π(x). In particular,

π: S → C, x 7→
(
x, π(x)

)

is a conformal mapping of S into C . The image of S in C is a component of the
complement of the simple closed curves γj going through the hyperelliptic branch
points. Hence the image of S under this (new) mapping π is half of the algebraic
curve C . Use the notation C1 = π(S) for this half of C .

Consider the mapping

(15) C1 → Ĉ, p 7→ ψ∞ ◦ π−1(p).

This is going to be a local inverse of the uniformizing projection proj: Γ → C .
Keep in mind that we assume the normalization conditions (14) be satisfied.

As the inverse of the mapping (15), the projection is now defined in the domain
ψ∞(S) which is the Riemann sphere minus p+1 disks D1, . . . , Dp+1 . These disks
correspond to the initial slots I1, . . . , Ip+1 .

Consider the elliptic transformation e1 that we formed after the opening of
the first slot I1 . Consider the limit

lim
n→∞

g ◦ φn ◦ · · · ◦ φ2 ◦ e1 ◦ φ1 = ψ1
∞.
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Here g is the hyperbolic Möbius transformation normalizing ψ∞ (cf. (14)).
By the same argument as before, ψ1

∞ is a conformal mapping of S onto a
domain ψ1

∞(S) which, this time, is contained in D1 , the topological disk corre-
sponding to the first slot. The mapping

E1 = ψ1
∞ ◦ (ψ∞)−1

maps ψ∞(S) onto ψ1
∞(S), i.e., the outside of the disk D1 (minus a number of

other disks corresponding to the slots I2, . . . , Ip+1 ) gets mapped onto the inside
of D1 . The image of E1 in the disk D1 is D1 minus p other (topological) disks
D2

2, . . . , D
2
p+1 .

We iterate this process. All the mappings

ψk
∞ = lim

n→∞
g ◦ φn ◦ · · · ◦ φk+1 ◦ ek ◦ φk ◦ . . . ◦ φ1

are conformal mappings of S onto a domain in Ĉ. For k > p + 1, ψk
∞(S) is a

topological disk minus p other disks inside (which disks contain ψl
∞(S) for some

l > k ). For each disk Dn that gets formed in this way, we associate the mappings
En that map the outside of the disk Dn (minus a certain number of other disks)
onto the inside (minus again the same number of other disks).

By their definition, the mappings En map a domain of Ĉ onto another one.
These two domains do not intersect but they do have a common boundary arc.
Requiring En to be an involution, we extend En first to the union of these two
domains. The mapping En extends also to the common boundary arc. Let us
assume that En has been extended in this way. Then the domain of En becomes
the Riemann sphere minus 2p disks Dk .

We claim that En is actually an elliptic Möbius transformation. To see why
this is true, we next extend En to (parts of) each one of the 2p disks Dk in the
following way:

(1) Let Ek be the mapping associated to the disk Dk .
(2) Via the mapping En , the disk Dk corresponds to some other disk Dl , i.e., a

small neighborhood of Dk gets mapped by En onto a small neighborhood of
the disk Dl .

(3) Let El be the mapping associated to the disk Dl .
(4) In Dk (minus a number of small disks inside), extend the mapping En by

El ◦En ◦Ek.

Repeat this construction. At the limit one gets a mapping E∞
n which is a

conformal involution of a domain Γ in Ĉ such that the complement of the domain
Γ is a nowhere dense subset of the real axis. This mapping can, furthermore,
be extended to a homeomorphic mapping of the Riemann sphere onto itself. A
nowhere dense subset of the real line is a removable singularity; hence we conclude
that the mapping E∞

n is a conformal involution of the Riemann sphere, i.e., that
E∞

n is an elliptic Möbius transformation.
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5. Schottky uniformization

We summarize the preceding considerations in the following result.

Theorem 4. Hyperbolic Möbius transformations gj = E∞
j ◦E∞

j+1 generate a

discontinuous group of Möbius transformations. The domain discontinuity of G ,

Γ , contains both the lower and the upper half-planes, and the limit-set of G is

no-where dense in the real axis. The group G gives a Schottky uniformization of

the hyperelliptic real algebraic M -curve C , i.e.,

Γ/G = C.

Each mapping E∞
j corresponds to the hyperelliptic involution of the algebraic

curve C . Locally the projection Γ → C is the inverse of mappings of the type

(16) (±π)−1 ◦ ψk
∞.

This appears to have been known to E. T. Whittaker ([23], see also [17]). In
the form presented here, the result comes from the 1920 paper of P. J. Myrberg
([15]). In that paper Myrberg credits Poincaré ([16]) for the idea of taking a limit
of the opening mappings. Clearly this approach to numerical uniformization was
known to the late masters of complex analysis and geometry. In those days, this
method was, in most cases, too complicated for practical computations by hand.

Lemma 5. The group G of Theorem 4 does not depend on the choice of

ordering the slots when forming the mappings ψk
∞ .

Proof. Repeat the above construction by using two different orderings of the
slots. Denote the respective groups obtained in this fashion by G1 and by G2 .
They both uniformize the same algebraic curve C . The identity mapping of C
induces a Möbius transformation f such that G1f = fG2 . Furthermore this
Möbius transformation f maps the points corresponding to λ1 , λ2 and λ3 in
the domain of discontinuity of G1 onto the respective points in the domain of
discontinuity of G2 . In view of the imposed normalization (14), this means that
f is the identity mapping, i.e., that G1 = G2 . The corresponding normalized
mappings ψ∞ do not usually agree; the images ψ∞(S) form two different pieces
of a fundamental domain for the action of the group G .

5.1. Myrberg’s algorithm. For purposes of implementations, one can
compute the group G as follows.

Input: An integer p , p > 1, and a set of real numbers λ1, . . . , λ2p+2 ; p is the
genus of the curve in question, and the points λj are the parameters of the
equation (1).
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Approximation step: Let L denote the length of the largest slot, i.e., L =
max{|λ2j − λ2j−1| | j = 1, . . . , p} . Approximate the mapping ψ∞ of Theo-
rem 3 by computing

bLcn(2p+ 2)

for n = 4 or n = 5 (increase this value if you want better accuracy) openings
of the slots of various generations (open first generations slots first in some
order (best would be to open the largest slots first), then proceed with higher
order generations of slots). The sequence defining ψ∞ converges very fast;
the above number of iterations is sufficient for most purposes.

Fixed-points: Using the above computed approximation of the mapping ψ∞

approximate the points λ∞j = ψ∞(λj); these are going to be the fixed-points
of the generating elliptic transformations.

Elliptic elements: For j = 1, . . . , p+ 1, let Ej be the elliptic rotation of the
complex plane by angle π and with fixed-points λ∞2j−1 and λ∞2j . Use formula
(11) to define these transformations.

Group generators: For j = 1, . . . , p , compute gj = EjEj+1 . These are
hyperbolic Möbius transformations which generate freely a Schottky group G .
The group G acts in a domain Γ, and the original hyperelliptic algebraic curve
C is now the quotient C = Γ/G .

The above algorithm produces approximations of the generators of the uni-
formizing Schottky group G and approximations of a number of elliptic Möbius
transformations E∞

j . Each one of these elliptic transformations approximates the
hyperelliptic involution of the curve C , i.e., the mapping (x, y) 7→ (x,−y) (cf. (1)).

The convergence proof (Theorem 3) requires only qualitative analysis under
the assumptions that all the points λj are real. Clearly, this is not a necessary
condition for convergence. But the proof gets much more technical in the general
case. The group G becomes also much more complicated if we drop the reality
condition. Then the generators of G are loxodromic, and G is Kleinian.

g1 g2

Figure 2. A topological side view of the Riemann sphere is shown on the left. The isometric

circles of the hyperbolic Möbius transformations g1 and g2 , together with their respective images

are also shown. The group generated by g1 and g2 acts in such a way that a fundamental domain

is the exterior of the disks shown on the left. The group simply identifies the isometric circle of gj

with its image, j = 1, 2 , to form the genus 2 Riemann surface shown on the right.
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6. Fuchsian uniformization of real hyperelliptic M-curves

Myrberg’s algorithm produces an approximation of a Schottky uniformization
of hyperelliptic algebraic curves whose all branch points are real. Such a curve is
called hyperelliptic real algebraic M-curve. The ‘M’ here refers to the fact that
such a curve has the maximal number, allowed by the genus, of real components.

Now let C be such a curve, and let G be an approximation of the Schottky
group uniformizing C and obtained by Myrberg’s algorithm.

While the Schottky uniformization already solves the classical problem of
numerical uniformization, it is desirable to be able to approximate generators of a
Fuchsian group of the first kind uniformizing C . This would be useful, for instance,
in the study of the hyperbolic geometry of the algebraic curve in question. Also
that is the usual way to consider uniformization.

6.1. Getting Fuchsian groups by deformations. The domain of discon-
tinuity of G contains intervals of the real axis. These intervals project onto the
real components of the hyperelliptic curve C , and the complement of the real part
consists of two planar Riemann surfaces, one corresponding the upper half-plane
and the other one corresponding the lower half-plane.

In this section our aim is to find a way to approximate generators of a Fuchsian
group of the first kind that uniformizes a given hyperelliptic real algebraic M-curve.
Later we extend these considerations to general hyperelliptic curves.

We do it by first performing some violence to the curve C .
Let g1, . . . , gp be (approximations of) the free hyperbolic Möbius transforma-

tions generating the Schottky group G uniformizing C . Consider the axes Agj

and the isometric circles ICgj
of the transformations gj , j = 1, . . . , p .

Let agj
and rgj

be the attracting and the repelling fixed-points of the trans-
formation gj , j = 1, . . . , p . By the construction of Myrberg’s algorithm and by
the assumption that λ1 < λ2 < · · · < λ2p+2 , it follows that the fixed-points satisfy

(17) rg1
< ag1

< rg2
< ag2

< · · · < rgp
< agp

.

Furthermore, for all indices j , the isometric circles (considered as full circles
in the Riemann sphere) ICgj

and their images gj(ICgj
), are disjoint. The outside

of all the isometric circles ICgj
and their images gj(ICgj

), j = 1, 2, . . . , p , forms
a fundamental domain for the action of the Schottky group G . Identifying ICgj

with gj(ICgj
) one forms a ‘handle’ for the Riemann surface corresponding to the

algebraic curve C . In the hyperbolic geometry of the domain of discontinuity of
the group G , the interval of the real axis between ICgj

and gj(ICgj
) corresponds

to a simple closed geodesic curve going around this handle. This is illustrated in
Figure 2.

On the original algebraic curve C viewn as the Riemann surface Γ/G , cer-
tain intervals on the real axis project onto geodesic curves going around handles.
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The full axes (i.e. complete circles orthogonal to the real axis and going through
the fixed points of the respective Möbius transformation) of the above-mentioned
Möbius transformations project onto two symmetric curves also going around a
handle in Γ/G .

Curve corresponding to the axis
of g in the upper half-plane

Cut away the annulus

about the geodesic curve

Curve corresponding to the axis
of g in the lower half-plane

Figure 3. The original Schottky uniformized Riemann surface Γ/G is deformed by cutting away

parts of the handles and identifying the closed curve corresponding to the axis of a hyperbolic

Möbius transformation g in the upper half plane with that of the same axis in the lower half-

plane. Handles get shorter and thicker as illustrated above. There is certain freedom here in the

sense that the gluing angle of this gluing can be freely chosen. Let us choose it to be 0 .

Next we delete, from the Riemann surface Γ/G , the annuli bounded by the
projections of the axes. We get a deformed Riemann surface whose handles are now
thicker. This deformed Riemann surface can now be uniformized by a Fuchsian
group of the first kind in the following manner.

For convenience, observe that by conjugation we may assume that rg1
= ∞

and ag1
= 0, and that all other fixed points of the generating group elements are

positive. Observe that the Schottky group G acts also in the upper half-plane H .
The quotient H/G is a Riemann surface (of genus 0) with p + 1 boundary com-
ponents. The axes of the generating hyperbolic Möbius transformations g1, . . . , gp

correspond to p of the boundary components. The remaining boundary compo-
nent corresponds to the product g1 ◦ g2 ◦ · · · ◦ gp . This correspondence means
that the axes of these Möbius transformations project onto simple closed geodesic
curves on the Riemann surface H/G which curves go around the respective bound-
ary component.

Under the above normalization assumptions regarding the location of the
fixed-points of the generating hyperbolic Möbius transformation, the deformation
illustrated in Figure 3, can be performed as follows.

For j = 1, . . . , p , let g̃j be the Möbius transformation defined by setting
g̃j(z) = −gj(−z). Observe that the fixed points of the mappings g̃j lie in the
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negative real axis, while the fixed points of the mappings gj lie in the positive real
axis.

Take, as generators of the Fuchsian group corresponding to the deformed
surface, the following transformations g1, . . . , gp plus the Möbius transformations
hj having the axis of −gj(−z) as its respective isometric circle with the property
that the image of this isometric circle under the mapping hj is the axis of gj ,
j = 1, 2, . . . , p . Observe that then g̃j = hj ◦ gj ◦ h

−1

j .
The mappings hj perform the gluing as described in Figure 3. Observe that

the mappings hj are not uniquely defined by the above conditions. They become
uniquely defined by requiring the gluing angle to be 0 (cf. Figure 3).

It follows from the standard theory of Fuchsian groups that the group F thus
generated is a Fuchsian group of the first kind acting in the upper half-plane H ,
and that H/F is the Riemann surface obtained from our original Riemann surface
Γ/G by the deformations described in Figure 3.

6.2. Approximating a Fuchsian uniformization. Our aim is to get a
Fuchsian uniformization for the algebraic curve C defined by the equation (1).
But what we got was a Fuchsian uniformization for a Riemann surface that is a
deformation of the Riemann surface Γ/G of the algebraic curve C . We must now
make up the violence we did to Γ/G . That is done by quasiconformal mappings.

fAj Bj

Figure 4. The quasiconformal mapping f that makes up the deformation we had to perform on

Γ/G to get a Fuchsian uniformization stretches the collar on the left to cover the whole shaded

collar on the right.

Let α be a simple closed geodesic curve on a compact Riemann surface of
genus p > 1. Let lα denote the length of α . Recall that by the Keen collar
lemma (cf. [2], [9]) one can always find a collar of width

log coth lα/4

around α . Take now the largest disjoint collars allowed by the collar lemma around
each curve corresponding to the axes of the elements gj , j = 1, . . . , p .

For convenience, assume now that none of the fixed-points of the generators
gj lies at the infinity. This can always be achieved by a suitable conjugation.
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The axes of the elements gj are geodesic curves in the upper-half plane as
illustrated in Figure 4 above. Consider the upper side Aj of the collar about the
axis of gj , i.e., the shaded domain on the left side of Figure 4. That domain
corresponds also to a one sided collar on the original Riemann surface Γ/G of
the algebraic curve C . On Γ/G , Aj is a one-sided collar about the projection of
the axis of gj . That collar can be continued to a one-sided collar Bj about the
geodesic curve homotopic to the the projection of the axis of gj . This geodesic
curve corresponds to an interval in the real axis. The continuation of this collar
corresponds to the larger shaded region on the right-hand side of Figure 4. Let f
be a quasiconformal mapping which is the identity on the upper boundary of the
collar Aj and maps the collar Aj onto Bj . Apart from the condition that f is
the identity on the upper boundary of Aj , the mapping f can be freely chosen.
It is to our advantage, however, to choose f so that it is as regular as possible,
i.e., so that its maximal dilatation is as small as possible.

A good choice for f can be obtained as follows. From each point of the axis
of gj drop a geodesic (in the hyperbolic metric of the upper half-plane) curve
onto the real axis. Continue this curve so that it crosses through the one sided
collar Aj . Consider the interval of this geodesic curve contained in the collar Aj .
Map this interval by a constant Euclidean stretching so that the image of the
interval becomes the arc of the geodesic that is contained in the larger shaded
area of Figure 4.

Continue the mapping f to the lower sides of the collars about the axes of
the Möbius transformations gj by symmetry, i.e., if σj denotes the reflection in
the axis of gj then set

f(z) = f(σ(z))

for points in the lower half on the collar around the axes of gj . Outside of the
collars about the axes of the elements gj , set f to be the identity.

All of the above can be explicitly computed. Let µ be the Beltrami differential
of the mapping f , and let fµ be a µ -quasiconformal mapping of the upper half-
plane onto itself. The following is then obvious by the construction.

Theorem 6. The group

Fµ = fµFf
−1
µ

is a Fuchsian group of the first kind uniformizing the algeraic curve C . The

uniformizing projection is given locally in ψk
∞(S) by

±π ◦ (ψk
∞)−1 ◦ f ◦ f−1

µ .

7. Uniformization of general hyperelliptic curves

In this section we extend the above considerations to cover a general hy-
perelliptic curve C defined by equation (1) without the assumption that all the
parameters λj are real. We will do this by quasiconformal mappings.
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The starting data is the genus p of the curve, p > 1, and a set of 2p+ 2 hy-
perelliptic branch points λ1, . . . , λ2p+2 . Without loss of generality we may assume
that all the parameters λj are finite.

Let h: C → C be a quasiconformal mapping such that h(λj) ∈ R for all
j = 1, . . . , 2p+ 2. There are infinitely many such mappings, any one will do. For
our purposes it would be good to find one with as small maximal dilatation as
possible. For implementations one can, for instance, do the following:

(1) Find first a direction eiθ such that the minimum distance between the lines
going through the points λj in the direction eiθ is as large as possible.

(2) Then let the points λj flow to real line along these lines.

Use the notation λ′j = h(λj), j = 1, . . . , 2p + 2, and let C ′ be the curve
defined by

y2 = (x− λ′1) · · · (x− λ′2p+2).

7.1. Uniformization of general hyperelliptic curves. The curve C ′ is
now a hyperelliptic real algebraic M-curve. To approximate Myrberg’s uniformiza-
tion of C do the following:

(1) Compute the complex dilatation µ of the quasiconformal mapping h−1: C ′ →
C .

(2) Approximate Myrberg’s uniformization for the curve C ′ ; let Γ be the do-
main of discontinuity of the uniformizing group G and let %: Γ → C ′ be the
projection (cf. (16)).

(3) Approximate the lifting of the Beltrami differential µ to a Beltrami differential
of the group G . Extend this differential by 0 to all of C .

(4) Approximate a µ -quasiconfomal mapping Hµ: C → C .
(5) Approximate the generators of Gµ = fµGf

−1
µ .

Then Gµ is a Möbius group acting discontinuously in Γµ = hµ(Γ), Γµ/Gµ = C
and the projection is given by

(18) Γµ → C, z 7→ h−1 ◦ % ◦H−1
µ (z).

Fuchsian uniformization of general hyperelliptic curves is achieved by a further
quasiconformal deformation.
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