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Abstract. Triangulations of closed sets F in Rn with certain properties, here called regular
sequences of triangulations, appear in a natural way when studing bases in function spaces on F .
In this paper a characterization of sets permitting a regular sequence of triangulations is given in
the one-dimensional case. Interpolating bases in spaces of functions on such sets are also discussed.

1. Introduction

In the paper [2] bases in different spaces of functions defined on compact
subsets F of Rn were constructed. It turned out that such bases could be con-
structed if the set F permits what was called a regular sequence of triangulations.
Examples of fractal sets permitting such triangulations were given, but in general
it is not easy to see for which sets such triangulations exist. However, it was shown
that if a regular sequence of triangulations exists, then the set preserves Markov’s
inequality.

In this paper we consider the one-dimensional case only, which of course sim-
plifies things. We show in Section 3 in our main theorem that the existence of a
regular sequence of triangulations is then in fact equivalent to the condition that
the set preserves Markov’s inequality. We also exhibit, in Section 5, for such sets
an interpolating basis in the the Lipschitz spaces Λα(F ), α > 0, α noninteger,
thereby extending a result from [2] given for 0 < α < 1, benefitting from working
in one dimension only.

2. Regular triangulations and sets preserving Markov’s inequality

Let F be a compact subset of Rn . A finite set T of n -dimensional closed,
non-degenerated, simplices is called a triangulation of F if the following conditions
hold.

A1. For each pair ∆1,∆2 ∈ T , the intersection ∆1 ∩ ∆2 is empty or a common
face of lower dimension.

A2. Every vertex of a simplex ∆ ∈ T is in F .

A3. F ⊂
⋃

∆∈T
∆.
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For a triangulation T , let δ = max∆∈T diam (∆) be the diameter of the
triangulation. When considering a sequence {Ti}

∞
i=0 = {Ti} of triangulations, we

denote by δi the diameter of the triangulation Ti . In the sequel, we deal with
sequences {Ti} of triangulations satisfying the following conditions:

B1. For each i ≥ 0, Ti+1 is a refinement of Ti , i.e., for each ∆ ∈ Ti+1 there is
∆̃ ∈ Ti such that ∆ ⊂ ∆̃.

B2. δi → 0, i→ ∞ .

It is easy to see that if a triangulation satisfies B1 and B2, then the following
condition holds. We denote by Ui the set of vertices of Ti .

B3. For i ≥ 0, Ui ⊂ Ui+1 .

We now define the class of triangulations which we will use. It is taken from [2]
(see also the references given there), but similar classes have been considered
elsewhere, for example in connection with the finite element method. Since the
definition of this class simplifies in one dimension, we will only give it for this
case, but preserve the notation from [2]. In the n -dimensional case, there is also
a condition T3 guaranteeing that simplices are not too flat, and the condition T4
is more involved.

Definition 1. Let F ⊂ R , and let {Ti} be a sequence of triangulations
satisfying B1. Then {Ti} is a regular sequence of triangulations if the following
conditions hold.

T1. There is a constant c2 > 0, independent of i , such that, for all ∆1,∆2 ∈ Ti ,

c−1
2 diam (∆2) ≤ diam (∆1) ≤ c2diam (∆2).

T2. There are constants 0 < c3 < c4 < 1 such that, for all i ≥ 0,

c3δi ≤ δi+1 ≤ c4δi.

T4. There exist a constant a > 0, independent of i , such that if ∆ ∈ Ti and
∆′ ∈ Ti and the distance between these intervals is less than or equal to aδi , then
the intervals intersect.

The following concept was introduced in connection with the study of function
spaces on fractals, see e.g. [3], where the concept is discussed in detail. It can be
seen as a generalization of the classical Markov inequality, which states that if P
is a polynomial in one variable of degree at most m , then maxx∈[0,1] |dP/dx| ≤
2n2 maxx∈[0,1] |P (x)| .

Definition 2. Denote by Pm the set of all polynomials in n variables of
total degree less than or equal to m . A closed set F ⊂ Rn preserves Markov’s

inequality if for every fixed positive integer m there exists a constant c , such that
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for all polynomials P ∈ Pm and all closed balls B = B(x0, r), x0 ∈ F , 0 < r ≤ 1,
holds

max
F∩B

|∇P | ≤
c

r
max
F∩B

|P |,

where ∇ denotes the gradient.

Examples of sets preserving Markov’s inequality are e.g. selfsimilar fractals
not contained in an n − 1-dimensional subspace of Rn , and d -sets, as defined
in [3], with d > n − 1. There are several different geometric characterizations of
such sets. We will use the one given in [3, Section 2.2], stating it in one dimension,
only. If F ⊂ R , then a set preserves Markov’s inequality if and only if the following
condition holds.

(G) There is an ε > 0 such that for any r with 0 < r ≤ 1 and any x0 ∈ F , the
set F ∩ {x : εr ≤ |x− x0| ≤ r} is nonempty.

The concept of sets preserving Markov’s inequality has appeared also in dif-
ferent contexts, then in general in a geometrical form, see for example [4], where
they are called n -thick sets and their invariance properties under different classes
of maps are studied.

3. The main theorem

In [2] it is shown that if F ⊂ Rn admits a regular sequence of triangulations,
then F preserves Markov’s inequality. The converse does not hold, as is seen by
the trivial example of the unit ball in Rn , n > 1. Here we shall prove that in one
dimension the converse holds, and thus we have the following theorem.

Theorem 1. Let F be a compact subset of R . Then there exists a regular

triangulation of F if and only if F preserves Markov’s inequality.

As a preparation for the proof of the theorem we give one more charactariza-
tion of sets preserving Markov’s inequality, valid in one dimension. For a given
compact set F ⊂ R , the complement of F is a numerable union of disjoint open
intervals which we denote by Oν , ν = 1, 2, 3, . . . . Let 0 < c < 1, and let, for a
given constant c , and for n ≥ 1,

An = {Oν ; diamOν ≥ cn−1} and An = ∪{Oν ∈ An}.

Then Ac
n = Rn \ An consists of a finite union of finite closed intervals which we

denote, ordered from left to right, by Bnm , m = 1, 2, 3, . . . ,mn . Note that we
then have that
(i) the distance between two consecutive intervals Bnm is at least cn−1 .

We shall use the fact that if F preserves Markov’s inequality, then the length
of each Bnm is at least cn , where c can be taken as any constant ε admissible
in the geometric characterization of sets preserving Markov’s inequality. This
property can, in fact, be used to characterize such sets.
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Proposition 1. Let F ⊂ R be a compact set. Then F preserves Markov’s

inequality if and only if there is a constant c with 0 < c < 1 , such that constructing

Bnm with this constant as the given constant c , one has that

(ii) the length of each interval Bnm , n ≥ 1 , m = 1, 2, . . . ,mn , is at least cn .

Proof. Assume that F preserves Markov’s inequality, and let c be equal to
an admissible constant ε in the geometric characterization (G) of such sets. Let
[a, b] be one of intervals Bnm and denote by l its length. Assume l < cn , and
take l′ with l < l′ < cn . Then the set {x; l′ ≤ |x− a| ≤ l′/c} contains no points
from F because of the statement (i) above, since l′/c < cn−1 . On the other hand,
since F preserves Markov’s inequality, the set contains points from F (use the
geometric characterization (G) with r = l′/c). Thus, l ≥ cn .

Conversely, let c be a constant such that (ii) holds. Take x0 ∈ F and r ≤ 1,
and assume that

{

x; 1
2
r < |x − x0| < r

}

contains no points from F ; otherwise,
the condition in (G) holds for these x0 and r with ε = 1

2 . Take n0 so that
cn0−1 < 1

2
r ≤ cn0−2 . Then each one of the two intervals forming the set

{

x; 1
2
r <

|x − x0| < r
}

is a subset of an interval in An0
, which means that, with m such

that x0 ∈ Bn0m , the endpoints of Bn0m are in the interval
[

x0 − 1
2
r, x0 + 1

2
r
]

.
By (ii), since the endpoints are in F , this means that there is an x ∈ F with
|x− x0| ≤

1
2r such that |x− x0| ≥

1
2c

n0 ≥ 1
4c

2r , so (G) is fulfilled with ε = 1
4c

2 .

Proof of Theorem 1. Assume that F preserves Markov’s inequality, and let
c < 1

2
be a constant as in Proposition 1. Taking c < 1

2
is allowed, since c can be

taken as the constant ε in (G), which, clearly, can be taken arbitrarily small. We
prove the theorem inductively in steps, choosing in the nth step a set Pn of points
from F , such that the distance between two consecutive points in the same Bnm

is comparable to cn , and in such a way that P1 ⊂ P2 ⊂ · · ·. A triangulation Tn

is then chosen with the points in Pn as vertices.

Assumptions on the set Pn−1 . Assume that we have already chosen the set
Pn−1 of points from F , with P0 meaning the empty set ∅ .

Let Bnm = [anm, bnm] be as before. Every point x ∈ F belongs to exactly
one interval Bsm for each s ≥ 1; we denote the corresponding m by m(s, x) and
so the interval is Bs,m(s,x) . If x is an endpoint of an interval Bsm , then it is, for
t > s , an endpoint of some Btm , and we denote by sx the smallest s , if any, such
that x is an endpoint of some Bsm . If x is not an endpoint of any interval Bsm

with s ≥ 1, then we put sx = ∞ .

For a given n ≥ 1, we now assume the following about the set Pn−1 , denoting
it the assumption A(n − 1). (If n = 1 the interpretation is that nothing is
assumed.) It describes how points z ∈ Pn−1 are positioned with respect to
the endpoints of the sets Bsm with s ≥ n and to each other, in terms of points
z′ which will appear naturally in the construction. If z ∈ Pn−1 and sz > n (so
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z is not an endpoint of some Bnm ), then we assume that to z there is associated
a point z′ ∈ F , such that the following conditions hold.

1) z′ − as,m(s,z) >
1
2c

s and bs,m(s,z) − z′ > 1
2c

s for n ≤ s < sz .

2) |z − z′| ≤ 1
2
csz .

3) If z∗ is a point in Pn−1 closest to z satisfying z < z∗ < bn,m(n,z) , which

in particular means that sz∗
> n , then z′∗ − z′ > 1

2
cn .

4) All endpoints of the intervals Bn−1,m , 1 ≤ m ≤ mn−1 , are in Pn−1 .

Note that 1) implies that for z ∈ intBnm we also have z′ ∈ intBnm .

Choice of points in Pn . Let, for some Bnm , α ∈ Bnm ∩F and β ∈ Bnm ∩F
be points satisfying β − α > 1

2
cn . We claim that the set

(

α + 1
2
cn, α + cn−1 +

1
2c

n
]

∩ (α, β] ∩ F is nonempty. Since β ∈ F and β > α + 1
2c

n , this is of course
the case if β ≤ α + cn−1 + 1

2
cn . Otherwise the condition is the same as saying

that
(

α+ 1
2c

n, α+ cn−1 + 1
2c

n
]

∩ F is nonempty. This follows from the fact that
any interval I of length > cn−1 and satisfying I ⊂ Bnm must intersect F , as
otherwise I ⊂ F c and |I| > cn−1 implies I ⊂ Oν for some Oν ∈ An and thus
I ⊂ An and I ∩ Bnm = ∅ .

Now we define a point w′′ ∈ Bnm ∩ F (depending on α , β , and n) by

(1) w′′ = max
{

x;x ∈
(

α+ 1
2c

n, α+ cn−1 + 1
2c

n
]

∩ (α, β] ∩ F}.

If for some ν ≥ n the distance from w′′ to the boundary of Bν,m(ν,w′′) is less

than or equal to 1
2c

ν , let ν(w′′) denote the first ν for which this occurs, otherwise
put ν(w′′) = ∞ . In other words, ν(w′′) is the smallest ν ≥ n , if any, such that
the interval

[

w′′− 1
2c

ν , w′′ + 1
2c

ν
]

is not “strictly inside” but contains an endpoint
of Bν,m(ν,w′′) .

We next select a point w associated to w′′ , and consequently it will depend
on α , β , and n , too. When doing this we assume more about β . The point β
is either the point y′ associated to a point y ∈ Pn−1 ∩ Bnm with sy > n by the
assumption A(n− 1), or the right endpoint bnm of Bnm . We make the following
choices.

(a) If β = bnm and the interval
[

w′′ − 1
2c

n, w′′ + 1
2c

n
]

contains bnm , then we
put w = bnm .

(b) If β = y′ , and the interval
[

w′′− 1
2c

n, w′′ + 1
2c

n
]

contains y′ , then we put
w = y .

(c) If the interval
[

w′′ − 1
2c

n, w′′ + 1
2c

n
]

does not contain bnm or y′ , re-
spectively, i.e. β , which implies, as we shall see below, that ν(w′′) > n , then, if
ν(w′′) = +∞ we let w = w′′ , and if n < ν(w′′) < ∞ we let w be an endpoint of
Bν(w′′),m(ν(w′′),w′′) which is closest to w′′ .
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Before continuing the construction of Pn , we make some observations related
to this choice of w . In the cases (a) and (b) we obviously have, respectively,

(2) bnm − w′′ ≤ 1
2
cn and y′ − w′′ ≤ 1

2
cn,

while in case (c) we have

(3) |w − w′′| ≤ 1
2c

ν(w′′) ≤ 1
2c

n+1.

The inequality ν(w′′) > n in case (c) follows by the following remarks. The point
anm does not belong to

[

w′′ − 1
2
cn, w′′ + 1

2
cn

]

, since, by (1), w′′ > α+ 1
2
cn , and

α ≥ anm . This means that bnm ∈
[

w′′ − 1
2c

n, w′′ + 1
2c

n
]

if and only if ν(w′′) = n .

If β = y′ as above, then bnm /∈
[

w′′− 1
2
cn, w′′+ 1

2
cn

]

, since bnm−y′ > 1
2
cn by 1) in

A(n−1), and w′′ ≤ y′ . Thus, in case (c), we have that bnm /∈
[

w′′− 1
2c

n, w′′+ 1
2c

n
]

,
so ν(w′′) > n . We also remark that in case (c), if β = y′ , then w < y , since, from
2) in A(n−1) and (3), y−w = y−y′+y′−w′′+w′′−w ≥ − 1

2c
n+1+ 1

2c
n− 1

2c
n+1 =

cn
(

1
2
− c

)

> 0, since c < 1
2
.

Now we use the above construction to divide an interval Bnm = [anm, bnm]
into subintervals whose endpoints will be the points in Bnm ∩ Pn . This shall
be done in such a way that the points in Bnm ∩ Pn−1 are included. We will
temporarily denote the points in the new division of Bnm by x0, x1, . . . .

The interval Bnm is in a natural way divided by Pn−1 ∩Bnm into intervals
which are of the form [anm, y] , [y, y∗] , [y, bnm] , or [anm, bnm] , where y and y∗
are consecutive points in Pn−1 which are not endpoints of Bnm . The last case
appears if there are no points from Pn−1 strictly inside Bnm , which is always
the case if n = 1. We start by subdividing an interval of the form [anm, bnm] or
[anm, y] , and take anm as the first division point, denoting it by x0 . Let α = anm

and β = bnm or β = y′ , respectively, where y′ is the point associated to y in
the assumption A(n − 1). If β = bnm , then by (ii) in Proposition 1, we have
β > anm + 1

2c
n , and if β = y′ , then β > anm + 1

2c
n holds by the assumption

1) used with s = n and z′ = y′ . Thus we can use the construction above,
and associate to α and β points w′′ and w , which we denote by x′′1 and x1 ,
respectively. If x1 equals bnm or y , i.e., in case (a) or (b), then the subdivision
of the interval [anm, bnm] or [anm, y] , respectively, is completed (without giving
new points, except possibly anm or bnm ), otherwise we put α = x′′1 but let β
be as before. By our construction we have β > x′′1 + 1

2c
n , for if the interval

[

x′′1 − 1
2
cn, x′′1 + 1

2
cn

]

had contained β , then x1 would have been equal to bnm

or y . Thus, we can again use the construction to give us new points w′′ and w ,
which we denote by x′′2 and x2 . We continue in this way until we reach bnm or
y , say in the kth step, so xk = bnm or xk = y .

Note that in the jth step, if xj−1 6= bnm or y , we always have x′′j > α+ 1
2c

n =

x′′j−1 + 1
2
cn by (1) and the choice of x′′j := w′′(x′′j−1, β, n). Thus after a finite
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number of steps the construction ends up with a selection of bnm or y , respectively.
We also remark that we have xj−1 < xj , j = 1, 2, . . . , k . We omit the verification
of this for the moment; the calculations leading to it are given when estimating
z2 − z1 at the end of this section.

If xk = bnm the division of Bnm is completed, otherwise we continue to divide
the next subinterval in Bnm , which is of the form [xk, bnm] or [xk, y∗] . In these
cases we put α = x′k and let β be bnm or the point y′∗ , respectively. Here the
points x′k and y′∗ are the points associated to xk ∈ Pn−1 and y∗ ∈ Pn−1 , in
the assumption A(n − 1). Then, by the assumptions 1) and 3), respectively, we
again have β > α + 1

2c
n , and we can use our construction again to give us new

points w′′ and w which we denote by x′′k+1 and xk+1 . Unless we already reached
bnm or y∗ , we take α = x′′k+1 and let β be as before, and continue as above until
the present interval is divided and then until all subintervals of Bnm have been
divided, the last chosen point in Bnm being bnm .

Dividing all intervals Bnm in this way we get the set Pn , letting it consist
of all the chosen points xi . To complete the construction, we state how points
z′ are associated to points z ∈ Pn . We do this for points z which are not
endpoints of some Bnm . If such a z belongs to Pn−1 , there is already a point
z′ associated to it by our assumption, and we take it as the point associated to
z also in Pn . Otherwise, if z ∈ Pn \ Pn−1 , we take z′ as the point z′′ (in the
notation above w′′ ) used in the construction of z .

We remark that we have, with z1 and z2 being consecutive points with z1 <
z2 from Pn in Bnm , with z2 ∈ Pn−1 or z2 = bnm , replacing z′1 by anm if
z1 = anm , that

(4) z′2 − z′1 >
1
2c

n, z2 6= bnm and z2 − z′1 >
1
2c

n, z2 = bnm.

These estimates can be found above in the description of the subdivision of Bnm ,
taking into account that z′1 = z′′1 if z1 ∈ Pn \ Pn−1 , z1 6= anm .

The set Pn satisfies A(n) . To complete the induction step we must check
that this subdivision fulfills the condition A(n). Let us make some observations
first. Assume that w ∈ Pn \ Pn−1 , w 6= anm, bnm . Then w is chosen in step
n , and emanates, by means of case (c) in the construction, from a point w′′

with ν(w′′) > n , in such a way that w is an endpoint of the interval Bsm with
s = ν(w′′) which contains w′′ if n < ν(w′′) < ∞ , and w = w′′ if ν(w′′) = ∞ .
Because of 4) in A(n − 1), w is not an endpoint of some Bsm with s < n , and
since by our construction the intervals

[

w′′ − 1
2
cs, w′′ + 1

2
cs

]

do not contain an
endpoint of any Bsm for all s with n ≤ s < ν(w′′) but contain w , it follows that
s = ν(w′′) is the first s such that w is an endpoint of some Bsm , i.e. sw = ν(w′′).
Note also that, if ν(w′′) <∞ , w and w′′ are both in the same Bν(w′′),m , so, since
the intervals are nesting, they are also in the same interval Bsm if s < ν(w′′),
which means that for s ≤ ν(w′′) we have e.g. as,m(s,w′′) = as,m(s,w) .
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To check A(n), let z ∈ Pn with sz > n+1. If z ∈ Pn−1 , then the conditions
1), and 2), in A(n) hold by assumption and the choice of z′ . If instead w ∈
Pn\Pn−1, sw > n+1, then as we saw above the interval

[

w′′− 1
2c

s, w′′+ 1
2c

s
]

does
not contain as,m(s,w′′) = as,m(s,w) or bs,m(s,w′′) = bs,m(s,w) for n ≤ s < ν(w′′),
but does for s = ν(w′′) = sw . Thus, recalling that w′ = w′′ if w ∈ Pn \ Pn−1 ,
sw > n , we see that we have have 1) even for n ≤ s < sw , and 2) (with z in 1)
and 2) equal to w ). Let z and z∗ be as in 3) in A(n). Then the point α in the
construction of z∗ is taken as z′ , and if z∗ ∈ Pn \ Pn−1 , so z′∗ = z′′∗ , then (1)
gives z′∗ − z′ > 1

2c
n > 1

2c
n+1 , and if z∗ ∈ Pn−1 , then we have the same estimate

by (4). Condition 4) is immediate from the construction.

A regular triangulation from the constructed points. Having defined the point
sets P1 , P2 , P3, . . ., we define the triangulation Tnm as consisting of the inter-
vals connecting consecutive points of Pn ∩ Bnm , and then the triangulation Tn

as the union of Tnm over 1 ≤ m ≤ mn . We must check that the triangulation
obtained in this way is regular; it will turn out that to assure that the condition
T2 is fulfilled, one has to choose a subsequence of Tn .

Recall that if z ∈ Pn−1 ∩ Bnm, z 6= anm , or z = bnm , then z′′ is the point
which in the construction step above (there denoted w′′ ) leads to the incorporation
of z in Pn , and if z ∈ (Pn \ Pn−1) ∩ Bnm , sz > n , then z′′ is the point w′′

which leads to a new point z and then z′′ = z′ . Note also that if z ∈ Pn ∩Bnm ,
sz > n , then

(5) |z − z′| ≤ csz ≤ 1
2
cn+1

holds by 2) in A(n− 1) if z ∈ Pn−1 and by (3) otherwise.
Suppose z1 and z2 are consecutive points with z1 < z2 from Pn in the same

Bnm = [anm, bnm] . Then z2 was constructed with the aid of the point z′′2 chosen
as the point w′′ obtained from (1), with α = z′1 in (1) if z1 6= anm and α = anm

if z1 = anm . Thus we have, respectively,

(6) 1
2c

n < z′′2 − z′1 ≤ 1
2c

n + cn−1 and 1
2c

n < z′′2 − anm ≤ 1
2c

n + cn−1.

Assume now, furthermore, that z1 and z2 are not endpoints of Bnm . Then
we have the following estimates.

(i) If z2 ∈ Pn−1 , then, from (5) and (4),

z2 − z1 = z2 − z′2 + z′2 − z′1 + z′1 − z1 ≥ − 1
2
cn+1 + 1

2
cn − 1

2
cn+1

= 1
2c

n − cn+1.

(ii) If z2 ∈ Pn \ Pn−1 , so z′2 = z′′2 , then, from (5) and (6), we have,

z2 − z1 = z2 − z′2 + z′2 − z′1 + z′1 − z1

≥ − 1
2
cn+1 + 1

2
cn − 1

2
cn+1 = 1

2
cn − cn+1.
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(iii) If z2 ∈ Pn−1 , then, from (5), (2), and (6),

z2 − z1 = z2 − z′2 + z′2 − z′′2 + z′′2 − z′1 + z′1 − z1

≤ 1
2c

n+1 + 1
2c

n + 1
2c

n + cn−1 + 1
2c

n+1

= cn−1 + cn + cn+1.

(iv) If z2 ∈ Pn \ Pn−1 , then, from (5) and (6),

z2 − z1 = z2 − z′′2 + z′′2 − z′1 + z′1 − z1

≤ 1
2
cn+1 + 1

2
cn + cn−1 + 1

2
cn+1

= cn−1 + 1
2
cn + cn+1.

If instead z2 = bnm , then we make the same estimates as in (i) and (iii),
except that we now do not add and subtract z′2 , and if z1 = anm we do not add
and subtract z′1 in the various cases. In any case this clearly leads to slightly
better estimates. Thus, in general we have

cn
(

1
2
− c

)

= 1
2
cn − cn+1 ≤ z2 − z1 ≤ cn−1 + cn + cn+1 = cn

(

1

c
+ 1 + c

)

,

from which T1, and also the left inequality in T2, clearly follows since c < 1
2 . Con-

dition T4 is easily checked. Concerning the right inequality in T2, the construc-
tion gives δi+1 ≤ δi , only. The inequality δi+1 ≤ c4δi is obtaind by considering
a subsequence of the triangulations {Tn} , considering the sequence {T ′

n} where
T ′

n = Tnk , n = 1, 2, . . ., for a positive integer k big enough. This concludes the
proof of the theorem.

4. The spaces Ck(F ) and Λα(F )

The spaces Ck(F ) of k times differentiable functions on F and the Lipschitz
spaces Λα(F ) can be defined on arbitrary closed subsets of Rn , but the definitions
simplify if F is a set in one dimension preserving Markov’s inequality, and we
define them here on such sets only, referring to e.g. [3] for the general case.

Let F be a compact subset of R preserving Markov’s inequality and f a
function defined on F . Then, since F is perfect, derivatives can be defined in the
usual way by Df(x0) = limx→x0,x∈F

(

f(x)−f(x0)
)

/(x−x0), x0 ∈ F . For a given
k ≥ 0, assuming that derivatives of orders ≤ k exist, denote by Rj the Taylor
remainders given by

Djf(x) =

k−j
∑

l=0

(x− y)lDj+lf(y)/l! + Rj(x, y), 0 ≤ j ≤ k.
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A function f belongs to the space Ck(F ) if for every ε > 0 there is a δ > 0
such that |Rj(x, y)| < ε|x − y|k−j for 0 ≤ j ≤ k and |x − y| < δ . The Whitney
extension theorem given in [5] gives that there is a linear extension operator E
from Ck(F ) to Ck(R). It should be noted that in the present setting derivatives
are uniquely determined by f , which means that elements in Ck(F ) are functions
rather than families of functions as in the general Whitney extension theorem.

For k < α < k+1, a function f is in the Lipschitz space Λα(F ) if |Djf(x)| ≤
M and |Rj(x, y)| ≤ M |x− y|α−j for x, y ∈ F and 0 ≤ j ≤ k . The norm of f in
Λα(F ) is the infimum of the possible constants M . If F = R , we will in general
work with the equivalent norm given by the infimum of the constants M such that
|Djf(x)| ≤ M , 0 ≤ j ≤ k and |Dkf(x) − Dkf(y)| ≤ M |x− y|α−k , |x− y| ≤ 1.
For this case the Whitney extension theorem gives that there is a bounded linear
operator E from Λα(F ) to Λα(R), see e.g. [3].

If instead α = k > 0, we say, following [3, p. 62], that f ∈ Λα(F ) if there is
a sequence {fn}

∞
n=1 of functions in Λγ(F ) where k < γ < k + 1, such that, for

n ≥ 1, ‖Dj(f − fn)‖∞,F ≤ M2−n(k−j) for 0 ≤ j < k , ‖Dj(fn+1 − fn)‖∞,F ≤ M
for j = k , and ‖fn‖Λγ(F ) ≤M2−n(k−γ) (here ‖ · ‖∞,F denotes the maximum norm
on F ). The norm in Λα(F ) is again the infimum of the possible constants M .
The version of the Whitney extension theorem given by Theorem 2 in Chapter 3
in [3] gives the same conclusion as in the noninteger case.

We will need the following lemma on Hermite interpolation. We give it for
functions defined on R , but because of the Whitney extension theorem we will
be able to apply it for functions defined on sets preserving Markov’s inequality as
well. For f ∈ C(R), let ω(f, t) = sup{|f(x) − f(y)|; |x− y| ≤ t} .

Lemma 1. Let k ≥ 0 , f ∈ Ck(R) , a ∈ R , h > 0 , and let P be the

polynomial of degree at most 2k + 1 with DνP (a) = Dνf(a) and DνP (a+ h) =
Dνf(a+ h) for ν = 0, 1, . . . , k . Then

|DνP (x) −Dνf(x)| ≤ chk−νω(Dkf, h), x ∈ [a, a+ h], ν = 0, 1, . . . , k,

where c is a constant depending on k , only.

Proof. Assume first that a = 0 and h = 1, let 0 ≤ x ≤ 1, and let T denote
the Taylor polynomial of f around 0 of degree k . Then, for ν < k ,

Dνf(x) −DνT (x) = Dνf(x) −
k−ν−1
∑

l=0

xlDν+lf(0)/l!− xk−νDkf(0)/(k− ν)!

= xk−ν
(

Dkf(ξ)−Dkf(0)
)

/(k − ν)!

for some ξ between 0 and x , so we get |Dνf(x)−DνT (x)| ≤ 1/(k−ν)!ω(Dkf, 1).
For ν = k , the same estimate is immediate since DkT (x) = Dkf(0).
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Consider R = P − T . Then R is a polynomial of degree at most 2k + 1
such that DνR(0) = 0 and |DνR(1)| ≤ 1/(k − ν)!ω(Dkf, 1) for ν ≤ k . Let
P s be the polynomial of degree ≤ 2k + 1 defined in the beginning of Section 5.
Then we have R(x) =

∑k

ν=0D
νR(0)(−1)νP ν(1 − x) +DνR(1)P ν(x). With c1 =

maxx∈[0,1],0≤s≤2k+1 |P
s(x)| this gives |R(x)| ≤ c1

∑k

ν=0

(

|DνR(0)| + |DνR(1)|
)

≤

c1(k + 1)ω(Dkf, 1) for 0 ≤ x ≤ 1. By using the classical Markov inequality (see
Section 2) repeatedly one obtains |DνR(x)| ≤ 2ν(2k + 1)2ν maxx∈[0,1] |R(x)| and
so

|DνP (x) −Dνf(x)| ≤ |DνP (x) −DνT (x)| + |DνT (x) −Dνf(x)|

≤ c12
ν(2k + 1)2ν(k + 1)ω(Dkf, 1) + 1/(k − ν)!ω(Dkf, 1)

= cω(Dkf, 1).

If instead f is defined on the interval [a, a + h] , then a linear change of
variables gives, with g(x) = hf(hx + a), that ω(Dνg, 1) = hνω(Dνf, h), from
which the lemma follows.

5. Interpolation bases in Ck(F ) and

the characterization of Lipschitz spaces

Now we define the functions which will give a basis in Ck(F ). Let a sequence
{Ti}

∞
i=0 of regular triangulations of F be given, and let as before Ui be the set

of vertices of Ti . Let Vi = Ui \Ui−1 , i > 0, V0 = U0 , and V =
⋃∞

i=0 Vi , and let
� be a linear order on V satisfying the following condition: if ξ ∈ Vi and η ∈ Vj

with i < j , then ξ � η .
Let k ≥ 0, and let, for s = 0, 1, . . . , k , P s be the polynomial of degree 2k+1

which satisfies DνP s(0) = 0 for ν = 0, 1, . . . , k , DνP s(1) = 0 for ν = 0, 1, . . . , k ,
ν 6= s , and DνP s(1) = 1 if ν = s . Let ξ ∈ Vi . Then ξ is the endpoint of one or
two intervals in Ti . If ξ is the right endpoint of ∆ ∈ Ti of length l , define φs

i,ξ on

∆ by φs
i,ξ(x) = lsP s

(

(x−ξ+l)/l
)

, and if ξ is the left endpoint of ∆′ ∈ Ti of length

l′ , define φs
i,ξ on ∆′ by φs

i,ξ(x) = l′
s
(−1)sP s

(

(ξ−x+ l′)/l′
)

. If ξ is an endpoint of
both ∆ and ∆′ , this means that φs

i,ξ is a spline function defined on ∆∪∆′ which
is k times differentiable, equals a polynomial of degree at most 2k+ 1 on each of
the intervals ∆ and ∆′ , and whose derivatives of orders less than or equal to k are
equal to zero at the endpoints of these intervals, except that Dsφs

i,ξ(ξ) = 1. Note

that for x ∈ ∆ we have Dνφs
i,ξ(x) = ls−ν(DνP s)

(

(x− ξ+ l)/l
)

and consequently
for x ∈ ∆ we have, with a constant c depending on ν ,

(7) |Dνφs
i,ξ(x)| ≤ cls−ν , ν ≥ 0,

an estimate which clearly also holds if x ∈ ∆′ , with l replaced by l′ .
For ξ ∈ Vi , let ψs

ξ = φs
i,ξ on the one or two intervals in Ti which have ξ as an

endpoint, and put ψs
ξ = 0 elsewhere on {∪∆; ∆ ∈ Ti} . Note that ψs

ξ is defined
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with respect to the triangulation Ti in which ξ first appears as a vertex. We let
Ck(F ) be normed by max0≤ν≤k ‖D

νf‖∞,F , although Ck(F ) is, in general, not
complete in this norm, see e.g. [1]. Then the functions ψs

ξ |F form a basis in Ck(F )
which interpolates to f and its derivatives of degree at most k as explained by
Proposition 2 below. Here f |F denotes the restriction of f to F .

Given f ∈ Ck(F ), let Si(f) denote the spline function defined on {∪∆; ∆ ∈ Ti}
which coincides with a polynomial of degree at most 2k + 1 on each interval in
Ti , and interpolates to f and all its derivatives of orders less than or equal to k
at each point in Ui .

Proposition 2. Let F ⊂ R be a compact set with a regular sequence {Ti}
∞
i=0

of triangulations of F , and let k be a nonnegative integer. Then the system of

functions {ψs
ξ |F , ξ ∈ V , s = 0, 1, . . . , k} , ordered by � , is an interpolating

Schauder basis in Ck(F ) .
More precisely, every f ∈ Ck(F ) has a unique representation

(8) f =

∞
∑

i=0

∑

ξ∈Vi

k
∑

s=0

csξψ
s
ξ |F

in Ck(F ) , where csξ = Dsf(ξ)−DsSi−1(f)(ξ) for ξ ∈ Vi , i > 0 , and csξ = Dsf(ξ)
for ξ ∈ V0 = U0 . In addition, for N ≥ 0 ,

Dνf(η) =

N
∑

i=0

∑

ξ∈Vi

k
∑

s=0

csξD
νψs

ξ(η)

for 0 ≤ ν ≤ k and η ∈ UN .

Proof. Assume that f ∈ Ck(F ). Consider the sum
∑N

i=0

∑

ξ∈Vi

∑k

s=0 c
s
ξψ

s
ξ .

Using induction over N it is easy to see that this sum coincides with the function
SN (f), which, in particular, gives the interpolation property. Denote by Ef the
Whitney extension of f belonging to Ck(R) satisfying Dνf(x) = Dν(Ef)(x),
x ∈ F , ν ≤ k . We take, as we may, E so that Ef has compact support. Note
that SN (f) = SN (Ef) on {∪∆; ∆ ∈ TN} . By Lemma 1 we then have the estimate
|DνEf(x)−DνSN (Ef)(x)| ≤ c(diam ∆)k−νω

(

Dk(Ef), diam∆
)

for x ∈ ∆ ∈ TN ,
so

(9) |Dνf(x) −DνSN (f)(x)| ≤ cδk−ν
N ω

(

Dk(Ef), δN
)

, x ∈ F,

which shows that the partial sums of the sum in (8) corresponding to summation
over all terms with i ≤ N converge to f in Ck(F ) as N → ∞ . The estimate
(9) also gives |csξ| ≤ cδk−s

N ω
(

Dk(Ef), δN
)

for ξ ∈ VN+1 , and from (7) it follows,

using T1, that |Dνψs
ξ(x)| ≤ cδs−ν

N+1 , ξ ∈ VN+1 . Thus we get with the aid of T2

that |csξD
νψs

ξ | ≤ cδk−ν
N ω

(

Dk(Ef), δN
)

, ξ ∈ VN+1 , from which it follows that we

have convergence to f in Ck(F ) for the sequence of all partial sums. Uniqueness
follows from the fact that if we have a representation of f in Ck(F ) as in (8), then
it is easy to realize that the coefficients must be the ones given in the proposition.
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Remark. If k = 0, then the theorem holds under the much weaker condition
that the triangulations {Ti} satisfy the conditions B1 and B2, only. This is not true
for k > 0, even if F = [0, 1]. To see this, let for i > 0 Ti denote a subdivision

of [0,1] into equal intervals of length δi = 2−2i

. Define fi on Ii = [δi, 2δi] by
fi(x) = δ−2

i (x− δi)
2(x− 2δi)

2 and let fi = 0 elsewere. Put f =
∑∞

i=1 fi . Then
f ∈ C1[0, 1]. Let ξ = 3

2
δi . Then ξ ∈ Vi+1 , and it is easy to see that the derivative

of c0ξψ
0
ξ is at least 1

16 at some point, from which it follows that f can not have a

representation in C1(F ) as in the proposition.

Theorem 2. Let F ⊂ R be a compact set with a regular sequence of

triangulations {Ti}
∞
i=0 of F , and let k < α < k + 1 , k ≥ 0 . Assume that f has

the representation in Ck(F )

(10) f =
∞
∑

i=0

∑

ξ∈Vi

k
∑

s=0

as
ξψ

s
ξ |F .

Then f belongs to Λα(F ) if and only if the coefficients as
ξ satisfy

(11) |as
ξ| ≤ cδα−s

i , i ≥ 0, ξ ∈ Vi, 0 ≤ s ≤ k,

and the norm of f in Λα(F ) is equivalent to the infimimum of the possible con-

stants c in (11) .
In addition, convergence of (10) in Ck(F ) follows from (11) assuming point-

wise convergence of the sum in (10) , only.

Proof. If f ∈ Λα(F ) with the representation (10) in Ck(F ), then as
ξ = csξ

by the uniqueness of the representation in Ck(F ), and (11) follows immediately
from the definition of the coefficients csξ and the estimate (9), with E in (9) being
a bounded operator from Λα(F ) to Λα(R) as in the Whitney extension theorem.
In fact, for ξ ∈ Vi , i > 0, (9) gives |csξ| ≤ cδk−s

i−1 ω
(

Dk(Ef), δi−1

)

which gives (11),
using the boundedness of E , the definition of Λα(R), and T2.

To prove the converse, assume that (11) holds. We first extend the functions
ψs

ξ to functions defined on R . If ξ is the endpoint of just one interval ∆ ∈ Ti ,

say the right endpoint, denote by ∆1 the interval of length 1
4
aδi such that ξ is

the left endpoint of the interval, where a is the constant in T4. Define ψs
ξ on ∆1

in the same way as it was previously defined on ∆′ when ξ was the left endpoint
of ∆′ . After this, whether ξ is the endpoint of one or two intervals in Ti , put
ψs

ξ = 0 everywhere where ψs
ξ is not already defined. We consider the sum in (10)

with these extended functions ψs
ξ in the place of ψs

ξ |F , denoting it again by f , and
show that it is in Λα(R) using the classical definition of Λα(R) as in Section 4,
and that the convergence of the sum is in Ck(R). Since the extension does not
change the the sum on F we clearly then have the desired result. We remark that
this can be used to extend a function f ∈ Λα(F ) to a function in Λα(R).
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By (7) and T1 we have, for ξ ∈ Vi , |Dνψs
ξ | ≤ cδs−ν

i , and thus

(12) |as
ξD

νψs
ξ | ≤ cδα−ν

i .

For any point x , ψs
ξ(x) is nonzero for at most two ξ ∈ Vi , so for 0 ≤ ν ≤ k we

have
∑∞

i=0

∑

ξ∈Vi

∑k

s=0 |a
s
ξD

νψs
ξ | ≤ c

∑∞

i=0 δ
α−ν
i ≤ c

∑∞

i=0(c
i
4δ0)

α−ν ≤ c , where

c4 is the constant in T2. This shows that f ∈ Ck(R) and that convergence to f
is in Ck(R).

Consider next

Dkf(x) −Dkf(y) =

(i0−1
∑

i=0

+

∞
∑

i=i0

)

∑

ξ∈Vi

k
∑

s=0

as
ξ

(

Dkψs
ξ(x) −Dkψs

ξ(y)
)

= I+II,

and choose i0 so that δi0+1 < |x−y| ≤ δi0 (assume |x−y| ≤ δ0 , and interpret I as
vanishing if i0 = 0). The sum taken over i ≥ i0 is estimated in an analoguous way
as in the estimate above, using |Dkψs

ξ(x) − Dkψs
ξ(y)| ≤ |Dkψs

ξ(x)| + |Dkψs
ξ(y)| ,

and gives the estimate

II ≤
∞
∑

i=i0

cδα−k
i ≤

∞
∑

i=i0

(ci−i0
4 δi0)

α−k

= cδα−k
i0

≤ cδα−k
i0+1 ≤ c|x− y|α−k.

Let next i < i0 and let x ∈ ∆ ∈ Ti and y ∈ ∆′ ∈ Ti ; the case when x or y
is in an interval of the type ∆1 is treated in the same way. If ∆ = ∆′ then, by
the mean value theorem, (7), and T1, for ξ ∈ Vi ,

(13) |Dkψs
ξ(x) −Dkψs

ξ(y)| ≤ cδs−k−1
i |x− y|.

If ∆ 6= ∆′ and ∆ and ∆′ intersect at the point η ∈ Vi , we get the same estimate by
inserting ±Dkψs

ξ(η). If ∆ 6= ∆′ and ∆ and ∆′ do not intersect, then |x−y| ≥ aδi ,

so by (7) we have |Dkψs
ξ(x) − Dkψs

ξ(y)| ≤ cδs−k
i = cδs−k

i a ≤ cδs−k
i |x − y|/δi =

cδs−k−1
i |x − y| , so we again have (13). In case one of the points x or y , say

y , is not in some ∆ ∈ Ti , or in some ∆1 , then we use, if Dkψs
ξ(x) 6= 0, that

Dkψs
ξ(x)−D

kψs
ξ(y) = Dkψs

ξ(x) = Dkψs
ξ(x)−D

kψs
ξ(y∗) where y∗ is the endpoint

of the interval ∆, or ∆1 , containing x not equal to ξ .
Note that Dνψs

ξ(x)−D
νψs

ξ(y) is nonzero for at most four vertices ξ ∈ Vi and

that, by T2, δi ≥ c
−(i0−i)
4 δi0 if i < i0 . Using this, (11), and (13), we get

I ≤ c

i0−1
∑

i=0

k
∑

s=0

δs−k−1
i δα−s

i |x− y|

≤ c

i0−1
∑

i=0

c
−(i0−i)(α−k−1)
4 δα−k−1

i0
|x− y|

≤ c|x− y|α−k.
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Thus we have |Dkf(x)−Dkf(y)| ≤ c|x−y|α−k , |x−y| ≤ δ0 , and since the desired
norm estimates are implicit in the proof, this concludes the proof of the theorem.

The construction above can be used to give a characterization of Λα(F ) also
if α = k , where k is a positive integer, although the representation is not unique
and somewhat less straightforward. We suggest a way to find a kind of atomic
decomposition which in spirit is similar to the non-integer case.

Given a sequence δi → 0 satisfying T2, a definition of Λk(F ) equivalent to
the one given in Section 4 is given by f ∈ Λk(F ) if and only if there is a sequence
{fi}

∞
i=0 of functions in Λγ(F ) where k < γ < k + 1, such that, for i ≥ 0,

‖Dj(f − fi)‖∞,F ≤ Mδ
(k−j)
i for 0 ≤ j < k , ‖Dj(fi+1 − fi)‖∞,F ≤ M for j = k ,

and ‖fi‖Λγ(F ) ≤ Mδ
(k−γ)
i , with the norm in Λk(F ) equal to the infimum of the

possible constants M . We omit the straightforward verification.
Let f ∈ Λk(F ), let Ti be a regular triangulation of F with diameters δi , and

let {fi}
∞
i=0 be a sequence associated to f and {δi} as in the above characterization

of Λk(F ). Define, inductively for i ≥ 0, gi as the spline function which coincides
with a polynomial of degree at most 2k+1 on each interval in Ti , and interpolates
to fi−Si−1(fi−1) (to fi if i = 0) and all its derivatives of orders less than or equal
to k at each point in Ui . Then we will have

∑n

i=0 gi = Sn(fn) on {∪∆,∆ ∈ Tn} .
The function gi has a representation

gi =
∑

ξ∈Ui

k
∑

s=0

csi,ξφ
s
i,ξ,

where csi,ξ = Dsfi(ξ) − DsSi−1(fi−1)(ξ) for ξ ∈ Ui . Writing f − Sn(fn) as
f − fn + fn − Sn(fn) and estimating with the aid of (9), one obtains that on F
the function f has the representation, in Ck−1(F ),

(14) f =

∞
∑

i=0

∑

ξ∈Ui

k
∑

s=0

csi,ξφ
s
i,ξ.

Proposition 3. Let F ⊂ R be a compact set with a regular sequence

of triangulations {Ti}
∞
i=0 of F , and let k > 0 . Then, if f ∈ Λk(F ) , in the

representation (14) we have

(15) |csi,ξ| ≤ cδk−s
i .

Conversely, if f has a representation (14) with some coefficients cs
i,ξ satisfying

(15) , then f ∈ Λk(F ) .

The proof is similar to, but more involved than, the proof of Theorem 2.
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