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Abstract. In this paper we study composition operators between weighted spaces of holo-
morphic functions defined on the open unit ball of a Banach space. Necessary and sufficient
conditions are given for composition operators to be compact. We show that new phenomena
appear in the infinite-dimensional setting different from the ones of the finite-dimensional one.

1. Weights. Weighted spaces

The starting idea of composition operators is a simple and very natural ques-
tion. Consider D the open unit disc of C and a holomorphic map φ: D −→ D .
If f : D −→ C is a holomorphic function, we can compose f ◦ φ and try to ana-
lyze what happens when we let the f vary; in other words we define an operator
between spaces of holomorphic functions and we want to study what properties
does this operator have (continuity, compactness, . . .). This obviously depends
on which are the spaces considered. First candidates are the Hardy spaces and
a full study of the situation in this case can be found in [18]. In the last few
years a lot of research has been done studying the behavior of operators between
weighted spaces of holomorphic functions Hw(B) whenever B is the unit disk
of C or, more in general, an open subset of Cn (see below for definitions and
notation). Among the operators between these spaces particular attention has
been paid to composition operators. We refer to [4], [5], [7], [8], [9], [10], [15], [19]
and particularly to the recent surveys [3], [6] for information about the subject.
But also some interest has been given to the more general case where X is a
Banach space and BX is its open unit ball (see e.g. [1], [2], [13], [14], [17]). In
this paper, strongly influenced by the work of Bonet, Domański, Lindström and
Taskinen [8], we study composition operators between Hw(BX) and Hv(BY ) and
we find that new phenomena appear in the infinite-dimensional setting different
from the ones of the finite-dimensional one. In Section 2 we make an introductory
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study of composition operators. In Section 3 we study the compactness of a com-
position operator giving necessary and sufficient conditions for such an operator
to be compact. Finally, in Section 4 we show that Hilbert spaces are a natural
setting to extend [8, Theorem 2.3], a result that gives conditions on the weight v
such that all composition operators from Hv(BX) into itself are continuous.

We fix the notation to be used in the rest of the article. Let X be a complex
Banach space and BX its open unit ball. Any continuous bounded mapping
v: BX →]0,∞[ is called a weight.

We denote by H(BX) the space of all holomorphic functions f : BX −→ C .
A set A ⊂ BX is said to be BX -bounded if there exists 0 < r < 1 such that
A ⊂ rBX . The subspace of H(BX) of those functions that are bounded on the
BX -bounded sets is denoted by Hb(BX).

Following [8] and [17] we consider

Hv(BX) =
{
f ∈ H(BX) : ‖f‖v = sup

x∈BX

v(x)|f(x)| <∞
}
.

With the norm ‖ · ‖v , the space Hv(BX) is a Banach space. We denote Bv

the closed unit ball of Hv(BX). It is well known that in Hv(BX) the τv (norm)
topology is finer than the τ0 (compact-open) topology ([17, Section 3]) and that
Bv is τ0 -compact ([17, p. 349]).

Following [4], [6], we say that a weight is radial if v(λx) = v(x) for every
λ ∈ C with |λ| = 1 and every x ∈ BX .

A weight v satisfies Condition I if infx∈rBX
v(x) > 0 for every 0 < r < 1

([14]). If v satisfies Condition I, then Hv(BX) ⊆ Hb(BX) ([14, Proposition 2]).
If X is finite-dimensional, then all weights on BX satisfy Condition I. From now
on, unless otherwise stated, every weight is assumed to satisfy Condition I.

Given any weight v , following [5], we consider an associated growth condition
u: BX −→]0,+∞[ defined by u(x) = 1/v(x). With this new function we can
rewrite

Bv =
{
f ∈ Hv(BX) : |f | ≤ u

}
.

From this, ũ: BX −→]0,+∞[ is defined by

ũ(x) = sup
f∈Bv

|f(x)|

and a new associated weight ṽ = 1/ũ . All these functions were defined by Bier-
stedt, Bonet and Taskinen for open subsets of Cn in [5]. In [5, Proposition 1.2],
the following relations between weights for open sets on Cn are proved. The same
arguments work for the unit ball of a Banach space.

Proposition 1.1 Let X be a Banach space and v a weight defined on BX .

The following hold:



Composition operators 83

(i) 0 < v ≤ ṽ and ṽ is bounded and continuous; i.e., ṽ is a weight.

(ii) ũ (respectively ṽ ) is radial and decreasing or increasing whenever u (re-
spectively v ) is so.

(iii) ‖f‖v ≤ 1 ⇔ ‖f‖ṽ ≤ 1 .

(iv) For each x ∈ BX there exists fx ∈ Bv such that ũ(x) = |fx(x)| .
As an immediate consequence of (iii) we have

Corollary 1.2 ([5, Observation 1.12]). If X is a Banach space and v is any

weight defined on BX , then Hv(BX) = Hṽ(BX) holds isometrically.

Since the constant function 1 belongs to Hv(BX) we have

sup
x∈BX

v(x) = ‖1‖v = ‖1‖ṽ = sup
x∈BX

ṽ(x).

Definition 1.3 ([19]). A weight v is said to be essential if there exists C > 0
such that v(x) ≤ ṽ(x) ≤ C v(x) for all x ∈ BX .

We say that a weight v is norm-radial if v(x) = v(y) for every x , y such
that ‖x‖ = ‖y‖ . If v is norm-radial and non-increasing (with respect to the norm)
then ṽ is also norm-radial. Indeed, if v is such a weight and T : X → X is a linear
mapping, T 6= 0, with ‖T‖ ≤ 1, then for any f ∈ Hv(BX) we can consider
fT = f ◦ T . Then

‖fT ‖v = sup
z∈BX

v(z)
∣∣f

(
T (z)

)∣∣ ≤ sup
z∈BX

v
(
T (z)

)∣∣f
(
T (z)

)∣∣ ≤ ‖f‖v.

Hence, for any x ∈ BX we have sup‖f‖v≤1 |f(x)| ≥ sup‖f‖v≤1 |f(T (x))| . Now
if y ∈ BX with ‖x‖ = ‖y‖ we can take T such that T (x) = y to get that
ṽ(x) ≤ ṽ(y). The converse inequality is proved in the same way.

Note that given a Banach space X such that for any two x, y ∈ BX with
‖x‖ = ‖y‖ there exists a holomorphic isometry T : BX −→ BX with T (x) = y
then any norm-radial weight v satisfies that ṽ is also norm-radial. This happens
if X is a Hilbert space.

2. Composition operators

Let X , Y be Banach spaces. We denote by BX , BY their open unit balls. Let
φ: BX → BY be a holomorphic mapping. The composition operator associated to
φ is defined by

Cφ: H(BY ) −→ H(BX), f  Cφ(f) = f ◦ φ.

Cφ is clearly linear and (τ0, τ0)-continuous. Given any two weights v , w we
consider the restriction Cφ: Hv(BY ) → Hw(BX) whenever this is well defined. If
h: BX −→ Y is bounded we denote as usual ‖h‖∞ = sup

{
‖h(x)‖ : ‖x‖ < 1

}
.
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Remark 2.1. Let H , E be two Banach spaces of holomorphic func-
tions whose topologies are stronger than the pointwise convergence topology. If
Cφ: H → E is well defined then, by the closed graph theorem, Cφ is continuous.
As a consequence, to find out if the composition operator Cφ is continuous it is

enough to find out if Cφ is well defined.

Proposition 2.2. If there is some 0 < r < 1 such that φ(BX) ⊆ rBY , then

Cφ: Hv(BY ) → Hw(BX) is well defined (and then continuous) for any two weights

v with Condition I and w .

Proof. Since φ(BX) ⊆ rBY , then for each f ∈ Hv(BY ) there is K > 0 such
that supy∈φ(BX) |f(y)| ≤ K . Hence

sup
x∈BX

w(x)|Cφ(f)(x)| = sup
x∈BX

w(x)
∣∣f

(
φ(x)

)∣∣ ≤ sup
x∈BX

w(x) sup
x∈BX

∣∣f
(
φ(x)

)∣∣ <∞.

Therefore Cφ(f) ∈ Hw(BX) and Cφ is well defined.
The following proposition extends some of the results in [8, Proposition 2.1]

(see also [7, Theorem 4]).

Proposition 2.3. Let v , w be two weights satisfying Condition I and

φ: BX −→ BY holomorphic. Then the following are equivalent:
(i) Cφ: Hv(BY ) −→ Hw(BX) is well defined and continuous.

(ii) supx∈BX

(
w(x)/ṽ(φ(x))

)
<∞ .

(iii) supx∈BX

(
w̃(x)/ṽ(φ(x))

)
<∞ .

(iv) sup‖φ(x)‖>r0

(
w(x)/ṽ(φ(x))

)
<∞ for some 0 < r0 < 1 .

Proof. The implication (iii) ⇒ (ii) is trivial, since w ≤ w̃ . Let us assume
now (ii). Let f ∈ Hv(BY ); we have

w(x)
∣∣f

(
φ(x)

)∣∣ =
w(x)

ṽ
(
φ(x)

) ṽ
(
φ(x)

)∣∣f
(
φ(x)

)∣∣ ≤M‖f‖ṽ = M‖f‖v

for all x . Hence Cφ is continuous.
Suppose now that Cφ is continuous. If (iii) does not hold there exists (xn)n∈N

⊆ BX such that

lim
n→∞

w̃(xn)

ṽ
(
φ(xn)

) = ∞.

For each n ∈ N we can take fn ∈ Bv so that
∣∣fn

(
φ(xn)

)∣∣ = ũ
(
φ(xn)

)
=

1/ṽ
(
φ(xn)

)
. Hence

∣∣fn
(
φ(xn)

)∣∣w̃(xn) =
w̃(xn)

ṽ
(
φ(xn)

)

which is a contradiction with the fact that Cφ(Bv) is bounded.
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Clearly (ii) implies (iv). Conversely, if (iv) holds, let

M = sup
‖φ(x)‖>r0

w(x)

ṽ
(
φ(x)

) .

We take x ∈ BX ; if ‖φ(x)‖ > r0 then

w(x)
∣∣f

(
φ(x)

)∣∣ =
w(x)

ṽ
(
φ(x)

) ṽ
(
φ(x)

)∣∣f
(
φ(x)

)∣∣ ≤M‖f‖v.

If ‖φ(x)‖ ≤ r0 , since f is bounded in r0BY , we have

w(x)
∣∣f

(
φ(x)

)∣∣ ≤
(

sup
x∈BX

w(x)
)(

sup
y∈r0BY

|f(y)|
)
.

Joining both cases we have supx∈BX
w(x)

∣∣f
(
φ(x)

)∣∣ < ∞ and Cφ(f) ∈ Hw(BX)
for all f ∈ Hv(BY ). By Remark 2.1, Cφ is continuous.

Note that (i), (ii) and (iii) above are equivalent even if Condition I does not
hold. On the other hand, as Example 2.4 below shows, Condition I is necessary
to prove that (iv) implies (i).

Example 2.4. Let X be any infinite-dimensional Banach space and let
φ(x) = x for every x ∈ BX . By the Josefson–Nissenzweig theorem [11, Chap-
ter XII] we can choose (x∗n)n ⊆ X∗ with ‖x∗n‖ = 2 and weak-star converging to 0.
We define a(x) = 1 +

∑∞
n=1 |x∗n(x)|n and v(x) = 1/a(x).

For every b > 1
2
, sup‖x‖=b a(x) = +∞ ; indeed, since ‖x∗n‖ = 2, for each n ≥ 2

there is xn ∈ X such that ‖xn‖ = 1 and |x∗n(xn)| > 2−1/n . Let yn = bxn . Then

a(yn) > |x∗n(yn)|n =
(
b|x∗n(xn)|

)n
>

(
b

(
2 − 1

n

))n

for all n ≥ 2. Therefore sup‖x‖=b a(x) = ∞ for every b > 1
2
; hence inf‖x‖=b v(x) =

0 and v does not satisfy Condition I. We fix 1
2 < c < d < 3

4 and we consider
continuous mappings ϕ , ψ: [0, 1] → [0, 1] such that

ϕ(t) =





1 if |t| ≤ c,
> 0 if c < |t| < 3

4
,

0 if 3
4 ≤ |t|,

ψ(t) =





0 if |t| ≤ d,
> 0 if d < |t| < 3

4
,

1 if 3
4 ≤ |t|.

We define now

w(x) = ψ(‖x‖) 1

a(x)
+ ϕ(‖x‖).
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Clearly, if ‖x‖ ≤ c , then w(x) = 1 and if ‖x‖ ≥ 3
4 then w(x) = 1/a(x). Hence,

for each b ≥ 3
4

we have

sup
‖φ(x)‖>b

w(x)

ṽ
(
φ(x)

) ≤ sup
‖φ(x)‖>b

w(x)

v
(
φ(x)

) = sup
‖x‖>b

w(x)

v(x)
= 1.

Let us see that Cφ: Hv(BX) → Hw(BX) is not well defined. We have that f(x) =∑∞
n=1 x

∗
n(x)

n is an entire function on X (see ([12, p. 157]) and

‖f‖v = sup
x∈BX

|∑∞
n=1 x

∗
n(x)

n|
1 +

∑∞
n=1 |x∗n(x)|n

≤ sup
x∈BX

∑∞
n=1 |x∗n(x)|n

1 +
∑∞
n=1 |x∗n(x)|n

< 1.

Hence f ∈ Hv(BX). But, by the maximum modulus theorem and the Cauchy
inequality, if 1

2 < b < c then

sup
‖x‖=b

w(x)|f(x)| = sup
‖x‖=b

|f(x)| = sup
‖x‖≤b

|f(x)| ≥ sup
‖x‖≤b

∣∣∣∣
∞∑

n=1

x∗n(x)
n

∣∣∣∣ = ∞.

This obviously implies Cφf = f /∈ Hw(BX) and Cφ is not well defined.

3. Compactness

We now study conditions for the operators Cφ to be compact. The proof of
the next result is easily adapted from those of [18, Section 2.4] and [8, Lemma 3.1]
and will be used several times.

Lemma 3.1. Let Cφ: Hv(BY ) −→ Hw(BX) be continuous. Then the fol-

lowing are equivalent:
(i) Cφ is compact.

(ii) Each bounded sequence (fn)n ⊆ Hv(BY ) such that fn
τ0−→0 satisfies that

‖Cφfn‖w −→ 0 .

Many authors, when working in the finite-dimensional setting, consider
weights with the property that lim‖x‖→1− w(x) = 0 (e.g. w(x) = g(‖x‖) with
g: [0, 1] → [0,+∞[ continuous and non-increasing such that g(0) = 1 and
g(1) = 0, [15], [10]). This kind of weights are also considered in [8]. A char-
acterization of compactness is given in [8, Theorem 3.3]. Strongly inspired by that
we have the following.

Proposition 3.2. Let v , w be weights with lim‖x‖→1− w(x) = 0 and

φ: BX −→ BY . Then, Cφ: Hv(BY ) → Hw(BX) is compact if and only if

(1) lim
‖x‖→1−

w(x)

ṽ
(
φ(x)

) = 0
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and

(2) φ(rBX) is relatively compact for every 0 < r < 1.

Proof. Let us begin by assuming that Cφ is compact. Suppose that there is
r0 such that φ(r0BX) is not relatively compact, then there is (xn)n ⊆ r0BX and
ε > 0 with ‖φ(xn) − φ(xm)‖ > ε for every n 6= m . For each pair (n,m), n 6= m ,
we choose y∗nm ∈ Y ∗ with ‖y∗nm‖ = 1 such that

∣∣y∗nm
(
φ(xn)

)
− y∗nm

(
φ(xm)

)∣∣ ≥ ε.

We have (y∗nm) ⊂ Hv(BY ) and ‖y∗nm‖v ≤ ‖v‖∞ for all n 6= m .
The adjoint operator of Cφ , Ctφ: Hw(BX)∗ → Hv(BY )∗ is also compact. For

each x ∈ BX we denote by δx the evaluation functional. We denote by ‖ · ‖∗w
the dual norm in Hw(BX)∗ ; that is ‖γ‖∗w = sup‖f‖w≤1 |γ(f)| for γ ∈ Hw(BX)∗ .
Clearly ‖δx‖∗w = 1/w̃(x). Since w satisfies Condition I so does w̃ and {δx : x ∈
r0BX} is bounded in Hw(BX)∗ . Then {Ctφ(δx) : x ∈ r0BX} = {δφ(x) : x ∈ r0BX}
is relatively compact in Hv(BY )∗ . On the other hand,

ε ≤
∣∣δφ(xn)(y

∗
nm) − δφ(xm)(y

∗
nm)

∣∣ ≤ ‖δφ(xn) − δφ(xm)‖∗v‖y∗nm‖v
for every n 6= m . Hence, for all n 6= m , ‖δφ(xn) − δφ(xm)‖∗v ≥ ε/‖v‖∞ . This is a
contradiction.

Let us suppose that w(x)/ṽ(φ(x)) does not converge to 0 when ‖x‖ → 1− .
Then there is a sequence (xn)n ⊆ BX with limn ‖xn‖ = 1 and c > 0 such that
w(xn) ≥ cṽ

(
φ(xn)

)
for all n ∈ N . Using Proposition 1.1, for each n ∈ N we can

choose fn ∈ Bv such that
∣∣fn

(
φ(xn)

)∣∣ = 1/ṽ
(
φ(xn)

)
.

Suppose that there exists 0 < r0 < 1 such that ‖φ(xn)‖ ≤ r0 for every n .
Since v satisfies Condition I, so does ṽ and M = infy∈r0BY

ṽ(y) > 0. Then

w(xn) ≥ cṽ
(
φ(xn)

)
≥ cM > 0.

But this contradicts the fact that limn w(xn) = 0. Hence we can extract a subse-
quence of (xn)n (that we denote the same) so that limn ‖φ(xn)‖ = 1.

We can assume that ‖φ(xn)‖ > n
√

1 − 1/n for every n . We choose y∗n ∈
Y ∗ with ‖y∗n‖ = 1 such that

∣∣y∗n
(
φ(xn)

)∣∣ > n
√

1 − 1/n and we define gn(y) =
y∗n(y)

nfn(y), for all y ∈ BY . We have

sup
y∈BY

v(y)|y∗n(y)|n|fn(y)| ≤ sup
y∈BY

v(y)‖y‖n|fn(y)| ≤ ‖fn‖v ≤ 1.

Hence (gn)n ⊆ Hv(BY ) and it is bounded. Since Bv is τ0 -bounded ([17]), given
any compact set K ⊆ BY there exists M > 0 such that supy∈K |fn(y)| ≤ M for
all n ∈ N . Since K is compact, K ⊆ rBY for some 0 < r < 1; hence

sup
y∈K

|gn(y)| = sup
y∈K

|y∗n(y)|n|fn(y)| ≤M sup
y∈K

‖y‖n ≤M rn.
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Thus, (gn)n ⊆ Hv(BY ) is bounded and τ0 convergent to 0. By Lemma 3.1, the
sequence ‖Cφ(gn)‖w must tend to 0. On the other hand we have, for every n ∈ N ,

‖Cφ(gn)‖w ≥ w(xn)
∣∣gn

(
φ(xn)

)∣∣ =
w(xn)

ṽ
(
φ(xn)

)
∣∣y∗n

(
φ(xn)

)∣∣n > c
n− 1

n
.

This gives a contradiction and implies (1).
Assume now that (1) holds and φ(rBX) is relatively compact for every r .

We begin by showing that Cφ is continuous. By hypothesis there is 0 < r0 < 1
such that

sup
‖x‖>r0

w(x)

ṽ
(
φ(x)

) ≤ 1.

Since φ(r0BX) is relatively compact there is M > 0 such that 0 < M ≤ ṽ
(
φ(x)

)

for all ‖x‖ ≤ r0 . Therefore

sup
‖x‖≤r0

w(x)

ṽ
(
φ(x)

) ≤ 1

M
sup

‖x‖≤r0

w(x) <∞.

This gives

sup
x∈BX

w(x)

ṽ
(
φ(x)

) <∞

and Cφ is continuous.
Let us suppose that Cφ is not compact. From Lemma 3.1, there is a τ0 -null

sequence (fn)n ⊆ Bv such that
(
‖Cφ(fn)‖w

)
n

does not converge to 0. Going to
a subsequence if necessary we can assume that there is λ > 0 such that

sup
x∈BX

w(x)
∣∣fn

(
φ(x)

)∣∣ = ‖Cφ(fn)‖w > λ > 0

for all n ∈ N . We choose (xn)n ⊆ BX with w(xn)
∣∣fn

(
φ(xn)

)∣∣ ≥ λ for all n and
let us suppose that (xn)n has a subsequence (xnk

)k such that limk ‖xnk
‖ = 1.

Given any ε > 0 there is k1 such that

w(xnk
) ≤ εṽ

(
φ(xnk

)
)

for all k ≥ k1 . Hence

λ ≤ w(xnk
)
∣∣fnk

(
φ(xnk

)
)∣∣ ≤ εṽ

(
φ(xnk

)
)∣∣fnk

(
φ(xnk

)
)∣∣ ≤ ε‖fnk

‖v < ε.

This contradicts the fact that λ > 0. Therefore there exists 0 < s < 1 such that
‖xn‖ ≤ s for every n . Since φ

(
(xn)n

)
⊆ φ(sBX) which is relatively compact,

given ε > 0 and M = supx∈BX
w(x), there exists n2 such that, for n ≥ n2

sup
y∈φ(sBX)

|fn(y)| <
ε

M
.

Therefore
∣∣fn

(
φ(xn)

)∣∣ < ε/M for all n ≥ n2 and

λ ≤ w(xn)
∣∣fn

(
φ(xn)

)∣∣ < ε.

This again gives a contradiction and finally shows that Cφ is compact.
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Nevertheless many weights do not satisfy this condition on the limit (see
[5], [8]). We are now interested in the study of the compactness of Cφ with
general weights. So far, two different situations have been considered. First, the
finite-dimensional case with general weights was studied in [8]. In this case the
condition that φ(rBX) is compact and contained in BY is trivial. For the infinite-
dimensional case, only composition operators between H∞(BY ) and H∞(BX)
(i.e. v(x) = w(x) = 1) have been studied in [1] and [13]. There, it is proved
that Cφ: H

∞(BY ) → H∞(BX) is compact if and only if φ(BX) ⊆ sBY for some
0 < s < 1 and φ(BX) is relatively compact.

In [8, Theorem 3.3] a characterization of the compactness of a composition
operator is obtained for general weights when X = Y = C . This characterization
is given in terms of an analytical condition (see (3) below). Proposition 3.2 shows
that some topological condition is also needed if we want to have a characterization
whenever X and Y are general Banach spaces.

Theorem 3.3. Let v , w be weights with Condition I and φ: BX → BY a

holomorphic mapping. Then the following hold.

(a) If Cφ: Hv(BY ) → Hw(BX) is compact then φ(rBX) is relatively compact

for every 0 < r < 1 .

(b) Suppose that ‖φ‖∞ < 1 . If φ(BX) is relatively compact, then Cφ: Hv(BY )
→ Hw(BX) is compact.

(c) Suppose that ‖φ‖∞ = 1 . (i) If Cφ: Hv(BY ) → Hw(BX) is compact, then

(3) lim
r→1−

sup
‖φ(x)‖>r

w(x)

ṽ
(
φ(x)

) = 0.

(ii) If φ(BX) ∩ rBY is relatively compact for every 0 < r < 1 and

lim
r→1−

sup
‖φ(x)‖>r

w(x)

ṽ
(
φ(x)

) = 0

then Cφ: Hv(BY ) → Hw(BX) is compact.

Proof. (a) Note that in Proposition 3.2 when we proved that if Cφ is compact
then φ(rBX) is relatively compact for every 0 < r < 1 we did not use the fact that
lim‖x‖→1− w(x) = 0. Therefore, this implication remains true for any weight w .

(b) By assumption there is 0 < s < 1 such that φ(BX) ⊆ sBY . If φ(BX) is
relatively compact then

sup
x∈BX

1

ṽ
(
φ(x)

) ≤ sup
y∈φ(BX)

1

ṽ(y)
<∞.

Hence

sup
x∈BX

w(x)

ṽ
(
φ(x)

) <∞.
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By Proposition 2.3, Cφ is continuous.
Let (fn)n ⊆ Hv(BY ) be bounded and τ0 -convergent to 0. We take ε > 0.

Let us write M = supx∈BX
w(x) < ∞ . We choose n0 ∈ N such that for all

n ≥ n0 ,

sup
y∈φ(BX)

|fn(y)| <
ε

M
.

Hence, for n ≥ n0 , ‖Cφfn‖w = supx∈BX
w(x)

∣∣fn
(
φ(x)

)∣∣ ≤ M supy∈φ(BX) |fn(y)|
< ε . By Lemma 3.1, Cφ is compact.

(c) Let us suppose now that ‖φ‖∞ = 1. Let Cφ be compact and assume that

lim
r→1−

sup
‖φ(x)‖>r

w(x)

ṽ
(
φ(x)

) 6= 0.

So we can find (rn)n ⊆]0, 1[ with limn rn = 1 and c > 0 so that, for all n ∈ N ,

sup
‖φ(x)‖>rn

w(x)

ṽ
(
φ(x)

) > c.

From this we get a sequence (xn)n ⊆ BX with ‖φ(xn)‖ > rn and w(xn) ≥
cṽ

(
φ(xn)

)
for all n ∈ N . Without loss of generality we can assume that rn >

n
√

1 − 1/n . Applying Proposition 1.1, for each n ∈ N , we can choose fn ∈ Bv

satisfying
∣∣fn

(
φ(xn)

)∣∣ = 1/ṽ
(
φ(xn)

)
. We take y∗n ∈ Y ∗ such that ‖y∗n‖ = 1

and
∣∣y∗n

(
φ(xn)

)∣∣ > rn and we define gn(y) = y∗n(y)
nfn(y). Proceeding now

as in Proposition 3.2 we obtain the contradiction we are looking for. Hence
limr→1− sup‖φ(x)‖>r w(x)/ṽ

(
φ(x)

)
= 0.

Now we assume that (3) holds and φ(BX) ∩ rBY is relatively compact for
every 0 < r < 1. By (3), given ε > 0, there is r0 such that, for every r0 < r < 1,

(4) sup
‖φ(x)‖>r

w(x)

ṽ
(
φ(x)

) < ε.

By Proposition 2.3(iv), Cφ is continuous. From (4), w(x) < εṽ
(
φ(x)

)
for all

‖φ(x)‖ > r0 . Suppose that Cφ is not compact. By Lemma 3.1 there exists
(fn)n ⊆ Bv τ0 -convergent to 0 such that (‖Cφfn‖w)n does not converge to 0.
Going to a subsequence if necessary, we can find λ > 0 such that ‖Cφfn‖w > λ
for all n . Let (xn)n ⊆ BX with w(xn)

∣∣fn
(
φ(xn)

)∣∣ ≥ λ for all n . If (xn)n has a
subsequence (xnk

)k such that limk ‖φ(xnk
)‖ = 1, then there exists k1 ∈ N with

‖φ(xnk
)‖ > r0 for all k ≥ k1 . So, for k ≥ k1 , w(xnk

) < εṽ
(
φ(xnk

)
)
. Therefore

λ ≤ w(xnk
)
∣∣fnk

(
φ(xnk

)
)∣∣ < εṽ

(
φ(xnk

)
)∣∣fnk

(
φ(xnk

)
)∣∣ ≤ ε‖fnk

‖ṽ = ε‖fnk
‖v ≤ ε.

Hence λ ≤ ε for every ε > 0. This leads to a contradiction.
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Thus there exists 0 < s < 1 satisfying ‖φ(xn)‖ < s for all n . So,
(
φ(xn)

)
n
⊆

φ(BX) ∩ sBY which is relatively compact. Let M = supx∈BX
w(x), given any

ε > 0 there is n2 ∈ N such that for all n ≥ n2

sup
y∈φ(BX)∩sBY

|fn(y)| <
ε

M
.

Hence, if n ≥ n2 , then
∣∣fn

(
φ(xn)

)∣∣ < ε/M . As a consequence, if n ≥ n2 we

have λ ≤ w(xn)
∣∣fn

(
φ(xn)

)∣∣ < ε . Thus λ ≤ ε for all ε > 0. This leads to a
contradiction that shows that Cφ is compact.

If we want to get better results for part (b) of above theorem we need to add
conditions on the weight w .

Proposition 3.4. Let v be a weight on BY and φ: BX → BY a holomorphic

mapping. Then Cφ: Hv(BY ) → H∞(BX) is compact if and only if φ(BX) is

relatively compact and ‖φ‖∞ < 1 .

Proof. If Cφ is compact, we take the canonical injection i: H∞(BY ) →
Hv(BY ). Composing i◦Cφ we get a compact composition operator from H∞(BY )
into H∞(BX). By [1, Proposition 3], φ(BX) is relatively compact and ‖φ‖∞ < 1.
The other implication is a particular case of Theorem 3.3(b).

Corollary 3.5 Let v , w be weights such that w is norm-radial and φ: BX →
BY a holomorphic mapping.

(a) If w(x) converges to 0 as ‖x‖ → 1− then Cφ: Hv(BY ) → Hw(BX) is

compact if and only if φ(rBX) is relatively compact for every 0 < r < 1 and

lim‖x‖→1− w(x)/ṽ
(
φ(x)

)
= 0 .

(b) If w(x) does not converge to 0 as ‖x‖ → 1− then Cφ: Hv(BY ) →
Hw(BX) is compact if and only if φ(BX) is relatively compact and ‖φ‖∞ < 1 .

Proof. Part (a) is a particular case of Proposition 3.2.
If w(x) does not converge to 0 as ‖x‖ → 1− then there exist ε > 0 and a

sequence (rn) ⊂ (0, 1) convergent to 1 such that w(x) > ε for all x ∈ X with
‖x‖ = rn and all n ∈ N . Given x ∈ BX we consider n such that ‖x‖ < rn , by
the maximum modulus theorem, we have

|f(x)| ≤ max
|λ|=r−1

n

|f(λx)| ≤ 1

ε
max

|λ|=r−1

n

w(λx)|f(λx)| ≤ 1

ε
‖f‖w.

Then ‖f‖∞ ≤ (1/ε)‖f‖w ≤ (1/ε)‖w‖∞‖f‖∞ for all f ∈ Hw(BX). Thus Hw(BX)
and H∞(BX) coincide algebraically and topologically. Now Proposition 3.4 gives
the conclusion.

Let us point out that if Y is finite-dimensional then, trivially, φ(BX) is always
relatively compact and hence we have the following corollary, which is exactly [8,
Theorem 3.3] whenever X = Y = C .
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Corollary 3.6. Let Y be a finite-dimensional Banach space and X a complex

Banach space. Let v , w be weights and φ: BX → BY a holomorphic mapping.

(a) If ‖φ‖∞ < 1 , then Cφ: Hv(BY ) → Hw(BX) is compact.

(b) If ‖φ‖∞ = 1 , then Cφ: Hv(BY ) → Hw(BX) is compact if and only if

lim
r→1−

sup
‖φ(x)‖>r

w(x)

ṽ
(
φ(x)

) = 0.

After these corollaries it is natural to ask if the converse of (a), (b) and (c)(i)
or (c)(ii) in Theorem 3.3 hold in general. The following two examples show that
the answer is in the negative in all cases.

Example 3.7. There is a holomorphic mapping φ: Blp → Blp and weights
v , w on Blp so that ‖φ‖∞ = 1, φ satisfies condition (3) and φ(rBlp) is relatively
compact for 0 < r < 1, but Cφ is not compact Hv(Blp) → Hw(Blp). In addition,
here φ(Blp) ∩ rBlp is not relatively compact for any 0 < r < 1. This shows that
the converse of (c)(i) in Theorem 3.3 does hold in general. Take X = Y = lp with
1 < p <∞ and define φ: Blp → Blp by φ

(
(xn)n

)
= (xnn)n . This is a holomorphic

mapping such that φ(Blp) is not relatively compact but φ(rBlp) is so for every
0 < r < 1. Take (xn)n ⊆ lp such that ‖xn‖p ≤ r for every n ∈ N . A standard
diagonal method allows us to obtain a subsequence (xnm

)m of (xn)n such that(
xnm

(k)
)
m

converges for every k .

The sequence
(
φ(xnm

)
)
m

converges in lp . Indeed, as φ(xnm
) =

(
xnm

(k)k
)
k

and |xnm
(k)k| ≤ rk for every k and m , given ε > 0, we can choose k0 such that

( ∞∑

k=k0+1

rkp
)1/p

<
ε

4
.

We denote, for each m , ym =
(
xnm

(k)k
)
k≤k0

and zm =
(
xnm

(k)k
)
k>k0

. We have

a pointwise convergent sequence (ym)m in Ck0 , thus it converges in the ‖ · ‖p -
norm of Ck0 . Let m0 be such that ‖ym1

− ym2
‖
l
k0
p
< 1

2
ε for every m1,m2 ≥ m0 .

Thus
‖φ(xnm1

) − φ(xnm2
)‖plp = ‖ym1

− ym2
‖p
l
k0
p

+ ‖zm1
− zm2

‖plp

<

(
ε

2

)p
+

∞∑

k=k0

(rk + rk)p < εp.

Hence
(
φ(xnm

)
)
m

is convergent and φ(rBlp) is relatively compact.

We define v(x) = 1 − ‖x‖ and w(x) =
(
1 − ‖φ(x)‖

)2
. We have ‖φ‖∞ = 1

and
w(x)

ṽ
(
φ(x)

) ≤ w(x)

v
(
φ(x)

) = 1 − ‖φ(x)‖,
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hence limr→1− sup‖φ(x)‖>r w(x)/ṽ
(
φ(x)

)
= 0. We denote by (e∗n)n the canonical

basis of lq . The sequence (e∗n)n is clearly bounded in Hv(Blp). On the other
hand, for every n 6= m ,

‖Cφe∗n − Cφe
∗
m‖w = sup

x∈Blp

w(x)
∣∣e∗n

(
φ(x)

)
− e∗m

(
φ(x)

)∣∣

≥ w

(
1

n
√

2
en

)∣∣∣∣e
∗
n

(
φ

(
1

n
√

2
en

))
− e∗m

(
φ

(
1

n
√

2
en

))∣∣∣∣

=
(
1 −

∥∥ 1
2en

∥∥)2∣∣e∗n
(

1
2en

)
− e∗m

(
1
2en)

∣∣ = 1
8 .

Hence (Cφe
∗
n)n does not have any convergent subsequence and the operator is not

compact. Now, as a consequence of Theorem 3.3(c)(ii), there exists 0 < r < 1 such
that φ(Blp)∩rBlp is not relatively compact. Actually φ(Blp)∩rBlp is not relatively

compact for any 0 < r < 1. Indeed, fix 0 < r < 1 and let xn = n
√
r/2 en . Then

‖φ(xn)‖ =
∥∥ 1

2ren
∥∥ = 1

2r and
(
φ(xn)

)
n
⊆ φ(Blp) ∩ rBlp . On the other hand, for

every n 6= m ,

‖φ(xn) − φ(xm)‖ =
∥∥ 1

2ren − 1
2rem

∥∥ = 2(1−p)/pr.

Example 3.8. Let 1 < p < ∞ . We give now a holomorphic mapping
φ: Blp → Blp with ‖φ‖∞ = 1 and weights v , w on Blp satisfying condition (3)
such that Cφ: Hv(Blp) → Hw(Blp) is compact but φ(BX)∩ rBX is not relatively
compact for any 0 < r < 1. Let φ: Blp → Blp be defined by φ

(
(xn)n

)
= (xnn)n .

By Example 3.7 we have that φ is a holomorphic mapping such that φ(rBX) is
relatively compact for every 0 < r < 1 but φ(BX) ∩ rBX is not. We take the
weights v(x) = 1 − ‖x‖ and w(x) = (1 − ‖x‖)

(
1 − ‖φ(x)‖

)
. Clearly both v and

w satisfy Condition I and
w(x)

v
(
φ(x)

) = 1 − ‖x‖.

This tends to 0 as ‖x‖ → 1− . Applying Proposition 3.2, Cφ: Hv(BX) → Hw(BX)
is compact.

There is a holomorphic mapping φ: Blp → Blp with ‖φ‖∞ < 1 and weights
v , w on Blp so that Cφ: Hv(Blp) → Hw(Blp) is compact even though φ(Blp) is
not relatively compact. Indeed, we define φ: Blp → Blp by φ

(
(xn)n

)
= 2−1(xnn)n ,

we have that ‖φ‖∞ = 2−1 , φ(BX) is not relatively compact and, for the weights
v(x) = 1−‖x‖ and w(x) = (1−‖x‖)

(
1−‖φ(x)‖

)
, Cφ is compact. Hence, whenever

‖φ‖∞ < 1, the hypothesis of being φ(BX) relatively compact is a sufficient but
not necessary condition for Cφ to be compact.

Remark 3.9. If φ: BX → BX is holomorphic and satisfies that φ(BX)∩rBX
is relatively compact for every 0 < r < 1 then φ(rBX) is relatively compact
for every 0 < r < 1. Indeed, if ‖φ‖∞ < 1 then our assumption implies that
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φ(BX) is relatively compact. If ‖φ‖∞ = 1 then we define the weights v(x) = 1 −
‖x‖ and w(x) =

(
1 − ‖φ(x)‖

)2
. Clearly, limr→1− sup‖φ(x)‖>r w(x)/v

(
φ(x)

)
= 0.

Applying Theorem 3.3(c)(ii) we have that Cφ: Hv(BX) → Hw(BX) is compact.
By Theorem 3.3(a) we obtain the claim.

An open problem is the following. If we assume the analytical condition
(3), does there exist an intermediate topological condition between the ones in
Theorem 3.3(c)(i) and (ii) that give a characterization of the compactness of Cφ ?

Finally, the next example shows that to assume φ(BX)∩rBX to be relatively
compact for every 0 < r < 1 is a strictly weaker condition than to assume φ(BX)
to be relatively compact.

Example 3.10. We give now an example of a holomorphic mapping ψ: Blp →
Blp such that ψ(Blp)∩ rBlp is relatively compact for every 0 < r < 1 but ψ(Blp)
is not. Take lp with 1 ≤ p < ∞ and define ψ by ψ

(
(xn)n

)
=

(
x1, (x

n
1xn)n≥2

)
.

Clearly ψ(Blp) is not relatively compact. On the other hand, ψ(Blp) ∩ rBlp is
relatively compact for every 0 < r < 1. Its proof is analogous to the one given in
Example 3.7 since (xn1xn) ∈ ψ(Blp) ∩ rBlp implies that |x1| < r and, from this,
|xn1xn| < rn for every n ∈ N .

In Remark 3.9 we have obtained a purely topological result by using weights
and composition operators in the case ‖φ‖∞ = 1. A strengthening of this topolog-
ical result can nevertheless be obtained directly simply by adapting to our setting
some known results for entire mappings due to Aron and Schottenlocher ([2]). We
present here those adapted results.

Definition 3.11. A holomorphic mapping f : BX → Y is called compact in
x ∈ BX if there is a neighborhood of x , Vx , such that f(Vx) is relatively compact
in Y . A mapping f is said to be compact if it is compact in x for every x ∈ BX .

If f is a holomorphic mapping in an open set U and x ∈ U , we denote
by

∑∞
n=0 P

nf(x) the Taylor series expansion of f at x . The next lemma was
obtained for entire functions by Aron and Schottenlocher in [2]. Their proof,
except for trivial natural changes, works also for holomorphic functions on any
balanced and convex open set U .

Lemma 3.12 ([2, Proposition 3.4]). Let f : U → Y be a holomorphic func-

tion. The following conditions are equivalent.

(i) f is compact.

(ii) For all x ∈ U and all n ∈ N , P nf(x) is compact.

(iii) For all n ∈ N , Pnf(0) is compact.

(iv) There is a 0 -neighborhood V0 in U such that f(V0) is relatively compact.

Proposition 3.13. Let X be a Banach space and f : BX → BY a compact

holomorphic mapping. Then f(rBX) is relatively compact for every 0 < r < 1 .
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Proof. Given r , we choose 1/r > s > 1. By the maximum modulus principle
we have, for each y ∈ rBX ,

‖Pnf(0)(y)‖ ≤ 1

sn
‖f‖rsBX

.

This implies that
∑∞
n=0 P

nf(0) converges uniformly and absolutely on rBX .
Given ε > 0 let k0 be such that

∞∑

n=k0+1

1

sn
<

ε

3‖f‖rsBX

.

Let gk :=
∑k
n=0 P

nf(0); we have

‖f(y)− gk0(y)‖ ≤
∞∑

n=k0+1

‖Pnf(0)(y)‖ ≤
∞∑

n=k0+1

1

sn
‖f‖rsBX

<
ε

3

for every y ∈ rBX . Now, as gk0 is a compact polynomial, gk0(rBX) is relatively
compact. Thus, there are {y1, . . . , ym} such that for each y ∈ rBX , there exists
yj0 satisfying ‖gk0(y) − gk0(yj0)‖ < 1

3ε ; hence

‖f(y)− gk0(yj0)‖ ≤ ‖f(y) − gk0(y)‖ + ‖gk0(y) − gk0(yj0)‖ < ε,

i.e. f(rBX) is a precompact set.

4. A result for Hilbert spaces

The result in [8, Theorem 2.3] gives conditions on a weight v such that all
composition operators from Hv(D) into itself are continuous. The proof of this
is based on the Schwarz lemma and on the decomposition of every holomorphic
mapping φ from D into D as φ = ψ ◦ αp , where ψ ∈ H(D,D) with ψ(0) = 0
and αp is a Möbius transform. This cannot be repeated for functions defined on
the unit ball of an arbitrary Banach space. However, Renaud showed in [16] that
a very close situation holds for Hilbert spaces.

Let BH be the open unit ball of a Hilbert space H with a scalar product
( · | · ). For each a ∈ BH a linear mapping Γ(a): BH −→ BH is defined by

Γ(a)(x) =
1

1 + ν(a)
(x | a)a+ ν(a)x,

where ν(a) =
√

1 − ‖a‖2 . Using this mapping an automorphism of BH , αa: BH →
BH is defined as

αa(x) = Γ(a)

(
x− a

1 − (x | a)

)
.
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These are the Möbius transforms for Hilbert spaces defined by Renaud in [16],
where a deep study can be found. Each one of them is holomorphic, and satisfies
αa(a) = 0, αa(0) = −a , α−1

a = α−a .
The following version of the Schwarz lemma for Banach spaces is well known.

It is proved by applying the classical Schwarz lemma to the family of functions{[
λ 7→ x∗ ◦ f(λx/‖x‖)

]
: x∗ ∈ X∗, ‖x∗‖ ≤ 1, 0 < ‖x‖ < 1

}
.

Let X , Y be two Banach spaces and BX , BY their open unit balls. Let

f : BX −→ BY be holomorphic such that f(0) = 0 . Then for all x ∈ BX

‖f(x)‖Y ≤ ‖x‖X .

Let h: [0, 1] →]0,∞[ be continuous and non-increasing. Given any Banach
space X a weight v can be defined on BX by putting v(x) = h(‖x‖). Note that
a weight defined in this way is clearly norm-radial. With such weights we have the
following result.

Theorem 4.1. Let X be any Banach space and H a Hilbert space. Let

h: [0, 1] →]0,∞[ be continuous and non-increasing and consider the weights defined

by h on BX and BH , both denoted by v . Then the following are equivalent:
(i) Cφ: Hv(BH) −→ Hv(BX) is continuous for all holomorphic φ: BX → BH .

(ii) Each (xn)n∈N ⊆ BH such that ‖xn‖ = 1 − 2−n satisfies

(5) inf
n∈N

ṽ(xn+1)

ṽ(xn)
> 0.

Proof. We will follow the pattern of the proof given in [8, Theorem 2.3] with
the natural modifications using now Renaud’s Möbius mappings and a suitable
version of Schwarz’ lemma. We present the details for the sake of completeness.

First of all if φ(0) = 0, by the general version of the Schwarz lemma, we
have ‖φ(x)‖H ≤ ‖x‖X and Cφ is continuous. Now for each a ∈ BH we have
αa: BH → BH . If every Cαa

is continuous then all Cφ are continuous. Indeed,
given φ , let a = φ(0) and define ψ = αa ◦φ . Then ψ(0) = 0 and Cφ = Cψ ◦Cα

−a

is continuous. Therefore it is enough to prove that Cαa
: Hv(BH) → Hv(BH) is

continuous for all a ∈ BH if and only if v satisfies (5).
Let us begin by assuming that all Cαa

are continuous. By Proposition 2.3, for
each a ∈ BH we can find Ma > 0 such that ṽ(x) ≤ Maṽ

(
αa(x)

)
for all x ∈ BH .

We also know that

sup
‖x‖=r

‖αa(x)‖ =
‖a‖ + r

1 + r‖a‖

and it is attained at

x0 =
−r
‖a‖a
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(see [16, (9′ )]). Since v is norm-radial and non-increasing so is also ṽ and

ṽ(x) ≤Maṽ

(
αa

( −r
‖a‖a

))

for every x ∈ BH with ‖x‖ = r . We define a new function by l(r) = ṽ(x) with
‖x‖ = 1 − r . Let now s = 1 − r , then for s < 1

2
we have

(6) l

(
s
1 − ‖a‖
1 + ‖a‖

)
≤ l

(
1 − ‖a‖ + (1 − s)

1 + (1 − s)‖a‖

)
≤ l

(
s

1 − ‖a‖
1 + 1

2
‖a‖

)
.

Taking ‖a‖ = 2
5

and using the second inequality in (6) we can find Ma and s0 > 0
such that l(s) ≤Mal

(
1
2s

)
for 0 < s < s0 . This implies (5).

Let us assume now that (5) holds. We define a function l exactly in the
same way as we did before. Then there are M > 0 and 0 < t0 ≤ 1

2 such that
l(t) ≤Ml

(
1
2
t
)

for all t < t0 . Given any c > 0 we can choose n ∈ N with c < 2n .
If t < t0 , then l(t) ≤ Mnl(t/c). Take c = (1 + ‖a‖)/(1 − ‖a‖) and use the first
inequality in (6) to get that for each a ∈ BH there exists Ka > 0 such that

l(t) ≤ Kal

(
1 − ‖a‖ + (1 − t)

1 + (1 − t)‖a‖

)

for t < t0 . With this, for any fixed a ∈ BH , we can find a constant Ma > 0 such
that for 0 < r < 1 and ‖x‖ = r ,

ṽ(x) ≤Mal

(
1 − ‖a‖ + r

1 + r‖a‖

)
≤Maṽ

(
αa(x)

)
.

Applying Proposition 2.3, Cαa
is continuous.

The authors wish to thank Richard Aron, José Bonet and Seán Dineen for
fruitful conversations and helpful comments. We also thank the referee for her/his
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