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Abstract. Let µ be a complex measure on the real line. We denote by Pµ and Qµ the
Poisson and the conjugate Poisson integrals of µ in the upper half-plane. In this note we study
the relative asymptotic growth of Pµ and Qµ near the support of µ . In particular, we show that
on µ almost every vertical line Qµ grows no slower than Pµ . We also discuss applications to the
theory of Cauchy transform in the plane and related questions on Riesz transforms in Rn .

1. Introduction

Let M(R) be the space of all complex measures µ on the real line satisfying
∫

R

d|µ|(t)

1 + |t|
<∞.

We will denote by Pµ and Qµ the Poisson and the conjugate Poisson integrals of
µ ∈M(R) in the upper half-plane C+ respectively:

Pµ(x+ iy) =

∫

R

y

(x− t)2 + y2
dµ(t)

and

Qµ(x+ iy) =

∫

R

x− t

(x− t)2 + y2
dµ(t).

The Poisson kernel is an example of the so-called approximate unity, whereas
the conjugate Poisson kernel is a typical singular kernel. Hence the boundary
behavior of the Poisson and the conjugate Poisson integrals reflects different prop-
erties of the measure. The growth of Pµ(z) as z → x ∈ R depends on the
concentration of the mass near x . The behavior of Qµ depends on the “symme-
try” of µ around x .

Nonetheless, as we will find out, the growth of Pµ and Qµ must be almost
the same near “most” points on the boundary. Roughly speaking, we show that
the fast growth of mass near a point “usually” implies the lack of symmetry around
it.

More precisely, we prove the following result. If µ ∈ M(R) we denote by µs

its singular part with respect to the Lebesgue measure.
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Theorem 1.1. Let µ ∈M(R) and let Σ be a Borel subset of R . Then the

following conditions are equivalent:

(1) Qµ(x+ iy) = o
(
Pµ(x+ iy)

)
as y → 0+ for µs -a.e. x ∈ Σ;

(2) the restriction of µs on Σ is discrete.

Note that if a singular measure µ is such that

Pµ(x+ iy) = o
(
Qµ(x+ iy)

)

as y → 0+ for µ -almost all x ∈ E then µ(E) = 0, see [7]. Hence, if µ is singular
continuous, neither Pµ nor Qµ can dominate its counterpart except near a zero
set of points.

In Section 3 we consider the Riesz transform in Rn . Let M(Rn−1) be the
space of all measures in the hyperplane Rn−1 satisfying

∫

Rn−1

1

1 + |x|n−1
dµ(x) <∞.

For each µ ∈ M(Rn−1) the Riesz transform Rµ(x) is defined on the half-space
Rn

+
= {(x1, . . . , xn) | xn > 0} as Rµ(x) = 〈R1µ(x), . . . , Rnµ(x)〉 ,

Riµ(x) =

∫

Rn−1

xi − yi

|x− y|n
dµ(y), i = 1, 2, . . . , n.

It is well known, that Riesz transforms can be viewed as generalizations of the
Poisson integral (the nth transform Rn ) and the conjugate Poisson integral (all
other transforms R1, . . . , Rn−1 ) to higher dimensions.

The natural question that arises after Theorem 1.1 is whether an analogous
statement holds for Riesz transforms in Rn . However, if one lets µ be the (n−2)-
dimensional Lebesgue measure on an (n− 2)-dimensional cube in Rn−1 and con-
siders its Riesz transform in Rn

+
, one obtains an example of a singular continuous

measure satisfying

∣∣〈R1µ
(
(x1, . . . , xn)

)
, . . . , Rn−1µ

(
(x1, . . . , xn)

)〉∣∣ = o
(
Rnµ

(
(x1, . . . , xn)

))

as xn → 0+ for µ -a.e. (x1, . . . , xn−1, 0) ∈ Rn−1 .
Nonetheless an analogue of Theorem 1.1 for Riesz transforms exists. One just

has to replace the “radial” convergence with non-tangential. If x ∈ Rn−1 and
0 < φ < 1

2π we denote by Γφ
x the truncated cone:

Γφ
x =

{
y = 〈y1, . . . , yn >∈ Rn

+
| yn/|y − x|〉 sinφ, yn < 1

}
.

As usual we write y→
^

x if y → x and there exists φ = φ(x) such that y ∈ Γφ
x .
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Theorem 1.2. Let µ ∈M(Rn−1) and let Σ ⊂ Rn−1 be such that

(1) |〈R1µ(y), . . . , Rn−1µ(y)〉| = o
(
Rnµ(y)

)

as y→
^

x for µ -a.e. x ∈ Σ . Then the restriction of µ on Σ is absolutely continuous

with respect to the Lebesgue measure in Rn−1 .

For µ ∈ M(R) we denote by Hµ(x, ε) its Hilbert transform: The kernel
Hx,ε(t) is defined as 0 on

(
x− 1

2
ε, x+ 1

2
ε
)

and as 1/(x− t) elsewhere and

Hµ(x, ε) =

∫

R

Hx,ε(t) dt.

The standard argument shows (see Lemma 2.1) that the relation (1) in Theorem 1.1
is equivalent to

(2) Hµ(x, y) = o
(
Pµ(x+ iy)

)

as y → 0 for µ -a.e. x .
An analog of Theorem 1.1 can be applied in the theory of the Cauchy trans-

form in the plane. If µ ∈ M(R2) we denote by Cµ the convolution of µ with 1/z
in the sense of principal value: denote

Cµ(z, ε) =

∫

{|z−ξ|>ε}

1

z − ξ
dµ(ξ)

and put
Cµ(z) = lim

ε→0
Cµ(z, ε).

It is a well-known phenomenon that under various conditions on the Cauchy trans-
form a large part of the measure lies on a collection of smooth curves, see for
instance [3], [4], [5] or [9]. The Cauchy transform of the restriction of the measure
to one of such curves is similar to the Hilbert transform on the line. This may
allow one to apply an analog of Theorem 1.1 and conclude that the measure does
not have a singular continuous part on any of those curves.

To show an example of such an application, let us consider the following result
by P. Mattila. We denote by B(a, r) the ball of radius r centered at a . We say
that Dµ(a) > 0 if

lim inf
r→0+

µ(B(a, r))

r
> 0.

Theorem 1.3 ([3]). Let µ ∈M(C) be a non-negative measure. If Dµ(z) > 0
and Cµ(z) exists for µ -a.e. z ∈ C then µ is concentrated on a countable set of

C1 -curves, i.e. there exist C1 -curves γ1, γ2, . . . such that

µ(C \ ∪γi) = 0.

For this particular situation one can prove the following version of Theo-
rem 1.1, see Section 4. We denote by H 1 the one-dimensional Hausdorff measure.
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Theorem 1.4. Let µ ∈ M(C) , µ ≥ 0 and let γ be a C1 -curve in C .

Suppose that Cµ exists µ -a.e. on γ . Then the restriction of µ on γ is the sum

of a discrete measure and a measure absolutely continuous with respect to H 1 .

(Instead of the existence of Cµ on γ one can actually require a slightly weaker
condition, like Cεµ(ξ) = o

(
µ(B(ξ, ε)/ε

)
as ε → 0+ for a.e. ξ with respect to the

singular part of µ on γ , see Section 4.)
Together Theorems 1.4 and 1.3 give the following result:

Corollary 1.5. If µ ∈ M(C) , µ ≥ 0 is such that Dµ(z) > 0 and Cµ(z)
exists for µ -a.e. z , then µ is the sum of a discrete measure and a measure abso-

lutely continuous with respect to H 1 , concentrated on a countable union of C1

curves.

In particular, note that the continuous part of µ will automatically satisfy
the so-called linear growth condition:

lim sup
ε→0

µc

(
B(x, ε)

)

ε
<∞

for µc -a.e. x .
Another application of Theorem 1.1 concerns inner functions in the unit disk.

It is well known that certain geometric properties of a conformal mapping may
imply the existence of its derivative on the boundary of the domain. Our next
theorem shows a similar property in a non-conformal situation.

Let Σ be a subset of T . We say that an inner function θ in the unit disk D

is radial near Σ if it maps almost every radius that ends at Σ into a curve that
is tangent to a radius. More precisely, θ is radial near Σ if for a.e. ξ ∈ Σ

Im θ(rξ)θ̄(ξ) = o
(
1 − |θ(rξ)|

)

as r → 1− . Here θ(ξ) stands for the non-tangential limit of θ at ξ .

Theorem 1.6. An inner function in the unit disk is radial near Σ if and only

if it has non-tangential (angular) derivatives almost everywhere on Σ .

I.e. an inner function is radial near Σ if and only if its zeros an and the

singular measure σ corresponding to its singular factor satisfy

∑

n

1 − |an|
2

|an − ξ|2
<∞ and

∫

T

dσ(z)

|z − ξ|2
<∞ for a.e. ξ ∈ Σ .

We say that an inner function θ has an angular derivative at ξ ∈ T if |θ(ξ)| =
1 and there exists a finite limit lim

z →
^

ξ(θ(z) − θ(ξ))/(z − ξ). (Note that the

condition |θ(ξ)| = 1 is redundant in the situation of Theorem 1.6.) There are
several other equivalent definitions of the angular derivative related to each other
by the Carathéodory theorem, see [8] for a detailed discussion.

Acknowledgement. The authors are grateful to the administration and staff
of Institut Mittag-Leffler for their hospitality.
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2. The growth of Cauchy integrals in the upper half-plane

We begin this section with the lemma, which illustrates the well-known fact
that the conjugate Poisson integral is “close” to the Hilbert transform. For con-
venience we will often write Hµ(x + iy) instead of Hµ(x, y) (thus stressing the
fact that Hµ(x, y) is close to Qµ(x+ iy)). The notation Hx+iy will be used for
the corresponding Hilbert kernel Hx,y . We will also use notations Pz and Qz for
the Poisson and conjugate Poisson kernels.

Lemma 2.1. Let µ ∈M(R) be a positive measure.

(1) Suppose that |Qµ(iy)| < α(y)Pµ(iy) for some positive function α: R+ →
R+ , α(y) → 0 as y → 0 . Then |Hµ(iy)| < β(y)Pµ(iy) for some positive function

β: R+ → R+ , β(y) → 0 as y → 0 depending only on α;
(2) Conversely, if |Hµ(iy)| < α(y)Pµ(iy) for some positive function α: R+ →

R+ , α(y) → 0 as y → 0 then |Qµ(iy)| < β(y)Pµ(iy) for some positive function

β: R+ → R+ , β(y) → 0 as y → 0 depending only on α .

Proof. (1) Denote Hεµ(x + iy) =
∫ (1+ε)y

(1+ε)−1y
Hµ(x + is) ds . Then Hεµ is an

integral transform of µ with the continuous kernel Hε
x+iy =

∫ (1+ε)y

(1+ε)−1y
Hx+is ds .

Linear combinations of functions

Qiy −Qi

Pi
(t) = (y2 − 1)Qiy(t)

are dense in the space of odd continuous functions on R̂ . Therefore for any ε > 0
one can choose constants ck and points iyk so that

∣∣∣∣
Hε

i −Qi

Pi
−

n∑

1

ck
Qiy −Qi

Pi

∣∣∣∣ < ε

on R . Then ∣∣∣∣H
ε
i −

n+1∑

1

ckQiyk

∣∣∣∣ < εPi

on R where cn+1 = 1 −
∑n

k=1 ck , yn+1 = 1. From the properties of Poisson,
conjugate Poisson and Hilbert kernels this implies that for any 0 < s < 1

∣∣∣∣H
ε
is −

n∑

1

ckQisyk

∣∣∣∣ < εPis on R .

Therefore, |Hεµ(iy)| < βε(y)Pµ(iy) for some positive function βε: R+ →
R+ , βε(y) → 0 as y → 0, depending only on α .

To pass from Hε to H notice that
∣∣∣∣
∂Hµ(iy)

∂y

∣∣∣∣ < C1
Pµ(iy)

y
.

Hence, |Hµ(iy)| ≤ C2

(
Hεµ(iy) + εPµ(iy)

)
.
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(2) In a similar way, one can notice that Qi can be approximated by linear
combinations of Hiy (such an approximation can actually be constructed much
easier than in part (1)).

Note: the lemma shows that the conjugate Poisson transform can be replaced
with the Hilbert transform in the statement of Theorem 1.1 in the case when the
measure is positive. To pass to the general case one can represent the measure as
a linear combination of mutually singular positive measures and use Theorem 2.4
below.

Now we can proceed with the proof of Theorem 1.1. We start with the defini-
tion of a porous set. After that we prove a lemma, showing that any set E , such
that the condition |Hµ(x, y)| = o

(
Pµ(x + iy)

)
as y → 0+ is satisfied uniformly

for x ∈ E , has to be porous. The proof of Theorem 1.1 will then be completed by
showing that a singular continuous measure µ , satisfying Qµ = o(Pµ) on µ -a.e.
vertical line, cannot see a porous set, thus obtaining a contradiction.

Definition 2.2. We say that a set K ⊂ R is porous if for any x ∈ K and
any ε > 0 there exists 0 < δ < ε such that (x− δ, x− δ/100) ∪ (x+ δ/100, x+ δ)
does not intersect K .

Note that by the density theorem a porous set has to have zero Lebesgue
measure.

Lemma 2.3. Let µ ∈M(R) be a positive measure and let E be a closed set

such that

(1) µ(E) > 0 ,

(2) dµ/dm(x) = ∞ for any x ∈ E and

(3) |Hµ(x+ iy)| < α(y)Pµ(x+ iy) for some positive function α: R+ → R+ ,

α(y) → 0 as y → 0 , at any x ∈ E .

Then E is porous.

Here dµ/dm denotes the Radon derivative of µ with respect to the Lebesgue
measure m .

Proof. By the last lemma, we can assume that Qµ grows uniformly slower
than Pµ with some function β replacing α in the corresponding estimate. By
Theorem 1.2 (see next section for the proof), for µ -a.e. x ∈ E for any sector Γφ

x ,
φ > 0,

lim sup
z→x, z∈Γφ

x

|Qµ(z)|

Pµ(z)
> 0.

Hence, for µ -a.e. x ∈ E one can consider the balls Bn = B
(
x + iεn,

1
2
εn

)
such

that

(3) lim inf
n→∞

maxBn
|Qµ|

maxBn
Pµ

> 0 where εn → 0+.
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Let ζn be the “rescaling” maps: ζn(z) = (x+ εni) + 1
2εnz . Then

un =
1

maxBn
Pµ

Kµ ◦ ζn

is a sequence of functions in the unit disk whose real part is bounded by 1. The
derivative of Qµ in Bn is bounded by Cε−1

n Pµ . Thus the derivatives of the
imaginary parts of un are uniformly bounded in the unit disc. Also, by the
definition of the set E

Imun(0) ≤ C
Qµ(x+ iεn)

Pµ(x+ iεn)
→ 0.

Thus the imaginary parts of un are also uniformly bounded. By the normal
families argument, one can choose a subsequence unk

converging to an analytic
function u pointvise in the disk. Let u = p + iq . By Harnak’s lemma, the
real parts of un are bounded away from zero, and so p is non-zero. By (3)
| Imun| > c > 0 on a subdisk of a fixed hyperbolic radius and hence q is non
zero. By the definition of the set E , q = 0 on the vertical diameter d = (−i, i).
Hence the partial derivative qy is 0 on d . If qx = 0 on d then by the Cauchy–
Riemann equations q ≡ 0 and we have a contradiction. Therefore, for k large
enough in each ball Bnk

there is at least one point zk = x + iyk on the vertical
diameter where yk|(Qµ)x| > cmaxBnk

Pµ for some positive c . Then the inequality

yk|(Qµ)x| >
1
2cmaxBnk

Pµ must hold in the ball Dk = B(zk, εyk) for some ε > 0
and for k = 1, 2, . . . . Since Qµ is continuous, WLOG we can assume that

(4) yk(Qµ)x >
1
2
cPµ in Dk.

Now if we choose n large, so that

(5) β(yn) � ε

then (4) implies that for any

x1 ∈ (x− εyn, x− εyn/100) ∪ (x+ εyn/100, x+ εyn)

we have
|Qµ(x1 + iyn)| >

εc

100
Pµ(x1 + iyn).

Together with (5) the last inequality implies that x1 /∈ E .

We will also need the following

Theorem 2.4 ([6]). Let µ, ν ∈ M(R) , µ = fν + η where f ∈ L1(|ν|) and

η ⊥ ν . Then the limit

lim
z →

^

x

Kµ(x)

Kν(x)

exists ν -a.e. It is equal to f(x) νs -a.e.
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Lemma 2.5. Let µ and E be the same as in Lemma 2.3. Denote by ν the

restriction of µ on E . For ν -a.e. x and any ε > 0 there exists δ , 0 < δ < ε such

that

(1) (x− δ, x− δ/100) ∪ (x+ δ/100, x+ δ) does not intersect E;
(2) for any x0 + iy0 such that x0 ∈ (x − δ/100, x+ δ/100) ∩ E , |x − x0| <

y0 < 2|x− x0| ,

|Hµ(x0 + iy0)| + |Hν(x0 + iy0)| <
1

1000
Pµ(x0 + iy0).

(Note: the condition |x − x0| < y0 < 2|x − x0| means that x0 + iy0 ∈

Γ
π/4
x \ Γ

π/6
x .)

Proof. The constant δ satisfying (1) exists by the last lemma.

Since x0 + iy0 ∈ Γ
π/4
x , by Theorem 2.4 (note that ν is a singular measure)

lim
δ→0

Kµ(x0 + iy0)

Kν(x0 + iy0)
= lim

δ→0

Pµ(x0 + iy0) + iQµ(x0 + iy0)

Pν(x0 + iy0) + iQν(x0 + iy0)
= 1

for ν -a.e. x . Since x0 ∈ E , for small enough δ ,

|Qµ(x0 + iy0)| <
1

1000
Pµ(x0 + iy0),

and therefore

|Qν(x0 + iy0)| <
1

1000
Pν(x0 + iy0) ≤

1

1000
Pµ(x0 + iy0).

Now one can use Lemma 2.1.

Proof of Theorem 1.1. (2) ⇒ (1). The implication is easy to verify if µs has
just one point mass. If µs has more than one point mass, Theorem 2.4 implies
that near each of those point masses the contribution of other point masses is
negligeably small.

(1) ⇒ (2). By Theorem 2.4, one can reduce the statement to the case when
µ is positive.

Let us denote by µsc the singular continuous part of µ . We need to show
that µsc(Σ) = 0. Suppose it is not so. Then one can choose a subset E ⊂ Σ,
µsc(E) > 0 such that

|Hµ(x, y)| < α(y)Pµ(x+ iy)

for some positive function α: R+ → R+ , α(y) → 0 as y → 0, at any x ∈ E .
Let ε be such that α(ε) < 1/1000. By Lemma 2.5 for any x ∈ E there exists
δ < ε satisfying conditions (1) and (2) from the statement of the lemma. Let
us cover E with such δ -neighborhoods. Let I be one of the intervals of this



Asymptotic growth of Cauchy transforms 107

covering: I = (x− δ, x+ δ) for some x ∈ E , δ = δ(x) < ε . Denote a = minE∩ I ,
b = maxE ∩ I (note: a, b ∈ (x− δ/100, x+ δ/100)). Let ∆ = b−a , z1 = a+2∆i ,
z2 = b+ 2∆i . Then

|Hν(z1)−Hν(z2)| ≤ |Hµ(z1)−Hµ(z2)|+ |Hν(z1)−Hµ(z1)|+ |Hν(z2)−Hµ(z2)|.

The first summand is small relative to Pµ because a, b ∈ E and the other two are
small because of part (2) of the last lemma. Altogether we get

|Hν(z1) −Hν(z2)| ≤
5

1000
Pν(z1).

On the other hand, the difference of kernels Hz1
−Hz2

is 0 on (a, b) (both kernels
are 0 there) and satisfies Hz1

−Hz2
< −1/2Pz1

outside of (x− 100δ, x+ 100δ).
Since ν is absent on (x− 100δ, x+ 100δ) \ (x− δ, x+ δ),

|Hν(z1) −Hν(z2)| ≥
1

2

∫

R\I

Pz1
dν.

Therefore
5

1000
Pν(z1) ≥

1

2

∫

R\I

Pz1
dν

and

(6)
ν
(
(a, b)

)

b− a
≥ Pν(z1) −

∫

R\I

Pz1
dν >

1

2
Pν(z1).

To obtain the final contradiction consider points w1 = a+∆i , w2 = b+∆i . Note
that, in the same way as before, the choice of I (part (2) of Lemma 2.5) and the
fact that a, b ∈ E imply

|Hν(w1) −Hν(w2)| ≤
5

1000
Pν(w1).

On the other hand, (Hw1
−Hw2

) > 1/2(b− a) on (a, b) and |Hw1
−Hw2

| < 2Pz1

on R \ I . Hence by (6),

|Hν(w1) −Hν(w2)| ≥

∣∣∣∣
∫

(a,b)

(Hw1
−Hw2

) dν

∣∣∣∣ −
∣∣∣∣
∫

R\I

(Hw1
−Hw2

) dν

∣∣∣∣

≥
1

2

ν((a, b))

b− a
−

10

1000
Pν(z1) ≥

1

10
Pν(z1) ≥

1

100
Pν(w1).
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3. Non-tangential growth of Riesz transforms in the half-space

In this section we prove Teorem 1.2. We start with the following lemmas.
For µ ∈M(Rn−1) we denote by µs the part of µ that is singular with respect

to the (n− 1)-dimensional Lebesgue measure on Rn−1 .

Lemma 3.1. Let µ ∈ M(Rn−1) , 0 < φ < 1
2π and let E ⊂ Rn−1 be a

set of zero (n− 1) -dimensional Lebesgue measure satisfying |µs|(E) > 0 . Denote

Γ =
⋃

x∈E Γφ
x . Then

(7)

∫

∂Γ

|Rµ| ds = ∞.

(In the last integral and throughout this section ds corresponds to the stan-
dard integration with respect to the surface area.)

Proof. Here we only give the proof for the case of the upper half-plane (n = 2).
For this case the proof seems especially natural. The same ideas could be modified
to obtain the general proof.

Let µ ∈M(R) and Γ =
⋃

t∈E Γφ
t , where |E| = 0, |µs|(E) > 0. Suppose that

Kµ is summable on ∂Γ with respect to the arclength. Define the function f on
R in the following way:

f(x) =
{
|Kµ(x+ iy)| if x+ iy ∈ ∂Γ for some 0 < y < 1,
0 otherwise.

Then f ∈ L1(R). Consider the Poisson integral Pf of f in the upper half-plane.
One can show that then

(8) |Kµ| < C1Pf

a.e. on ∂Γ with respect to the arclength. Indeed, let x+ iy ∈ ∂Γ for some y < 1.
Then at least on one half of the interval

(
x− 1

2y, x+ 1
2y

)
we have f > C3|Kµ(x+iy)|

because of the Lipschitz properties of Kµ in B
(
x + iy, 1

2y
)
. Since the Poisson

kernel Px+iy is larger than C4 on
(
x− 1

2y, x+ 1
2y), we get (8) at x+ iy .

Since Kµ is a function of the Smirnov class in Γ and Pf is harmonic, (8)
holds inside Γ as well. Since fdx ⊥ µs , we obtain a contradiction with Lemma 3.2
below (just put fdx = ν ).

Lemma 3.2 ([6]). Let µ, ν ∈M(R) and ν ⊥ µs . Then

lim
z →

^

x

|Pµ|

|Pν|
= ∞ for µs -a.e. x .

Proof. The statement presents a version of the Lebesgue theorem saying that
for a summable function almost every point is its Lebesgue point. The classical
proof can be easily modified to work in our case.
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Lemma 3.3. Let u be a harmonic function in a domain in Rn . Denote by

u1, . . . , un its partial derivatives. Then the function u2
n − Cn

∑n−1
i=1 u

2
i is super-

harmonic in the same domain for any Cn ≥ n− 1 .

Proof. Note that since
∑n

i=1 uii = 0,

4(uj)
2 =

n∑

i=1

∂i∂i(uj)
2 =

n∑

i=1

2(∂iuj)
2 + 2uj

n∑

i=1

∂2
i uj = 2

n∑

i=1

(uij)
2.

Therefore

4

(
u2

n − Cn

n−1∑

i=1

u2
i

)
= 2

( n∑

i=1

(uni)
2 − Cn

n∑

i=1

(ui(n−1))
2 · · · − Cn

n∑

i=1

(ui1)
2

)

= 2

(
(unn)2 − Cn

n−1∑

i=1

(ui(n−1))
2 . . .− Cn

n−1∑

i=1

(ui1)
2

)

≤ 2
(
(unn)2 − Cn(u(n−1)(n−1))

2 · · · − Cn(u11)
2
)
.

Now using again the fact that unn = −
∑n−1

i=1 uii one can conclude that the last
expression is negative.

Proof of Theorem 1.2. Let (1) be satisfied for µ -a.e. x ∈ Σ but |µs|(Σ) > 0.
Denote by u the harmonic function in Rn

+
such that ∇u = Rµ , i.e. Rkµ = uk .

Let 1
4π < φ < 1

2π . Then there exists a closed set E ⊂ Σ, |E| = 0, |µ|(E) > 0 and
ε > 0 such that

(9) |〈u1, . . . , un−1〉| <
1

2
√

(n− 1)
|un|

on

Γ =

{
(y1, . . . , yn) ∈

⋃
x∈E

Γφ
x∩, 0 < yn < ε

}
.

By Lemma 3.3 the function u2
n − (n− 1)

∑
1≤k<n u

2
k is superharmonic on Γ and

by (9) it is positive. Hence u2
n − (n− 1)

∑
1≤k<n u

2
k , and therefore (by (9)) u2

n is
summable on the boundary of Γ with respect to the harmonic measure there.

Notice that Γ is a Lipschitz domain. The harmonic measure on ∂Γ can be
written as w ds for some positive w . Since the angle φ is greater than 1

4
π , the

density w satisfies ∫

∂Γ

w−1 ds <∞.

(One will need to “smooth-out” the upper part of the boundary to make the
integral over the whole ∂Γ finite; we are actually only interested in the lower part
of the boundary.) But now, by the Cauchy–Schwarz inequality,

∫

∂Γ

|un| ds ≤

(∫

∂Γ

u2
nw ds

)1/2(∫

∂Γ

w−1 ds

)1/2

< ∞.
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By (9) this implies that
∫

∂Γ
|u| ds <∞ which contradicts Lemma 3.1.

Let now φ satisfy 0 < φ ≤ 1
4
π . Suppose that for some x = (x1, . . . , xn−1) ∈

Rn−1 we have

(10) |〈u1, . . . , un−1〉| = o(un)

as z → x , z ∈ Γφ
x but

(11) |〈u1, . . . , un−1〉| 6= o(un)

in Γ
3π/8
x (the latter holds µ -a.e. by the first part of the proof). Suppose also that

un → ∞ in Γ
3π/8
x (this holds a.e. with respect to the positive component of µs ).

Then there exist points zk = 〈x1, . . . , xn−1, yk〉 , yk → 0+ such that in each ball

Bk = B
(
zk, yk sin 3

8π
)

(Bk is the maximal ball centered at zk that lies in Γ
3π/8
x )

there is a point wk where

|〈u1(wk), . . . , un−1(wk)〉| > c|un(wk)|

for some fixed c > 0. We can choose Bk and wk so that wk ∈ (1 − ε)Bk =
B

(
zk, (1 − ε)yk sin 3

8π
)

for some small ε > 0. Consider the rescaling maps from
the unit ball B = B(0, 1) to Bk :

ξk(z) = zk + zyk sin
3π

8
.

Put

vk =
1

maxBk
|∇u|

(∇u) ◦ ξk.

Then {vk} is a sequence of gradients of harmonic functions in the unit ball B
whose magnitude is bounded by 1. By the normal families argument, one can
choose a subsequence vnk

converging to a gradient v , |v| < 1 pointwise in the
disk. Since at the origin the last coordinates of vk are bounded away from zero,
the last coordinate of v is bounded away from zero at the origin. Since the last

coordinates of vk are positive (recall that we assumed un → ∞ in Γ
3π/8
x ) the last

coordinate is bounded away from zero at the origin and positive in B . Hence it
is bounded away from zero in (1 − ε)B . By the choice of wk , for each k there
is a point in B

(
0, (1 − ε)

)
where the magnitude of the first n − 1 coordinates of

vk is large in comparison to the last coordinate. Thus the first n− 1 coordinates
of v cannot be all zero. But since |〈u1, . . . , un−1〉| = o(un) in Γφ

x , the first n− 1
coordinates of v are zero on a large part of the ball (a set of nonzero volume) and
we have a contradiction. It is left to notice that by the first part of the proof (11)

holds in Γ
3π/8
x for µs -a.e. x and therefore (10) may not hold in Γφ

x except for a
zero set of x with respect to the positive part of µs . Other parts of µs can be
treated similarly.
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4. Applications

4.1. Measures in the plane. The goal of this subsection is to prove
Theorem 1.4.

Let µ be a finite positive measure in C and let γ be a C1 curve.
WLOG γ is a graph of a C1 function f on the interval [−1, 1]: γ = {x +

if(x)} . Denote by Ω± the open domains above and below γ , i.e. Ω+ = {x+ iy |
|x| ≤ 1, y > f(x)} and Ω− = {x+ iy | |x| ≤ 1, y < f(x)} .

First, we will “move” the whole µ under the graph γ to be able to consider
the holomorphic function Cµ in Ω+ . This will allow us to apply complex methods
like in Sections 3 and 4.

To do this, consider the map φ: Ω+ 7→ Ω
−

, φ(x+iy) = x+i
(
f(x)−

(
y−f(x)

))

that maps points in Ω+ into points in Ω
−

symmetric with respect to γ . Denote
by ν the restriction of µ on γ . Let η = µ− ν and denote by η± the restrictions
of η on Ω± . Consider the measure φ(η+) on Ω

−
:

[
φ(η+)

]
(B) = η+

(
φ−1(B)

)
for

any Borel B ⊂ Ω
−

. Denote η∗ = η
−

+ φ(η+) and µ∗ = ν + η∗ .
Now Cµ∗ is a holomorphic function in Ω+ . If z ∈ γ denote by αz the arct-

angent of the slope of the tangent line at z . Then the point z+ ieαzε approaches
z along the normal line from Ω+ .

Throughout this section, if µ ∈ M(C) is supported on a rectifiable curve,
we denote by µac , µs and µsc the absolutely continuous, singular and singular
continuous parts of µ with respect to H 1 on the curve.

We want to proceed as follows. Suppose that Cµ is finite µ -a.e. on γ . First we
will show that Re e−αzCεµ

∗(z+ieαzε), the analog of the conjugate Poisson integral
from the line case considered in Section 2, grows slower than Im e−αzCεµ

∗(z +
ieαzε), the analog of the Poisson integral, as ε → 0+ on νs -a.e. normal line, see
Claims 4.1–4.6 below. Then, using methods similar to those from Sections 2 and 3,
we will show that this is possible only if νs is discrete.

Claim 4.1. For every z ∈ γ there exists a finite constant C such that for

any ε > 0
Im e−αzCεµ

∗(z) ≥ Im e−αzCεµ(z) + C.

Proof. Let z = 0 ∈ γ and assume that the tangent line to γ at 0 is horisontal.
Then e−αz = 1. For any δ > 0, γ lies inside {|y| < δ|x|} near 0. WLOG we can
assume that the whole γ lies there. Note that

ImCµ(w) =

∫
Imw − Im ξ

|w − ξ|2
dµ(ξ).

The kernel of ImCε(0) is negative in the upper half-plane and positive in the
lower half-plane. The part of η+ that lies above y = 3δ|x| was mapped by φ from
the upper to the lower half-plane, and therefore after replacing that part with its
“image” under φ the integral could only increase. WLOG the part of η+ under
y = 3δ|x| is pure point. Notice that each point mass moves down under φ . If δ
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is small enough, for any point mass that lies inside {|y| < 3δ|x|} such a motion
increases its integral.

If µ ∈M(C) we will denote by Pµ(z, ε) the integral

Pµ(z, ε) =

∫
ε

|ξ − z|2 + ε2
dµ(ξ).

Let ψ be the map from ClosΩ
−

to the closed lower half-plane defined as
ψ

(
f(x) − iy

)
= −iy for every y ≥ 0 (recall that γ is the graph of f ). The map

ψ projects γ on the real line and sends every curve γ − iy into the horisontal
segment [−1 − iy, 1 − iy] below the real line. Denote by µ∗

p the measure ψ(µ∗),

i.e. µ∗
p(B) = µ∗

(
ψ−1(B)

)
. Similarly, let νp , η∗p stand for the images of the

corresponding measures.

Claim 4.2. We have

ImCη∗p(ψ(z) + iε) = o
(
Pν(z, ε)

)
for νs -a.e. z as ε→ 0+ .

Proof. The function ImCη∗p is a positive harmonic function in the upper
half-plane. Therefore it is equal to Pσ for some positive measure σ on R . The
measure σ is absolutely continuous. Indeed, denote by ηε the restriction of η∗p
on {Im z < −ε} and let σε be the corresponding measure on R : ImCηε = Pσε .
Then σε → σ in norm. Since all σε are absolutely continuous, so is σ . Therefore
by Lemma 4.8

ImCη∗p(x+ iε) = Pσ(x+ iε) = o
(
Pνp(x+ iε)

)
for (νp)s -a.e. x as ε→ 0+.

It is left to notice that for any z ∈ γ there exists C > 0 such that Pν(z, ε) >
CPνp(x+ iε).

Let ξ ∈ γ and δ > 0. Near ξ , γ lies in ∆ξ = eαξ{| Im(z−ξ)| < δ|Re(z−ξ)|} .
Our next claim shows that the part of µ∗ that lies outside of ∆ξ has little influence
on the asymptotics of eαξ ImCεµ

∗ξ .

Claim 4.3. For any δ > 0 and ξ ∈ γ denote by η∗ξ the restriction of η∗ on

C \ ∆ξ . Then for νs -a.e. ξ

eαξ ImCεη
∗ξ = o

(
Pµ∗(ξ, ε)

)
.

Proof. By comparing the kernels one can notice that

|eαξ ImCεη
∗ξ| < C ImCη∗p

(
ψ(ξ) + iε

)
.

Now the statement follows from the previous claim.
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Now we show that Im e−αzCµ∗(w) grows fast as w approaches z non-tan-
gentially from Ω+ for νs -a.e. z . For the rest of this subsection for any ξ ∈ γ ,
0 < φ < 1

2π we denote by Γφ(ξ) the non-tangential sector {Im eαξ(z−ξ)/|z−ξ| >
sinφ} . Note that near ξ the sector Γφ(ξ) lies entirely in Ω+ .

Claim 4.4. For any 0 < φ < 1
2
π

1

L
Pµ∗(0, ε) + C ≤ Im e−αzCµ∗(w) ≤ LPµ∗(0, ε) + C

as w → z , w ∈ Γφ(z) , |w − z| = ε for some positive L for νs -a.e. z ∈ γ .

Proof. Again we can assume that z = 0 ∈ γ , the tangent line to γ at 0 is
horisontal and γ lies in {|y| < δ|x|} , where δ is so small that γ does not intersect
the sector Γφ(0). Let D be a large positive constant. Simple calculations show
that for all ξ ∈ {|y| < δ|x|} , |ξ| > Dε we have

− Im ξ

|ξ|2
+ C1

ε

ε2 + |ξ|2
≤

Imw − Im ξ

|w − ξ|2
≤

− Im ξ

|ξ|2
+ C2

ε

ε2 + |ξ|2

for some C1, C2 > 0 (if δ is small and D is large enough). The part of the measure
outside of {|y| < δ|x|} can be ignored by the previous claim. Therefore

ImCµ∗(w) =

∫

|ξ|>Dε

Imw − Im ξ

|w − ξ|2
dµ∗(xi) +

∫

|ξ|≤Dε

Imw − Im ξ

|w − ξ|2
dµ∗(xi)

�

∫

|ξ|≤Dε

Imw − Im ξ

|w − ξ|2
dµ∗(xi)+

∫

|ξ|≥Dε

ε

ε2 + |ξ|2
dµ∗(xi) + ImCDεµ

∗(0).

Since µ∗ is concentrated under y = δ|x|

∫

|ξ|≤Dε

Imw − Im ξ

|w − ξ|2
dµ∗(xi) +

∫

|ξ|≥Dε

ε

ε2 + |ξ|2
dµ∗(xi) � Pµ∗(0, ε).

Now recall that Cµ(0) is finite ν -a.e. and apply Claim 4.3.

Next we estimate the “conjugate Poisson part”, Re e−αzCµ∗(z).

Claim 4.5. We have

Re e−αzCεµ
∗(z) = Re e−αzCεµ(z)+o

(
P(0, ε)µ∗(z)

)
as ε→ 0+ for µ∗

s -a.e. z ∈ γ .

Proof. Again we can assume that z = 0 ∈ γ , the tangent line to γ at 0 is
horisontal and γ lies in {|y| < δ|x|} . Note that

ReCεµ
∗(w) =

∫

|ξ|>ε

Rew − Re ξ

|w − ξ|2
dµ∗(ξ).
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To prove the statement we need to compare kernels of ReCεη+(0) and ReCεη
∗
+
(0)

at the points x+ i
(
f(x) + y

)
and x+ i

(
f(x)− y

)
correspondingly. Simple calcu-

lations show that, since |f(x)| < δ|x| ,

∣∣∣∣
x

|x+ if(x) + iy|2
−

x

|x+ if(x) − iy|2

∣∣∣∣ < C
2y

x2 + 4y2
.

Since the right-hand side is the kernel for the Poisson integral of the “projected”
measure Pψ(η∗

−
) at the point ψ

(
x + i

(
f(x) − y

))
= x − iy , this inequality and

Claim 4.2 imply

|ReCεµ(0) − ReCεµ
∗(0)| = |ReCεη+(0) − ReCεη

∗
+
(0)|

< C ImCψ(η∗
−
)(x+ iy) = o

(
Pµ∗(0, ε)

)
.

Claim 4.6. Suppose that z ∈ γ and Cµ(z) is finite. Then

Re e−αzCµ∗(z + ieαzε) = o
(
Pµ∗(z, ε)

)
as ε→ 0+ for µ∗

s -a.e. z ∈ γ .

Proof. Again we can assume that z = 0, the tangent line to γ at 0 is
horisontal and γ lies in {|y| < δ|x|} .

Denote

hα(z) =





Re z

|z|2
on {|z| > α},

0 on {|z| ≤ α}.

Notice that there exists a linear combination of such functions

∑
anhαn

,
∑

an = 1, αn ≤ 10ε

which approximates the kernel of ReCµ∗(iε) on B(0, 10ε) ∩ {|y| < δ|x|} :

∣∣∣∣
−Re ξ

|iε− ξ|2
−

∑
anhαn

(ξ)

∣∣∣∣ < C
δ

ε

for some absolute constant C . Outside of B(0, 10ε) ∩ {|y| < δ|x|} the condition∑
an = 1 will automatically imply

∣∣∣∣
−Re ξ

|iε− ξ|2
−

∑
anhαn

(ξ)

∣∣∣∣ < Cδ
ε

ε2 + |ξ|2

for any ξ ∈ {|y| < δ|x|} and

∣∣∣∣
−Re ξ

|iε− ξ|2
−

∑
anhαn

(ξ)

∣∣∣∣ < C
ε

ε2 + |ξ|2
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for other ξ /∈ B(0, 10ε). Integrating the last three estimates with respect to
µ∗ = ν + η∗ we obtain

∣∣∣∣ReCµ∗(iε) −
∑

anCαn
µ∗(0)

∣∣∣∣ < C
(
δPν(0, ε) + Pη∗(0, ε)

)
.

Moreover, by the properties of both kernels, for any 0 < s < 1 we will have the
estimate

∣∣∣∣ReCµ∗(isε) −
∑

anCsαn
µ∗(0)

∣∣∣∣ < C
(
δPν(0, sε) + Pη∗(0, sε)

)

= CδPν(0, sε) + o
(
Pν(0, sε)

)

= CδPµ∗(0, sε) + o
(
Pµ∗(0, sε)

)

by Lemma 4.8. The statement now follows from the fact that Csαn
µ∗(0) =

o
(
Pµ∗(0, sε)

)
by the last claim and that δ can be chosen arbitrarily small near 0.

Let us summarize the above claims: We obtained the measure µ∗ = ν + η∗ ,
where ν is supported on the C1 -graph γ and η∗ lies under the graph (in Ω

−
). We

know that for νs -a.e. ξ ∈ γ , Re eαzCµ∗(z) = o
(
Im eαzCµ∗(z)

)
as z approaches ξ

along the normal line from above. We have to show that then νs must be discrete.
Following the algorithm of Section 3, we first choose a large φ and as-

sume that there exists a set E ⊂ γ such that νs(E) > 0 and Re eαzCµ∗(z) =
o
(
Im eαzCµ∗(z)

)
as z → ξ , z ∈ Γφ(ξ) for every ξ ∈ E . WLOG all αξ for ξ ∈ E

are smaller than a fixed δ . Then there exists ε0 > 0 and E′ ⊂ E , νs(E
′) > 0 such

that ReCµ∗(z) < 1
2 ImCµ∗(z) for any z ∈ Γφ(ξ), ξ ∈ E′ , |z − ξ| < ε0 . Consider

a positive sequence {εk}
∞
k=1 monotonously decreasing to zero, ε0 > ε1 > ε2 > · · ·.

Define

Γk =

{
z | z ∈

⋃
ξ∈E′

Γφ(ξ), εk < Im eαξ(z − ξ) < ε0

}

and Γ = ∪Γk . Since ReCµ∗(z) < 1
2 ImCµ∗(z) in Γk ,

Re
(
Cµ∗(z)

)2
=

(
ReCµ∗(z)

)2
−

(
ImCµ∗(z)

)2

is a negative harmonic function in Γk . Therefore it is summable with respect to

the harmonic measure on ∂Γk . Since ReCµ∗(z) < 1
2 ImCµ∗(z),

(
ImCµ∗(z)

)2
is

summable with respect to the harmonic measure on ∂Γk . Each Γk is a Lipschitz
domain. Let ζ ∈ Γ1 . If φ > 1

4π + 10δ the Lipschitz constant for the boundary of
∂Γk is large enough so that the density wk of the harmonic measure on ∂Γk with
respect to ζ satisfies ∫

∂Γk

w−1
k ds < C <∞
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for all k . (Again, one needs to make the “upper” part of ∂Γ smooth to have this,
which can always be done; but on the lower part, which we are mostly interested
in, the integral converges as it is.) Then by the Cauchy–Schwarz inequality

∫

∂Γk

| ImCµ∗(z)| ≤

(∫

∂Γk

ImCµ∗(z)wk ds

)1/2(∫

∂Γk

w−1
k ds

)1/2

<∞

and therefore ImCµ∗(z) is summable on ∂Γk with respect to the arclength. De-
note by hk, k = 0, 1, 2, . . . the summable function on [−1, 1] obtained by “projec-
tion” of the values of ImCµ∗ from ∂Γk :

hk(x) =
{

maxx+iy∈Γk
| ImCµ∗(x+ iy)| if x+ iy ∈ ∂Γk for some y ,

0 otherwise.

Since the domains Γk “converge” to Γ0 , one can show that
∫

∂Γk\∂Γ

| ImCµ∗(z)| ds→ 0

as k → ∞ . Indeed, since
∣∣Im

(
(Cµ∗(z)

)2)∣∣ + 1 >
∣∣Re

(
(Cµ∗(z)

)2
)
∣∣ the function(

Cµ∗(z)
)2

is an H1(wkds)-function in Γk . In particular we have

∫

∂Γk

Im
(
(Cµ∗)2

)
wk ds = Im

((
Cµ∗(ζ)

)2)
.

Let us fix k . If l > k is large enough
∫

∂Γ∩∂Γk

Im
(
(Cµ∗)2

)
wl ds

is close to ∫

∂Γ∩∂Γk

Im
(
(Cµ∗)2

)
w ds

which, in its turn, for large enough k is close to Im
((
Cµ∗(ζ)

)2)
. This means that

∫

∂Γl\∂Γ

Im
(
(Cµ∗)2

)
wl ds

is close to 0 for large l . Therefore

∫

∂Γl\∂Γ

| ImCµ∗(z)| ≤

(∫

∂Γl\∂Γ

ImCµ∗(z)wl ds

)1/2(∫

∂Γl

w−1
l ds

)1/2

≤ C

(∫

∂Γl\∂Γ0

ImCµ∗(z)wl ds

)1/2

→ 0.
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Therefore the sequence hk converges in L1[−1, 1]. This means that there
exists a subsequence hnk

that has a summable majorant H ∈ L1[−1, 1]: |hnk
| < H

for all k .

Let again νp = ψ(ν) be the projection of ν on [−1, 1]: νp(B) = ν({x+ iy |
x ∈ B} . By Claim 4.4 for νs -a.e. ξ

Im
(
eαzCµ∗(z)

)
� Pνp

(
x+ e−αz (z − ξ)

)

as z → ξ , z ∈ Γφ(ξ), where x = ψ(ξ). Using this relation one can show, that
PH(z) ≥ CPνp(z) for z ∈ Γφ(x), Im z = εnk

, k = 1, 2, . . . for (νp)s -a.e. x ∈
ψ(E′). But this contradicts Lemma 3.2 since H dx ⊥ (νp)s .

Therefore, the set of such ξ ∈ γ for which

(12) Re e−αξCµ∗(z) = o
(
Im e−αξCµ∗(z)

)

as z → ξ , z ∈ Γφ(ξ) for large φ has to be a zero-set with respect to νs .

Using the normal families argument like in Section 3 one can pass from large
φ to arbitrary sectors and show that there is only a zero set of points ξ with
respect to νs such that for some φ = φ(ξ) > 0, (12) holds as z → ξ , z ∈ Γφ(ξ).

Now we have to make the last step from sectors to normal lines. Again our
argument will be analogous to Section 2.

Definition 4.7. We will call E ⊂ γ porous if for any ξ ∈ E and for any
ε > 0 there exists δ < ε such that E ∩B(ξ, 100δ) \B(ξ, δ) = ∅ .

Now, like in Lemma 2.3, suppose that there is a set E ⊂ γ , νsc(E) > 0 such
that P(z, ε) → ∞ and

|Re e−αzCµ∗(z + iεeαz )| < h(ε)| Im e−αzCµ∗(z + iεeαz )|

with some uniform function h > 0, h(ε) → 0 as ε→ 0+ for every z ∈ E .

We can repeat the proof of Lemma 2.3 almost word by word to show that
E is porous. Indeed, based on the fact that (12) cannot hold in a non-zero set
of sectors with respect to νs , for νs -a.e. z ∈ E and any ε > 0 we can find a
ball B centered on the normal line at z + i1000δeαz of the radius 200δ , where
2000δ < ε , such that the directional derivative of Re e−αzCµ∗ in the direction
perpendicular to the normal line is large in B in comparison to Im e−αzCµ∗ .
Similarly to the proof of Lemma 2.3, this means that those points on γ for which
the corresponding normal lines hit B \ 1

200B cannot belong to E (note that αξ →
αz as ξ → z since γ is a C1 curve). But all normal lines going through the points
from

(
B

(
z, 100δ − o(δ)

)
\B

(
z, δ + o

(
δ)

))
∩ γ will hit B \ 1

200B .

Yet another version of the Lebesgue theorem that we will use is presented in
the following statement:
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Lemma 4.8. Let µ, ν ∈M(R2) , µ = fν where f ∈ L1(|ν|) . Then

lim
ε→0

Pµ(z, ε)

Pν(z, ε)
= f(z)

as ε → 0+ for µ -a.e. z . In particular the limit is 0 ν -a.e. if and only if µ ⊥ ν .

Now suppose that (12) holds as z → ξ along a normal line from Ω+ for νsc -
a.e. ξ ∈ γ . Then we can choose a set E , non-zero with respect to νsc , where
that relation holds with a uniform “o” on the right-hand side. As we established
above, E has to be porous. By approximating kernels, like in Claim 4.6, we can
show that one can replace Re e−αξCµ∗(z), z = ξ + ieαξε with Re e−αξCεµ

∗(ξ).
The new relation

(13) |Re e−αξCεµ
∗(ξ)| < g(ε)| Im e−αξCµ∗(ξ + iεeαz )|

will still hold with some uniform function g > 0, g(ε) → 0 as ε→ 0+ for νs -a.e. ξ .
Denote by νE the restriction of ν on E . Then by Lemma 4.8

(14) P(ν − νE)(ξ, ε) = o
(
Pν(ξ, ε)

)

for νsc -a.e. ξ ∈ E . Let ξ ∈ E be a point where (13) and (14) hold. WLOG ξ = 0,
the tangent line at 0 is horizontal and γ ⊂ {|y| < c|x|} for some small 0 < c < 1.

Since E is porous we can choose a small δ such that E ∩
(
B(0, 100δ) \

B(0, δ)
)

= ∅ . Let z1 and z2 be the points in γ ∩ B(0δ) with the smallest and
the biggest real parts correspondingly for which (13) holds. Denote ∆ = |z1 − z2| .
(Note, that we can assume that ∆ > 0, i.e. z1 6= z2 . If that was not true, 0 would
be an isolated point of E ; but νsc -a.e. point of E is not isolated.)

We can estimate the difference between the kernels of Re e−αz1C(2∆)µ
∗(z1)

and Re e−αz2C(2∆)µ
∗(z2) as follows: It is less than −C1∆/(|z|

2 + ∆2) on γ \
B(0, 100δ). Its absolute value is bounded by C2∆/(|z|

2 + ∆2) on C \B(0, δ) for
some C1,2 > 0. Finally, it is 0 on B(0, δ). Therefore

Ree−αz1C(2∆)µ
∗(z1) − Re e−αz2C(2∆)µ

∗(z2)

< −C1

∫

γ\B(0,100δ)

∆

|z|2 + ∆2
dµ∗(z) + C2

∫

γ∩(B(0,100δ)\B(0,δ))

∆

|z|2 + ∆2
dµ∗(z)

+ C2

∫

C\γ

∆

|z|2 + ∆2
dµ∗(z).

Note that the left-hand side is small by the absolute value in comparison to
Pµ∗(0,∆) because (13) holds at z1 and z2 . By Lemma 4.8 Pµ∗(ξ,∆) ∼
Pµ∗|γ(ξ,∆) at νs -a.e. ξ . WLOG our point 0 is one of such ξ ’s. Then the
third summand in the right-hand side is small in comparison to Pµ∗(0,∆) as



Asymptotic growth of Cauchy transforms 119

well. The second summand is small in comparison to Pµ∗(0,∆) because of (14).
Therefore ∫

γ\B(0,100δ)

∆

|z|2 + ∆2
dµ∗(z)

is small in comparison to Pµ∗(0,∆). Then

Pµ∗(0,∆) ∼

∫

γ\B(0,100δ)

∆

|z|2 + ∆2
dµ∗(z) +

∫

γ∩(B(0,100δ)\B(0,δ))

∆

|z|2 + ∆2
dµ∗(z)

+

∫

γ∩B(0,100δ)

∆

|z|2 + ∆2
dµ∗(z).

As we have just shown, the first integral on the right-hand side is small. So is the
second integral by (14). Therefore

Pµ∗(0,∆) ∼

∫

γ∩B(0,100δ)

∆

|z|2 + ∆2
dµ∗(z) ≤ C3

µ∗(B(0, δ)

δ
.

At the same time, looking at kernels of Re e−αz1C∆µ
∗(z1) and Re e−αz2C∆µ

∗(z2),
we get

Ree−αz1C∆µ
∗(z1) − Re e−αz2C∆µ

∗(z2)

≥ Re e−αz1C(2∆)µ
∗(z1) − Re e−αz2C(2∆)µ

∗(z2) + C4
µ∗(B(0, δ)

δ
+ o

(
Pµ∗(0,∆)

)

≥ C5Pµ∗(0,∆).

This contradicts the fact that each Re e−αzkC∆µ
∗(zk), k = 1, 2 is small in com-

parison to Im e−αz1C∆µ
∗(z1), which in its turn is larger than C6Pµ∗(0,∆) by

Claim 4.4.
This finishes the proof of Theorem 1.4.

Note that instead of the existence of Cµ a.e. on γ we only used the fact
that the relation Cεµ(ξ) = o

(
Pµ(ξ, ε)

)
holds µs -a.e. on γ . This gives a slightly

stronger version of Theorem 1.4 as mentioned in the introduction. The requirement
that µ is positive is not crucial as well.

4.2. Radial inner functions. If µ ∈M(T) we denote by Pµ(z) and Qµ(z)
its Poisson and conjugate Poisson integrals in the unit disk:

Pµ(z) =

∫

T

1 − |z|2

|z − ξ|2
dµ(ξ) and Qµ(z) =

∫

T

2 Im zξ̄

|z − ξ|2
dµ(ξ).

Proof of Theorem 1.6. If θ is an inner function in the unit disk, consider the
family of Clark measures, i.e. positive singular measures {µα}α∈T on T uniquely
defined by the equation

Pµα(z) = Re
α+ θ

α− θ



120 P.W. Jones and A.G. Poltoratski

(see, for instance, [2], [8] or [6] for more information on such families of measures).
One of the basic properties of µα is the formula

(15)

∫
µα(E) dm(α) = m(E),

where E is any Borel subset of T and m is the normalized Lebesgue measure on
T , see [1]. In particular, a set of Lebesgue measure zero on T will have measure
zero with respect to µα for a.e. α ∈ T . Hence if θ is radial near Σ ⊂ T , then for
a.e. α ∈ T , µα -a.e. radius that ends in Σ is mapped by θ into a curve, tangent
to a radius. The definition of µα together with elementary calculations show that
this property can be translated into the relation

Qµα(rξ) = o
(
Pµα(rξ)

)

as r → 1− for µα -a.e. ξ ∈ Σ. Hence, by Theorem 1.1 almost all µα are pure point
on Σ. Another well-known property of the Clark measures says that µα({ξ}) > 0
if and only if θ(ξ) = α and θ has a non-tangential derivative at ξ (see, for
instance, [8]). Utilizing again (15), one can see that θ has angular derivatives a.e.
on T .
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