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Abstract. David maps are generalizations of classical planar quasiconformal maps for which
the dilatation is allowed to tend to infinity in a controlled fashion. In this note we examine how
these maps distort Hausdorff dimension. We show:
– Given α and β in [0, 2] , there exists a David map ϕ: C → C and a compact set Λ such that
dimH Λ = α and dimH ϕ(Λ) = β .
– There exists a David map ϕ: C → C such that the Jordan curve Γ = ϕ(S1) satisfies dimH Γ = 2.

One should contrast the first statement with the fact that quasiconformal maps preserve sets
of Hausdorff dimension 0 and 2 . The second statement provides an example of a Jordan curve
with Hausdorff dimension 2 which is (quasi)conformally removable.

1. Introduction

An orientation-preserving homeomorphism ϕ: U → V between planar do-
mains is called quasiconformal if it belongs to the Sobolev class W 1,1

loc (U) (i.e., has
locally integrable distributional partial derivatives in U ) and its complex dilata-
tion µϕ := ∂̄ϕ/∂ϕ satisfies

‖µϕ‖∞ < 1.

In terms of the real dilatation defined by

Kϕ :=
1 + |µϕ|
1 − |µϕ|

=
|∂ϕ| + |∂̄ϕ|
|∂ϕ| − |∂̄ϕ| ,

the above condition can be expressed as

‖Kϕ‖∞ < +∞.

The quantity ‖Kϕ‖∞ is called the maximal dilatation of ϕ . We say that ϕ is
K -quasiconformal if its maximal dilatation does not exceed K .

For later comparison with the properties of David maps defined below, we
recall some basic properties of quasiconformal maps (see [A] or [LV]):

– If ϕ is K -quasiconformal for some K ≥ 1, so is the inverse map ϕ−1 .
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– A K -quasiconformal map ϕ: U → V is locally Hölder continuous of expo-
nent 1/K . In other words, for every compact set E ⊂ U and every z, w ∈ E ,

|ϕ(z) − ϕ(w)| ≤ C|z − w|1/K

where C > 0 only depends on E and K .
– A quasiconformal map ϕ: U → V is absolutely continuous; in fact, the Jaco-

bian Jϕ = |∂ϕ|2 − |∂̄ϕ|2 is locally integrable in U and

(1.1) areaϕ(E) =

∫

E

Jϕ dx dy,

for every measurable set E ⊂ U .
– More precisely, the Jacobian Jϕ of a quasiconformal map ϕ: U → V is in
Lploc(U) for some p > 1. If we define

(1.2) p(K) := sup{p : Jϕ ∈ Lploc(U) for every K-quasiconformal map ϕ in U},

then

(1.3) p(K) =
K

K − 1
.

(In particular, p(K) is independent of the domain U .) This was conjectured
by Gehring and Väisälä in 1971 [GV] and proved by Astala in 1994 [As].

– Let {ϕn} be a sequence of K -quasiconformal maps in a planar domain U
which fix two given points of U . Then {ϕn} has a subsequence which con-
verges locally uniformly to a K -quasiconformal map in U .

The measurable Riemann mapping theorem of Morrey–Ahlfors–Bers [AB] as-
serts that every measurable function µ in a domain U which satisfies ‖µ‖∞ < 1 is
the complex dilatation of some quasiconformal map ϕ in U , which means ϕ sat-
isfies the Beltrami equation ∂̄ϕ = µ ·∂ϕ almost everywhere in U . Recent progress
in holomorphic dynamics has made it abundantly clear that one must also study
this equation in the case ‖µ‖∞ = 1. With some restrictions on the asymptotic
growth of |µ| , the solvability of the Beltrami equation can still be guaranteed.
One such condition is given by David in [D]. Let σ denote the spherical area in

Ĉ and µ be a measurable function in U which satisfies

(1.4) σ{z ∈ U : |µ(z)| > 1 − ε} ≤ C exp

(
− t

ε

)
for all ε < ε0

for some positive constants C , t , ε0 . Then David showed that the Beltrami equa-
tion ∂̄ϕ = µ · ∂ϕ has a homeomorphic solution ϕ ∈ W 1,1

loc (U) which is unique
up to postcomposition with a conformal map (see also [BJ] for a more geometric
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approach which gives a stronger theorem). Motivated by this result, we call a ho-
meomorphism ϕ: U → V a David map if ϕ ∈W 1,1

loc (U) and the complex dilatation
µϕ satisfies a condition of the form (1.4). Equivalently, ϕ is a David map if there
are positive constants C , t , K0 such that its real dilatation satisfies

(1.5) σ{z ∈ U : Kϕ(z) > K} ≤ Ce−tK for all K > K0.

To emphasize the values of these constants, sometimes we say that ϕ is a (C, t,K0)-
David map. Note that when U is a bounded domain in C , the spherical metric
in (1.4) or (1.5) can be replaced with the Euclidean area.

David maps enjoy some of the useful properties of quasiconformal maps, but
the two classes differ in many respects. As indications of their similarity, let us
mention the following two facts:

– Every David map is absolutely continuous; the Jacobian formula (1.1) still
holds.

– Tukia’s theorem [T]. “Let C , t , K0 be positive and suppose {ϕn} is a se-
quence of (C, t,K0)-David maps in a domain U which fix two given points
of U . Then {ϕn} has a subsequence which converges locally uniformly to
a David map in U .” It is rather easy to show that some subsequence of
{ϕn} converges locally uniformly to a homeomorphism, but the fact that this
homeomorphism must be David is quite non-trivial. We remark that the
parameters of the limit map may a priori be different from C , t , K0 .

Here are further properties of David maps which indicate their difference with
quasiconformal maps:

– The inverse of a David map may not be David.
– A David map may not be locally Hölder.
– The Jacobian of a David map may not be in Lploc(U) for any p > 1.

As an example, the homeomorphism ϕ: D(0, 1/e) → D defined by

ϕ(reiθ) := − 1

log r
eiθ

is a David map but ϕ−1 is not. Moreover, ϕ is not Hölder in any neighborhood
of 0, and Jϕ /∈ Lploc for p > 1.

The main goal of this note is to show how David maps differ from quasicon-
formal maps in the way they distort Hausdorff dimension of sets. Recall that the
Hausdorff s-measure of E ⊂ C is defined by

Hs(E) := lim
ε→0

inf
U

∑

i

(diamUi)
s,

where the infimum is taken over all countable covers U = {Ui} of E by sets of
Euclidean diameter at most ε . The Hausdorff dimension of E is defined by

dimH E := inf{s : Hs(E) = 0}.
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Quasiconformal maps can change Hausdorff dimension of sets only by a bounded
factor depending on their maximal dilatation. This was first proved by Gehring
and Väisälä [GV] who showed that if ϕ: U → V is K -quasiconformal, E ⊂ U ,
dimH E = α and dimH ϕ(E) = β , then

2
(
p(K) − 1

)
α

2p(K) − α
≤ β ≤ 2p(K)α

2
(
p(K) − 1

)
+ α

.

Here p(K) > 1 is the constant defined in (1.2). By Astala’s result (1.3), one
obtains

2α

2K − (K − 1)α
≤ β ≤ 2Kα

2 + (K − 1)α

which can be put in the symmetric form

(1.6)
1

K

(
1

α
− 1

2

)
≤ 1

β
− 1

2
≤ K

(
1

α
− 1

2

)
.

It follows in particular that quasiconformal maps preserve sets of Hausdorff di-
mension 0 and 2.

By contrast, we prove

Theorem A. Given any two numbers α and β in [0, 2] , there exists a

David map ϕ: C → C and a compact set Λ ⊂ C such that dimH Λ = α and

dimH ϕ(Λ) = β .

The proof shows that the parameters of ϕ can be taken independent of α
and β .

In the special case of a K -quasicircle, i.e., the image Γ of the round circle
under a K -quasiconformal map, the estimate (1.6) gives

1 ≤ dimH Γ ≤ 2K

K + 1

(the lower bound comes from topological considerations). It is well known that
dimH Γ can in fact take all values in [1, 2). We show that the upper bound 2 is
attained by a David image of the round circle. Let us call a Jordan curve Γ ⊂ C

a David circle if there exists a David map ϕ: C → C such that Γ = ϕ(S1), where
S1 is the unit circle {z ∈ C : |z| = 1} .

Theorem B. There exist David circles of Hausdorff dimension 2 .

One corollary of this result is that there are Jordan curves of Hausdorff di-
mension 2 that are (quasi)conformally removable (see Section 4).

Both results are bad (or exciting?) news for applications in holomorphic
dynamics, where one often wants to estimate the Hausdorff dimension of invariant
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sets by computing the dimension in a conjugate dynamical system. The dichotomy
of having dimension < 2 or = 2 for such invariant sets, which is respected by
quasiconformal conjugacies, is no longer preserved by David conjugacies. For
example, by performing a quasiconformal surgery on a Blaschke product, Petersen
proved that the Julia set of the quadratic polynomial Qθ: z 7→ e2πiθz + z2 is
locally-connected and has measure zero whenever θ is an irrational of bounded
type [P]. In this case, the boundary of the Siegel disk of Qθ is a quasicircle whose
Hausdorff dimension is strictly between 1 and 2 (compare [GJ]). On the other
hand, by performing a trans-quasiconformal surgery and using David’s theorem,
Petersen and the author extended the above result to almost every θ [PZ]. It
follows that there exists a full-measure set of rotation numbers θ for which the
boundary of the Siegel disk of Qθ is a David circle but not a quasicircle. Thus,
Theorem B opens the possibility that this boundary alone might have dimension
2, which would be a rather curious phenomenon.

2. Preliminary constructions

For two positive numbers a and b , we write

a 4 b

if there is a universal constant C > 0 such that a ≤ Cb . We write

a � b

if a 4 b and b 4 a , i.e., if there is a universal constant C > 0 such that C−1b ≤
a ≤ Cb . In this case, we say that a and b are comparable.

A family of Cantor sets. Given a strictly decreasing sequence d = {dn}n≥0

of positive numbers with d0 = 1, we construct a Cantor set Λ(d) as the in-
tersection of a nested sequence {Λn}n≥0 of compact sets in the unit square
Λ0 :=

[
− 1

2 ,
1
2

]
×

[
− 1

2 ,
1
2

]
defined inductively as follows. Set a1 := 2−2(d0 − d1)

and define Λ1 as the disjoint union of the four closed squares of side-length 2−1d1

in Λ0 which have distance a1 to the boundary of Λ0 (see Figure 1). Suppose
Λn−1 is constructed for some n ≥ 2 so that it is the disjoint union of 4n−1 closed
squares of side-length 2−(n−1)dn−1 . Define

(2.1) an := 2−(n+1)(dn−1 − dn).

For any square S in Λn−1 , consider the disjoint union of the four closed squares
in S of side-length 2−ndn which have distance an to the boundary of S . The
union of all these squares for all such S will then be called Λn . Clearly Λn is
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Figure 1. First two steps in the construction of Λ(d) .

the disjoint union of 4n closed squares of side-length 2−ndn , and the inductive
definition is complete.

The Cantor set Λ(d) is defined as
⋂
n≥0 Λn . We have

areaΛ(d) = lim
n→∞

area Λn = lim
n→∞

d2
n.

Lemma 2.1. The Hausdorff dimension of the Cantor set Λ = Λ(d) satisfies

(2.2) 2 − lim sup
n→∞

−2 log dn+1

− log dn + n log 2
≤ dimH Λ ≤ 2 − lim inf

n→∞

−2 log dn
− log dn + n log 2

.

Proof. For each n ≥ 0, there are 4n squares of diameter 2(1/2)−ndn covering
Λ. Hence the Hausdorff s -measure of Λ is bounded above by

lim inf
n→∞

4n(2(1/2)−ndn)
s = 2s/2 lim inf

n→∞
2n(2−s)dsn,

which is zero if s > 2 − lim infn→∞(−2 log dn)/(− log dn + n log 2). This proves
the upper bound in (2.2).

The lower bound follows from a standard mass distribution argument: Con-
struct a probability measure µ on Λ which gives equal mass 4−n to each square
in Λn , so that

µ(S) =
area (S)

d2
n

if S is a square in Λn.

Let x ∈ Λ and ε > 0, and choose n so that 2−ndn < ε ≤ 2−(n−1)dn−1 . The
disk D(x, ε) intersects at most πε2/(4−nd2

n) squares in Λn each having µ -mass
of 4−n . It follows that

µ
(
D(x, ε)

)
4
ε2

d2
n

= εs
ε2−s

d2
n

4 εs
2−n(2−s)d2−s

n−1

d2
n

.
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If s < 2−lim supn→∞(−2 log dn+1)/(− log dn+n log 2), the term 2−n(2−s)d2−s
n−1/d

2
n

will tend to zero as n→ ∞ , so that

µ
(
D(x, ε)

)
4 εs.

It follows from Frostman’s lemma (see for example [M]) that dimH Λ ≥ s . This
gives the lower bound in (2.2).

Standard homeomorphisms between Cantor sets. We construct stan-
dard homeomorphisms with controlled dilatation between Cantor sets of the form
Λ(d) defined above. The construction will depend on the following lemma:

Lemma 2.2. Fix 0 < a ≤ b < 1
2
. Let Aa be the closed annulus bounded by

the squares

{
(x, y) ∈ R2 : max{|x|, |y|} = 1

2

}
and

{
(x, y) ∈ R2 : max{|x|, |y|} = 1

2
− a

}
,

and similarly define Ab . Let ϕ: ∂Aa → ∂Ab be a homeomorphism which is the

identity on the outer boundary component and acts affinely on the inner boundary

component, respecting the horizontal and vertical sides. Then ϕ can be extended

to a K -quasiconformal homeomorphism Aa → Ab , with

(2.3) K � b(1 − 2a)

a(1 − 2b)
.

Proof. Let us first make a simple observation: If z and w are points in the
upper half-plane and L: R2 → R2 is the affine map such that L(0) = 0, L(1) = 1
and L(z) = w (see Figure 2), then the real dilatation of L is given by

(2.4) KL =
|z − w| + |z − w|
|z − w| − |z − w| .

To prove the lemma, take the triangulations of Aa and Ab shown in Figure 2 and
extend ϕ affinely to each triangle. After appropriate rescaling, it follows from
(2.4) that on a triangle of type I in the figure, the dilatation of ϕ is compara-
ble to b/a , while on a triangle of type II, the dilatation of ϕ is comparable to
b(1 − 2a)/

(
a(1 − 2b)

)
. Since b(1 − 2a)/

(
a(1 − 2b)

)
≥ b/a , we obtain (2.3).

Now take a decreasing sequence d = {dn} of positive numbers with d0 = 1,
let {an} be defined as in (2.1), and consider the Cantor set Λ(d) =

⋂
Λn . Take

another such sequence d′ = {d′n} and let a′n,Λ
′
n,Λ(d′) denote the corresponding

data. We construct a homeomorphism ϕ: C → C which maps the Cantor set Λ =
Λ(d) to Λ′ = Λ(d′). This ϕ is the uniform limit of a sequence of quasiconformal
maps ϕn: C → C with ϕn(Λn) = Λ′

n , defined inductively as follows. Let ϕ0

be the identity map on C . Suppose ϕn−1 is constructed for some n ≥ 1 and
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that it maps each square in Λn−1 affinely to the corresponding square in Λ′
n−1 .

Define ϕn = ϕn−1 on C \ Λn−1 and let ϕn map each square in Λn affinely to
the corresponding square in Λ′

n . The remaining set Λn−1 \Λn is the union of 4n

annuli on the boundary of which ϕn can be defined affinely. By rescaling each
annulus in Λn−1 \ Λn and the corresponding annulus in Λ′

n−1 \ Λ′
n , we are in

the situation of Lemma 2.2, so we can extend ϕn in a piecewise affine fashion to
each such annulus. This defines ϕn everywhere, and the inductive definition is
complete.

To estimate the maximal dilatation of ϕn , note that by the above construction
ϕn is conformal in Λn and has the same dilatation as ϕn−1 on C \ Λn−1 . On
each of the 4n annuli in Λn−1 \ Λn , the dilatation of ϕn can be estimated using
(2.3) in Lemma 2.2. In fact, rescaling each such annulus by a factor 2n/dn−1 and
the corresponding annulus in Λ′

n−1 \Λ′
n by a factor 2n/d′n−1 , it follows from (2.3)

that the dilatation of ϕn on each such annulus is comparable to

max





a′n
2−nd′n−1

(
1 − 2

an
2−ndn−1

)

an
2−ndn−1

(
1 − 2

a′n
2−nd′n−1

) ,

an
2−ndn−1

(
1 − 2

a′n
2−nd′n−1

)

a′n
2−nd′n−1

(
1 − 2

an
2−ndn−1

)





= max

{
a′n(dn−1 − 2n+1an)

an(d′n−1 − 2n+1a′n)
,
an(d

′
n−1 − 2n+1a′n)

a′n(dn−1 − 2n+1an)

}

= max

{
a′ndn
and′n

,
and

′
n

a′ndn

}
.
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To sum up, the construction gives a sequence {ϕn} with the following properties:

(i) ϕn = ϕn−1 on C \ Λn−1 .
(ii) ϕn maps each square in Λn affinely to the corresponding square in Λ′

n .
(iii) ϕn is Kn -quasiconformal, where

(2.5) Kn � max

{
Kn−1,

a′ndn
and′n

,
and

′
n

a′ndn

}

and K0 = 1.

Evidently, ϕ := limn→∞ ϕn is a homeomorphism which agrees with ϕn on C\Λn
for every n and satisfies ϕ(Λ) = Λ′ . We call this ϕ the standard homeomorphism

from Λ to Λ′ . Observe that by the construction, the inverse map ϕ−1 is the
standard homeomorphism from Λ′ to Λ.

3. Proof of Theorem A

We are now ready to prove Theorem A cited in Section 1.

Proof of Theorem A. If 0 < α, β < 2, it is well known that there is a K -
quasiconformal map ϕ: C → C mapping a set of dimension α to a set of dimen-
sion β (see for example [GV]). Moreover, by (1.6), the minimum K this would
require is

max





1

β
− 1

2
1

α
− 1

2

,

1

α
− 1

2
1

β
− 1

2




.

In what follows we consider the remaining cases where α and β are distinct and
at least one of them is 0 or 2.

Consider the sequences d = {dn} , d′ = {d′n} and d′′ = {d′′n} defined by

dn := 2−n/logn, d′n := 2−νn, d′′n := 2−n logn,

where ν > 0, and construct the Cantor sets Λ = Λ(d), Λ′ = Λ(d′) and Λ′′ =
Λ(d′′) as in Section 2. By Lemma 2.1,

dimH(Λ) = 2, dimH(Λ′) =
2

ν + 1
, dimH(Λ′′) = 0.

We prove that the standard homeomorphisms between these three Cantor sets and

their inverses are all David maps; this will prove the theorem. In view of Tukia’s
theorem quoted in Section 1, it suffices to check that the sequence of approximating
homeomorphisms are David maps with uniform parameters (C, t,K0). In fact, the
estimates below show that we can always take C = t = 1.
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Case 1 . Mapping Λ to Λ′ . Suppose {ϕn} is the sequence of quasiconformal
maps which approximates the standard homeomorphism ϕ from Λ to Λ′ . To
estimate the dilatation of ϕn , note that

(3.1) an = 2−(n+1)(dn−1−dn) � 2−n(2−(n−1)/log(n−1)−2−n/logn) � 2−n−n/logn

logn

and

(3.2) a′n = 2−(n+1)(d′n−1 − d′n) � 2−n(2−ν(n−1) − 2−νn) � 2−(ν+1)n.

Hence
a′ndn
and′n

� 2−(ν+1)n · 2−n/logn
2−n−n/logn

logn
· 2−νn

� logn.

It follows from (2.5) that there is a sequence 1 < K1 < K2 < · · · < Kn < · · · with
Kn � log n such that ϕn is Kn -quasiconformal. Fix the index n and a number
K > 1. Choose j so that Kj ≤ K < Kj+1 . Then

area {z : Kϕn
(z) > K} ≤ area {z : Kϕn

(z) > Kj} ≤ area (Λj) = d2
j = 4−j/log j .

Since K � Kj � log j , we obtain

area {z : Kϕn
(z) > K} ≤ e−K ,

provided that K is bigger than some K0 independent of n . It follows that the
ϕn are all (1, 1, K0)-David maps.

The inverse maps ψn := ϕ−1
n are also Kn -quasiconformal with the same

dilatation Kn � logn and they converge uniformly to ψ := ϕ−1 . Moreover, if
Kj ≤ K < Kj+1 , then

area {z : Kψn
(z) > K} ≤ area {z : Kψn

(z) > Kj}
≤ area (Λ′

j) = (d′j)
2 = 4−νj ≤ e−K ,

provided that K is bigger than some K0 independent of n . It follows that the
ψn are all (1, 1, K0)-David maps.

Case 2 . Mapping Λ′ to Λ′′ . The argument here is quite similar to the
previous case. We have

(3.3)
a′′n = 2−(n+1)(d′′n−1 − d′′n) � 2−n(2−(n−1) log(n−1) − 2−n logn)

� 2−n−n logn+logn.
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Hence, using (3.2) and (3.3), we obtain

a′′nd
′
n

a′nd
′′
n

� 2−n−n logn+log n · 2−νn
2−(ν+1)n · 2−n logn

� 2logn.

Let {ϕn} be the sequence of quasiconformal maps which approximates the stan-
dard homeomorphism ϕ from Λ′ to Λ′′ . It follows from (2.5) that there is a
sequence 1 < K1 < K2 < · · · < Kn < · · · with Kn � 2logn such that ϕn is
Kn -quasiconformal. Fix the index n and a number K > 1, and choose j so that
Kj ≤ K < Kj+1 . Then K � Kj � 2log j and

area {z : Kϕn
(z) > K} ≤ area {z : Kϕn

(z) > Kj}
≤ area (Λ′

j) = (d′j)
2 = 4−νj ≤ e−K ,

provided that K is bigger than some K0 independent of n .
The inverse maps ψn := ϕ−1

n are Kn -quasiconformal with Kn � 2logn and
they converge uniformly to ψ := ϕ−1 . Moreover, if Kj ≤ K < Kj+1 , then

area {z : Kψn
(z) > K} ≤ area {z : Kψn

(z) > Kj}
≤ area (Λ′′

j ) = (d′′j )
2 = 4−j log j ≤ e−K ,

provided that K is bigger than some K0 independent of n .

Case 3 . Mapping Λ to Λ′′ . Using (3.1) and (3.3), we obtain

a′′ndn
and′′n

� 2−n−n logn+logn · 2−n/logn
2−n−n/logn

logn
· 2−n logn

� 2logn logn = nlog 2 logn.

Let {ϕn} be the sequence of quasiconformal maps which approximates the stan-
dard homeomorphism ϕ from Λ to Λ′′ . It follows then from (2.5) that there is
a sequence 1 < K1 < K2 < · · · < Kn < · · · with Kn � nlog 2 logn such that ϕn
is Kn -quasiconformal. Fix n , let K be sufficiently large, and choose j so that
Kj ≤ K < Kj+1 . Then

area {z : Kϕn
(z) > K} ≤ area {z : Kϕn

(z) > Kj} ≤ area (Λj) = (dj)
2 = 4−j/log j .

But K � Kj � jlog 2 log j , so

area {z : Kϕn
(z) > K} ≤ e−K ,

provided that K is bigger than some K0 independent of n .
The inverse maps ψn := ϕ−1

n are Kn -quasiconformal with Kn � nlog 2 log n
and they converge uniformly to ψ := ϕ−1 . Moreover, if Kj ≤ K < Kj+1 , then

area {z : Kψn
(z) > K} ≤ area {z : Kψn

(z) > Kj}
≤ area (Λ′′

j ) = (d′′j )
2 = 4−j log j ≤ e−K ,

provided that K is bigger than some K0 independent of n .
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Figure 3. Cell decompositions of A and B .

4. Proof of Theorem B

The idea of the proof of Theorem B is to construct a David map ϕ: C → C

which sends a linear Cantor set Σ ⊂
[
− 1

2
, 1

2

]
to a Cantor set of the form Λ(d) with

dimension 2. The image ϕ
([
− 1

2 ,
1
2

])
will then be an embedded arc of dimension 2.

Since the construction allows ϕ = id outside the square
[
− 1

2
, 1

2

]
×

[
− 1

2
, 1

2

]
, we

can easily complete this arc to a David circle.

A linear Cantor set. Consider the closed unit square Σ0 :=
[
− 1

2 ,
1
2

]
×[

− 1
2
, 1

2

]
in the plane. We construct a nested sequence {Σn}n≥0 of compact sets

whose intersection is a linear Cantor set. For 1 ≤ j ≤ 4, let fj : C → C be the
affine contraction defined by

fj(z) = 1
8z + 1

8 (2j − 5),

and set

Σn :=
⋃

j1,...,jn

fj1 ◦ · · · ◦ fjn(Σ0),

where the union is taken over all unordered n -tuples j1, . . . , jn chosen from
{1, 2, 3, 4} . It is easy to see that Σn is the disjoint union of 4n closed squares of
side-length 8−n with centers on

[
− 1

2 ,
1
2

]
and sides parallel to the coordinate axes

(compare Figure 5 left). We define the Cantor set Σ as the intersection
⋂∞
n=0 Σn .

Evidently, Σ is a subset of
[
− 1

2 ,
1
2

]
which has linear measure zero and Hausdorff

dimension 2
3
.
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Figure 4. Extending ϕ between cells of type IV.

A quasiconformal twist. The proof of Theorem B depends on the following
lemma which is a triply-connected version of Lemma 2.2. For simplicity we denote
by S(p, r) the open square centered at p whose side-length is r .

Lemma 4.1. Fix 0 < a < 1
5 and let A and B be the closed triply-connected

sets defined by

A :=
([

0, 1
2

]
×

[
− 1

2
, 1

2

])
\

(
S

(
1
8
, 1

8

)
∪ S

(
3
8
, 1

8

))
,

B :=
([

0, 1
2

]
×

[
− 1

2 ,
1
2

])
\

(
S

(
1
4 (1 + i), 1

2 − 2a
)
∪ S

(
1
4(1 − i), 1

2 − 2a
))

(see Figure 3) . Let ϕ: ∂A→ ∂B be a homeomorphism which is the identity on the

outer boundary component and acts affinely on the inner boundary components,

mapping ∂S
(

1
8
, 1

8

)
to ∂S

(
1
4
(1 + i), 1

2
−2a

)
and ∂S

(
3
8
, 1

8

)
to ∂S

(
1
4
(1 − i), 1

2
−2a

)
,

respecting the horizontal and vertical sides. Then ϕ can be extended to a K -

quasiconformal map ϕ: A→ B , with

K � 1

a
.

Proof. We consider the affine cell decompositions of A and B shown in Fig-
ure 3 and require ϕ to map each cell in A to its corresponding cell in B in a
piecewise affine fashion. By symmetry, it suffices to define ϕ piecewise affinely be-
tween the cells labelled I, II, III, and IV. We let ϕ be affine between the triangular
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cells III. On the cells I and II we subdivide the trapezoids into two triangular cells
and define ϕ to be affine on each of them. An easy computation based on (2.4)
then shows that the dilatation of ϕ on I, II, and III is comparable to 1/a .

It remains to define ϕ between the cells IV and estimate its dilatation. Note
that the cell IV in A has bounded geometry, so there is a K1 � 1 and a piece-
wise affine K1 -quasiconformal map f1 from this cell to the square with vertices
0, 1, 1

2 (1 + i), 1
2(1 − i) which maps the horizontal edge of this cell to the segment

from 1
2 (1 − i) to 1 (see Figure 4). The cell IV in B , after a conformal change of

coordinates T , becomes the 4-gon with vertices

0, 1, z := −1 − 2a

4a
+
i

2
, z′ := 1 − (1 − 4a)i

4a
.

Let f2 be the piecewise affine map on this 4-gon which maps the triangle ∆(0, 1, z)
to ∆

(
0, 1, 1

2 (1+ i)
)

and the triangle ∆(0, 1, z′) to ∆
(
0, 1, 1

2 (1− i)
)

(see Figure 4).
Then a brief calculation based on (2.4) shows that f2 is K2 -quasiconformal, with
K2 � 1/a . The map ϕ can then be defined by T−1 ◦ f−1

2 ◦ f1 , whose dilatation
K1K2 is clearly comparable to 1/a .

We are now ready to prove Theorem B cited in Section 1.

Proof of Theorem B. Consider the Cantor set Σ =
⋂∞
n=0 Σn constructed

above and the Cantor set Λ = Λ(d) =
⋂∞
n=0 Λn constructed in Section 2, where

d = {dn} is defined by dn := 2−
√
n . It follows from Lemma 2.1 that dimH(Λ) = 2.

We construct a David map ϕ: C → C , identity outside the square
[
− 1

2 ,
1
2

]
×[

− 1
2
, 1

2

]
, with the property ϕ(Σ) = Λ. Then the embedded arc ϕ

([
− 1

2
, 1

2

])
con-

tains Λ and hence has dimension 2. By pre-composing ϕ with an appropriate
quasiconformal map, we obtain a David map sending the round circle to a Jordan
curve of dimension 2.

The map ϕ will be the uniform limit of a sequence of quasiconformal maps
ϕn: C → C with ϕn(Σn) = Λn , defined inductively as follows. Let ϕ0 be the
identity map on C . To define ϕ1 , set ϕ1 = ϕ0 on C\Σ0 and map each of the four
squares in Σ1 affinely to the “corresponding” square in Λ1 . Here “corresponding”
means that the squares in Σ0 , from left to right, map respectively to the north
west, south west, north east and south east squares in Λ1 (compare Figure 5).
The remaining set Σ0 \ Σ1 is the union of two triply-connected regions, on the
boundary of which ϕ1 can be defined affinely, so we can extend ϕ1 to each such
region as in Lemma 4.1.

In general, suppose ϕn−1 is constructed for some n ≥ 2 and that it maps each
square in Σn−1 affinely to a square in Λn−1 . Define ϕn = ϕn−1 on C \Σn−1 and
let ϕn map each square in Σn affinely to the “corresponding” square in Λn in the
above sense. The remaining set Σn−1 \Σn is the union of 22n−1 triply-connected
regions on the boundary of which ϕn can be defined affinely. By rescaling each such
region in Σn−1 \ Σn by a factor 8n−1 and the corresponding region in Λn−1 \ Λn
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2

1

Λ

Λ

2

1Σ

Σ

Figure 5. First two steps in the construction of the map ϕ .

The solid arcs on the right are ϕn(R) for n = 1, 2 .

by a factor 2n−1/dn−1 , we are in the situation of Lemma 4.1, so we can extend ϕn
in a piecewise affine fashion as in that lemma, and the dilatation of the resulting
extension will be comparable to

dn−1

2n−1an
=

dn−1

2n−1 · 2−(n+1)(dn−1 − dn)

=
2−

√
n−1

2n−1 · 2−(n+1)(2−
√
n−1 − 2−

√
n)

�
√
n .

The sequence {ϕn} obtained this way has the following properties:

(i) ϕn = ϕn−1 on C \ Σn−1 .
(ii) ϕn maps each square in Σn affinely to the corresponding square in Λn .
(iii) ϕn is Kn -quasiconformal, with Kn � √

n .
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Evidently, ϕ := limn→∞ ϕn is a homeomorphism which agrees with ϕn on C\Σn
for every n and satisfies ϕ(Σ) = Λ.

To check that ϕ is a David map, choose a sequence 1 < K1 < K2 < · · · <
Kn < · · · with Kn � √

n such that ϕn is Kn -quasiconformal. Fix some n , let
K > 1, and choose j such that Kj ≤ K < Kj+1 . Then

area {z : Kϕn
(z) > K} ≤ area {z : Kϕn

(z) > Kj} ≤ area (Σj) = 2−4j.

Since K � Kj �
√
j , we have

area {z : Kϕn
(z) > K} ≤ e−K ,

provided that K is bigger than some K0 independent of n . It follows that the
ϕn are all (1, 1, K0)-David maps. By Tukia’s theorem in Section 1, we conclude
that ϕ = limn→∞ ϕn is a David map.

Removability of David circles. A compact set Γ ⊂ C is called (quasi)con-

formally removable if every homeomorphism ϕ: C → C which is (quasi)conformal
off Γ is (quasi)conformal in C . It is well known that conformal and quasiconformal
removability are identical notions.

Every set of σ -finite 1-dimensional Hausdorff measure, such as a rectifiable
curve, is removable. Quasiarcs and quasicircles provide examples of removable
sets which can have any dimension in the interval [1, 2). One can even construct
removable sets of dimension 2: the Cartesian product of two linear Cantor sets
with zero length and dimension 1 is such a set.

At the other extreme, sets of positive area are never removable, as can be seen
by an easy application of the measurable Riemann mapping theorem. Also, there
exist non-removable sets of Hausdorff dimension 1 (see for example [K]).

To add an item to the above list of examples, we show that David circles
are removable, which, combined with Theorem B, proves that there exist remov-

able Jordan curves of Hausdorff dimension 2. First we need the following simple
lemma on David maps (compare [PZ]) whose analogue in the quasiconformal case
is standard.

Lemma 4.2. Suppose ϕ: C → C is a homeomorphism whose restrictions to

D and C \ D are David. Then ϕ itself is a David map.

Proof. The complex dilatation µ = µϕ is defined almost everywhere in C

and satisfies an exponential condition of the form (1.4) in D and in C \ D (by
making C bigger and t and ε0 smaller if necessary, we can assume that the same
constants (C, t, ε0) work for both D and C\ D). So to prove the lemma, we need
only show that ϕ ∈W 1,1

loc (C).
On every compact subset of C \ S1 , the ordinary partial derivatives ∂ϕ and

∂̄ϕ exist almost everywhere, are integrable, and coincide with the distributional
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partial derivatives of ϕ . We check that ∂ϕ , and hence ∂̄ϕ = µ · ∂ϕ , is locally
integrable near the unit circle S1 .

Let D be any small disk centered on S1 . We have

|∂ϕ|2 =
Jϕ

1 − |µ|2 ≤ Jϕ
1 − |µ| ,

so that

(4.1) |∂ϕ| ≤ (Jϕ)1/2 · (1 − |µ|)−1/2.

Now Jϕ ∈ L1(D) since
∫
D
Jϕ ≤ area

(
ϕ(D)

)
< +∞ , and (1− |µ|)−1 ∈ L1(D) be-

cause of the exponential condition (1.4). It follows from Hölder inequality applied
to (4.1) that ∂ϕ ∈ L1(D).

Theorem 4.3. David circles are (quasi)conformally removable.

Proof. Let ϕ: C → C be a David map and Γ = ϕ(S1). Let f : C → C be
a homeomorphism which is conformal in C \ Γ. Then the homeomorphism f ◦ ϕ
is David in D and in C \ D. By Lemma 4.2, f ◦ ϕ: C → C is a David map.
Since µf◦ϕ = µϕ almost everywhere, it follows from the uniqueness part of David’s
theorem [D] that f must be conformal in C .
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