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Abstract. We study the existence of positive solutions of the nonlinear elliptic equation
∆u + ϕ( · , u) = 0, in an unbounded domain D in Rn , n ≥ 3 , with compact boundary. Our
purpose is to give some existence results for the above equation with some boundary values, where
the nonlinear term ϕ(t, x) satisfies some appropriate conditions related to a certain Kato class
K∞(D) . We give also some estimates on the solution u .

1. Introduction

Numerous results are obtained for elliptic equation of the form

(1.1) ∆u+ ϕ( · , u) = 0 in D,

which characterize asymptotic properties of solutions of this equation for both
bounded and unbounded domain D ⊂ Rn , n ≥ 3 (see for example [1], [2], [4], [6],
[9], [12] and the references therein). Specially, existence and asymptotic behaviour
of solutions for exterior boundary value problems have been widely studied.

In the simplest case where ϕ(x, u) = q(x)uα , α > 0 and D = Rn , the
equation (1.1) has been extensively studied for both superlinear case (i.e. α > 1)
and sublinear case (i.e. 0 < α < 1). In [6], Lin proved the existence of a family of
positive solutions for the equation (1.1) under the conditions α > 1 and

(1.2) |q(x)| ≤
φ(|x|)

|x|2
at infinity with

∫ ∞ φ(r)

r
dr <∞.

He also proved that each of these solutions tends to some positive limit at infinity.
In [2], Brezis and Kamin considered 0 < α < 1 and proved the existence of a

unique positive solution of (1.1) satisfying lim inf |x|→∞ u(x) = 0 provided that q
is locally bounded such that V q is bounded (V = ∆−1).

As a tool of studying global solutions of semilinear elliptic equations, Zhao
introduced the class of Green tight functions K∞

n (D), where D is an unbounded
domain in Rn , n ≥ 3, with compact nonempty boundary ∂D (see [12]). More
precisely, he considered the case ϕ(x, u) = q(x)f(u), where q ∈ K∞

n (D) and there
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is no restriction on the sign of f but it is superlinear at 0. He showed that for
a small constant λ > 0, the equation (1.1) has a positive solution u ∈ C(D )
satisfying

u|∂D = 0 and lim
|x|→∞

u(x) = λ.

Note that if q satisfies (1.2) then q ∈ K∞
n (D).

More recently, in the case where D is an unbounded domain in Rn , n ≥ 3,
with compact nonempty boundary, Bachar et al. introduced in [1] a new Kato class
K∞(D) (see Definition 1), and they established interesting properties pertaining
to this class, which contains properly the classical Kato class K∞

n (D). It is also
shown in [1], that if ϕ is nonincreasing with respect to the second variable such
that ϕ( · , c) ∈ K∞(D), for every c > 0, then (1.1) has a unique positive solution
u ∈ C(D ) satisfying

u|∂D = 0 and lim
|x|→∞

u(x) = 0.

In the present paper, our purpose is to give existence and asymptotic be-
haviour of solutions for the equation (1.1) with some boundary values (see prob-
lems (1.3) and (1.4) below), where D is an unbounded domain in Rn , n ≥ 3,
with compact nonempty boundary ∂D and the nonlinear term ϕ(t, x) satisfies
some appropriate conditions related to the class K∞(D).

Our paper is organized as follows. In the next section, we collect a number of
preliminary results about the Green function GD of the laplacian in D and the
class K∞(D). Our existence results are given in Sections 3 and 4.

In Section 3, we use a potential theory approach to investigate the existence
of continuous solutions in D of the following nonlinear elliptic problem

(1.3)



















∆u− uf( · , u) = 0 in D,

u > 0 in D,

u|∂D = g,

lim|x|→∞ u(x) = λ,

where λ > 0 and g ∈ C+(∂D). We assume that f : D × [0,∞) → [0,∞) is
measurable and satisfies the following assumptions:

(H1): For all x ∈ D , the map t −→ tf(x, t) is nonnegative continuous on
[0,∞).

(H2): For all c > 0, there exists a positive function qc ∈ K∞(D) such that
for each x ∈ D and 0 ≤ s < t ≤ c , we have

tf(x, t)− sf(x, s)

t− s
≤ qc(x).
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Under these conditions, we also prove that if g ≡ 0, then the solution u of (1.3)
satisfies the following asymptotic behaviour

1

C

δD(x)

δD(x) + 1
≤ u(x) ≤ C

δD(x)

δD(x) + 1
for x ∈ D,

where C is a positive constant and δD(x) denotes the Euclidean distance between
x and ∂D .

Note that in this section, our techniques are inspired by [9].
In Section 4, we establish an existence result for the following nonlinear prob-

lem:

(1.4)







∆u+ ϕ( · , u) = 0 in D,

u > 0 in D, u|∂D = 0,

u ∈ C0(D),

where C0(D) denotes the set of continuous functions u in D vanishing at ∂D
and satisfying u(x) → 0 as |x| → ∞ within D .

Here the function ϕ is required to satisfy the following hypotheses:

(A1): ϕ is a nonnegative measurable function on D× [0,∞), continuous with
respect to the second variable.

(A2): There exist a nontrivial nonnegative function p ∈ L1
loc(D) and a non-

negative function q ∈ K∞(D) such that for x ∈ D and t > 0,

(1.5) p(x)f(t) ≤ ϕ(x, t) ≤ q(x)g(t),

where f and g: (0,∞) → [0,∞) are two measurable nondecreasing functions
satisfying

lim
t→0

f(t)

t
= +∞ and lim

t→∞

g(t)

t
= 0.

Moreover, we give in this section some estimates on the solution u of (1.4), in-
cluding the lower bound inequality

u(x) ≥ α
δD(x)

|x|n−1
,

where α > 0.
Similar conditions on ϕ have been adopted by Dalmasso in [4], where D is

the unit ball. More precisely, he proved in [4] that if ϕ is nondecreasing with
respect to the second variable and satisfies

lim
t→0

(

min
x∈D

ϕ(t, x)

t

)

= ∞ and lim
t→∞

(

max
x∈D

ϕ(t, x)

t

)

= 0,

then the problem (1.4) has at least one positive solution u ∈ C2(D ).
Note that throughout this paper, the nonlinear terms of the problems (1.3)

and (1.4) are not necessarily monotone with respect to the second variable. More-
over, the solutions of (1.3) and (1.4) are understood as distributional solutions
in D .
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Notation and preliminaries. We start by introducing some notation,
which will be useful throughout this paper.

(i) s ∧ t = min(t, s) and s ∨ t = max(t, s), for t, s ∈ R .

(ii) D is an unbounded domain in Rn , n ≥ 3, such that D
c

=
⋃k

j=1Dj ,

where Dj is a bounded C1,1 domain and D i ∩D j = ∅ , for i 6= j .

Moreover, for x ∈ D , we denote by

δD(x) the distance from x to ∂D ,
%D(x) = δD(x)/(δD(x) + 1),
λD(x) = δD(x)

(

δD(x) + 1
)

.

(iii) Let f and g be two positive functions on a set S .
We call f ∼ g , if there is c > 0 such that

1

c
g(x) ≤ f(x) ≤ cg(x) for all x ∈ S.

We call f � g , if there is c > 0 such that

f(x) ≤ cg(x) for all x ∈ S.

(iv) For a nonnegative measurable function f in D , we denote by V f the
potential of f defined in D by

V f(x) =

∫

D

GD(x, y)f(y) dy.

We recall that if f ∈ L1
Loc(D) such that V f ∈ L1

Loc(D), we have in the distribu-
tional sense (see [3, p. 52])

(1.6) ∆(V f) = −f in D.

(v) Let (Xt, t > 0) be the Brownian motion in Rn and P x be the probability
measure on the Brownian continuous paths starting at x . For a nonnegative
measurable function q in D , we denote by Vq the kernel defined by

Vqf(x) = Ex

(
∫ τD

0

e
−

∫

t

0
q(Xs) ds

f(Xt) dt

)

,

where Ex is the expectation on P x and τD = inf{t > 0 : Xt /∈ D} .
Furthermore, if q satisfies V q < ∞ , then we have the following resolvent

equation (see [7] or [10]):

(1.7) V = Vq + Vq(qV ) = Vq + V (qVq).
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So for each measurable bounded function u on D , we have

(1.8)
(

I − Vq(q.)
)(

I + V (q.)
)

u =
(

I + V (q.)
)(

I − Vq(q.)
)

u = u.

(vii) Let a ∈ Rn\D and r > 0 such that B(a, r) ⊂ Rn\D . Then we remark
that

GD(x, y) = r2−nG(D−a)/r

(

x− a

r
,
y − a

r

)

for x, y ∈ D,

and

δD(x) = rδ(D−a)/r

(

x− a

r

)

for x ∈ D.

So without loss of generality, we may assume throughout this paper that
B(0, 1) ⊂ Rn\D .

(viii) For x ∈ D , we put x∗ = x/|x|2 and D∗ =
{

x∗ ∈ B(0, 1) : x ∈ D∪{∞}
}

.
Then we have the following properties, for x, y ∈ D (see [1])

(1.9) GD(x, y) = |x|2−n|y|2−nGD∗(x∗, y∗).

(1.10) 1 + δD(x) ∼ |x|

(1.11) δD∗(x∗) ∼ %D(x) =
δD(x)

δD(x) + 1
.

2. Properties of the Green function and the class K∞(D)

First, we briefly recall some related results on the Green function GD which
are stated in [1].

Proposition 1. On D2 (that is x, y ∈ D ), we have

GD(x, y) ∼
1

|x− y|n−2
min

(

1,
λD(x)λD(y)

|x− y|2

)

.

Proposition 2. On D2 , we have

(2.1) C
δD(x)δD(y)

|x|n−1|y|n−1
≤ GD(x, y),

where C is a positive constant.
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Theorem 1 (3G-Theorem). There exists a constant C0 > 0 depending only

on D such that for all x, y and z in D

GD(x, y)GD(y, z)

GD(x, z)
≤ C0

(

%D(y)

%D(x)
GD(x, y) +

%D(y)

%D(z)
GD(y, z)

)

.

Definition 1. A Borel-measurable function q in D belongs to the class
K∞(D) if q satisfies

lim
α→0

(

sup
x∈D

∫

(|x−y|≤α)∩D

%D(y)

%D(x)
GD(x, y)|q(y)| dy

)

= 0

and

lim
M→∞

(

sup
x∈D

∫

(|y|≥M)∩D

%D(y)

%D(x)
GD(x, y)|q(y)| dy

)

= 0.

In the sequel, we put

‖q‖D = sup
x∈D

∫

D

%D(y)

%D(x)
GD(x, y)|q(y)| dy.

Then by [1], for each q ∈ K∞(D), we have ‖q‖D <∞ .
To state our main results, we recall some fundamental properties of the func-

tions belonging to K∞(D), which are established in [1].

Proposition 3. Let q be a function in K∞(D) and h be a positive super-

harmonic function in D . Then for each x ∈ D , we have

(2.2)

∫

D

GD(x, y)|q(y)|h(y) dy ≤ 2C0‖q‖Dh(x),

where C0 is the constant given in Theorem 1.

Corollary 1. Let q be a nonnegative function in K∞(D) then the potential

V q is bounded. Moreover, the function

x→
δD(x)

|x|n−1
q(x)

is in L1(D) .

Corollary 2. Let q be a nonnegative function in K∞(D) and h be a super-

harmonic function in D , then for x ∈ D such that 0 < h(x) <∞ , we have

exp(−2C0‖q‖D)h(x) ≤
(

h− Vq(qh)
)

(x) ≤ h(x),

where C0 is the constant given in Theorem 1.
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Proof. By ([11, Theorem 2.1, p. 164]), there exists a sequence of positive
measurable functions (fk) in D such that h = supk∈N

V fk .
Let x ∈ D such that 0 < h(x) < ∞ . Then there exists k0 ∈ N such that

0 < V fk(x) <∞ for all k ≥ k0 .
Let k ≥ k0 . We consider γ(t) = Vt.qfk(x) for t ≥ 0. Then the function γ is

completely monotone on [0,∞) and so Log γ is convex on [0,∞). This implies
that

γ(0) ≤ γ(1) exp

(

−
γ′(0)

γ(0)

)

.

That is

V fk(x) ≤ Vqfk(x) exp

(

V (qV fk)(x)

V fk(x)

)

.

As V fk is superharmonic in D , it follows from (2.2) that

V fk(x) ≤ Vqfk(x) exp(2C0‖q‖D).

Hence, using (1.7), we obtain

exp(−2C0‖q‖D)V fk(x) ≤ V fk(x) − Vq(qV fk)(x) ≤ V fk(x).

So, the result holds by letting k → ∞ .

Remark 1. Let µ, ν ∈ R and θ be the function defined in D by

θ(x) =
1

|x|µ−ν
(

δD(x)
)ν .

Then by [1], θ ∈ K∞(D) if and only if ν < 2 < µ . Moreover, by Corollary 1, for
ν < 2 < µ , the potential V θ is bounded. In fact, we give in the next proposition
more precise estimates on V θ , for ν < 2 < µ and µ > n .

Proposition 4 (see [1]). On D , we have

(i)
δD(x)

|x|n−1
� V θ(x) �

(δD(x))2−ν

|x|n−ν
for µ > n and 1 < ν < 2.

(ii)
δD(x)

|x|n−1
� V θ(x) �

δD(x)

|x|n−1
Log

(

4|x|

δD(x)

)

for µ > n and ν = 1 .

(iii)
δD(x)

|x|n−1
� V θ(x) �

δD(x)

|x|n−1
for µ > n and ν < 1 .

Remark 2. Note that similar estimates have been established in [1] for
ν < 2 < µ and µ ≤ n .
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3. First existence result

In this section we will give an existence result for the nonlinear elliptic prob-
lem (1.3). To this end let us denote by HD1 the solution of the Dirichlet problem







∆w = 0 in D,

w = 1 on ∂D,

w(x) → 0, as |x| → ∞.

Let h be the function defined on D by h(x) = 1 − HD1(x). Then h is a
positive harmonic function in D satisfying

lim
x→z∈∂D

h(x) = 0 and lim
|x|→∞

h(x) = 1.

Moreover, we have the following proposition.

Proposition 5. We have for each x ∈ D ,

h(x) = cn|x
∗|n−2GD∗(x∗, 0) = cn lim

|y|→∞
|y|n−2GD(x, y), where cn =

4πn/2

Γ
(

1
2
n− 1

) .

In particular, we have on D

(3.1) h(x) ∼
δD(x)

δD(x) + 1
.

Proof. Let HD∗f be the solution of the Dirichlet problem
{

∆w = 0 in D∗,

w = f ∈ C+(∂D∗) on ∂D∗.

Then, using ([8], Theorem 1, p. 473), we have

h(x) = 1 −
1

|x|n−2
HD∗

(

1

| · |n−2

)

(x∗) = |x|2−n
(

|x∗|2−n −HD∗(| · |2−n)(x∗)
)

.

Now, it is well known (see [3]) that for x∗, y∗ ∈ D∗ ,

GD∗(x∗, y∗) = G(x∗, y∗) −HD∗

(

G( · , y∗)
)

(x∗),

where G(x∗, y∗) = c−1
n |x∗ − y∗|2−n . Taking y∗ = 0, it follows that

h(x) = cn|x
∗|n−2GD∗(x∗, 0) for x ∈ D.

Moreover, by (1.9) we obtain

h(x) = cn lim
|y|→∞

|y|n−2GD(x, y) for x ∈ D.

Let us prove (3.1). By Proposition 1 and (1.10), we have for x ∈ D ,

h(x) ∼ 1 ∧ λD(x) ∼ 1 ∧ δD(x).

So using that a ∧ b ∼ ab/(a+ b), for a, b ∈ R+ , we obtain (3.1).



Nonlinear elliptic problems 159

In the sequel, we consider

C0(D) =
{

u ∈ C(D) : lim
x→z∈∂D

u(x) = lim
|x|→∞

u(x) = 0
}

endowed with the uniform norm ‖u‖∞ = supx∈D |u(x)| .
For a fixed nonnegative function q ∈ K∞(D), we put

Γq = {p ∈ K∞(D) : |p| ≤ q}.

Proposition 6 (see [1]). Let q be a nonnegative function in K∞(D) then

the family of functions

Fq =

{
∫

D

GD( · , y)p(y) dy : p ∈ Γq

}

is relatively compact in C0(D) .

Theorem 2. Let f : D× [0,∞) → [0,∞) be a measurable function satisfying

(H1) and (H2) . Then for each λ > 0 , the problem (1.3) has a positive solution

u ∈ C(D ) satisfying for each x ∈ D

(3.2) Cλ

(

λh(x) +HDg(x)
)

≤ u(x) ≤ λh(x) +HDg(x),

where Cλ is a positive constant. In particular, if g ≡ 0 , then we have on D

(3.3) u(x) ∼
δD(x)

δD(x) + 1
.

Proof. Given λ > 0. For convenience, we denote s(x) = λh(x)+HDg(x), for
x ∈ D . We aim to show an existence result for the equation

(3.4) u+ V
(

uf( · , u)
)

= s.

Let c := λ + ‖g‖∞ and qc be the function in K∞(D) given by (H2). For
simplicity we write q for qc . We consider the closed convex set Λ given by

Λ =
{

u ∈ Bb(D) : exp(−2C0‖q‖D)s ≤ u ≤ s
}

.

We define the operator T on Λ by

Tu =
(

s− Vq(qs)
)

+ Vq

[

(q − f( · , u)
)

u
]

.

Since ‖s‖∞ ≤ λ+ ‖g‖∞ = c , then (H2) implies that

(3.5) 0 ≤ f( · , u) ≤ q for any u ∈ Λ.
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So the operator T is well defined.
First, we claim that TΛ ⊂ Λ. Let u ∈ Λ, then from (3.5) and Corollary 2, it

follows that
Tu ≥ s− Vq(qs) ≥ exp(−2C0‖q‖D)s.

Moreover, we have
Tu ≤

(

s− Vq(qs)
)

+ Vq(qs) = s.

So TΛ ⊂ Λ. Next, we prove that T is nondecreasing on Λ. Let u, v ∈ Λ such
that u ≤ v . Then we have

Tu− Tv = Vq

[(

q − f( · , u)
)

u−
(

q − f( · , v)
)

v
]

.

By (H2) it follows that t→ t
(

q(x)− f(x, t)
)

is a nondecreasing function on [0, c]
for x ∈ D . This implies that Tu ≤ Tv .

We consider the sequence (uk) defined by

u0 = exp(−2C0‖q‖D)s and uk+1 = Tuk for k ∈ N.

From the monotonicity of T we obtain

u0 ≤ u1 ≤ · · · ≤ uk ≤ uk+1 ≤ s.

So using (H1), it follows from the dominated convergence theorem that the se-
quence (uk) converges to a function u ∈ Λ which is a fixed point of T . That is,
u satisfies

u =
(

s− Vq(qs)
)

+ Vq

[(

q − f( · , u)
)

u
]

.

This implies that

(3.6)
(

I − Vq(q.)
)

u+ Vq

(

uf( · , u)
)

=
(

I − Vq(q.)
)

s.

So applying
(

I + V (q.)
)

on both sides of (3.6), we deduce from (1.7) and (1.8)
that u is a solution of the equation (3.4).

Now, since q ∈ K∞(D), it follows from Corollary 1 that q ∈ L1
loc(D). More-

over, from (3.5) we have
uf( · , u) ≤ cq.

This shows that uf( · , u) ∈ L1
loc(D) and V

(

uf( · , u)
)

∈ Fcq . So by Proposi-

tion 6, V
(

uf( · , u)
)

∈ C0(D) ⊂ L1
loc(D). Thus, applying ∆ on both sides of (3.4),

we conclude by (1.6), that u is a solution of ∆u − uf( · , u) = 0 in D (in the
distributional sense). Now, as V

(

uf( · , u)
)

∈ C0(D), it follows from (3.4) that

lim
x→z∈∂D

u(x) = lim
x→z∈∂D

HDg(x) = g(z)
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and

lim
|x|→∞

u(x) = lim
|x|→∞

λh(x) = λ.

So u is a solution of (1.3), which is continuous in D ∪ {∞} . Finally, since u ∈ Λ
then u satisfies (3.2). In addition, if g ≡ 0, then combining (3.2) and (3.1), we
conclude that

u(x) ∼ h(x) ∼
δD(x)

δD(x) + 1
for x ∈ D.

Remark 3. If (H1) and (H2) hold and we assume further that for all x ∈ D ,
the map t→ tf(x, t) is nondecreasing on [0,∞), then for each λ > 0, the problem
(1.3) has a unique positive solution u ∈ C(D ).

Indeed, let u, v ∈ C(D ) be two positive solutions of (1.3). Suppose that there
exists x0 ∈ D such that u(x0) < v(x0). Let w = v − u , then w ∈ C0(D) and
satisfies

∆w + uf( · , u)− vf( · , v) = 0 in D (in the distributional sense).

Consider Ω = {x ∈ D, w(x) > 0} . Then Ω is a nonempty open set. So, since
t→ tf(x, t) is nondecreasing on [0,∞), we deduce that







∆w ≥ 0, in Ω,

w|∂Ω = 0,

lim|x|→∞, x∈Ωw(x) = 0, whenever Ω is unbounded.

Hence, the maximum principle ([5]) implies that w ≤ 0 in Ω, which gives a
contradiction.

Example 1. Let Bc = {x ∈ Rn : |x| > 1} , p > 1 and V be a nonnegative
measurable function in Bc . Suppose that there exists a nonnegative function k
on (1,∞) such that

V (x) ≤ k(|x|) for x ∈ Bc

and

(3.7)

∫ ∞

1

(r − 1)k(r) dr <∞.

Then for each λ > 0, the problem







∆u(x) − k(x)up(x) = 0, x ∈ Bc,

u > 0 in Bc, u|∂B = 0,

lim|x|→∞ u(x) = λ,
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has a unique solution u ∈ C(Bc) satisfying for each x ∈ Bc ,

u(x) ∼
|x| − 1

|x|
.

Indeed, for D = Bc , we have h(x) = 1 − 1/|x|n−2 ∼ 1 − 1/|x| for x ∈ Bc .
Moreover, by [1], if q is a radial nonnegative function in Bc then q ∈ K(Bc) if
and only if

∫ ∞

1

(r − 1)q(r) dr < ∞.

So (3.7) implies that x→ k(|x|) ∈ K(Bc). Thus (H2) is satisfied.

Example 2. Let p > 1 and ν < 2 < µ . Then for each λ > 0, the problem



















∆u(x) −
up(x) exp

(

−u(x)
)

|x|µ−ν
(

δD(x)
)ν = 0, x ∈ D,

u > 0 in D, u|∂D = g,

lim|x|→∞ u(x) = λ,

has a solution u ∈ C(D ) satisfying (3.3).

4. Second existence result

In this section, we are interested in the existence of continuous solutions for
the problem (1.4).

Theorem 3. Let ϕ: D× [0,∞) → [0,∞) be a measurable function satisfying

(A1) and (A2) . Then the problem (1.4) has a positive solution u satisfying, for

each x ∈ D ,

(4.1)
δD(x)

|x|n−1
� u(x) � V q(x),

where q is given in (1.5) .

Proof. Let p be the nonnegative function in L1
loc(D) given by (A2) and K

be a compact of D such that

0 < a :=

∫

K

p(x) dx <∞.

We put b := min{δD(x)/|x|n−1 : x ∈ K} . Since limt→0 f(t)/t = ∞ , then there
exists α > 0 such that

f(bα)

α
≥

1

aCb
,
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where C is given by (2.1). On the other hand, let q be the function in K(D) given
by (A2). Then using Corollary 1, we have ‖V q‖∞ <∞ . So as limt→∞ g(t)/t = 0,
there exists β > 0 such that

‖V q‖∞
g(β)

β
≤ 1.

Here we want to use the Schauder fixed point theorem. To this end we consider
the closed convex set

S =

{

u ∈ C0(D) : α
δD(x)

|x|n−1
≤ u(x) ≤ β for all x ∈ D

}

and we define the integral operator T on S by

Tu(x) = V
(

ϕ( · , u)
)

(x) =

∫

D

GD(x, y)ϕ
(

y, u(y)
)

dy for all x ∈ D.

We start by proving that TS ⊂ S . Let u ∈ S , so from (1.5) and the mono-
tonicity of g , we have for x ∈ D ,

Tu(x) ≤

∫

D

GD(x, y)q(y)g
(

u(y)
)

dy ≤ g(β)‖V q‖∞ ≤ β.

Moreover, using (2.1), (1.5) and the monotonicity of f , we have for x ∈ D ,

Tu(x) ≥ C
δD(x)

|x|n−1

∫

D

δD(y)

|y|n−1
p(y)f

(

α
δD(x)

|x|n−1

)

dy

≥ C
δD(x)

|x|n−1
f(αb)

∫

K

δD(y)

|y|n−1
p(y) dy ≥ Cab

δD(x)

|x|n−1
f(αb) ≥ α

δD(x)

|x|n−1
.

Now, since for all u ∈ S ,

(4.2) ϕ( · , u) ≤ g(β)q.

Hence Proposition 6 implies that Tu ∈ Fg(β)q ⊂ C0(D) for all u ∈ S . So TS ⊂ S .
Next, let us prove the continuity of T in S . Let (uk) be a sequence in S ,

which converges uniformly to a function u ∈ S . Then we have for x ∈ D ,

|Tu(x) − Tuk(x)| ≤

∫

D

GD(x, y)
∣

∣ϕ
(

y, u(y)
)

− ϕ
(

y, uk(y)
)
∣

∣ dy.

Since
∣

∣ϕ
(

y, u(y)
)

− ϕ
(

y, uk(y)
)
∣

∣ ≤ 2g(β)q(y),
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and V q is bounded, we deduce by (A1) and the dominated convergence theorem,
that for all x ∈ D

|Tu(x) − Tuk(x)| → 0, as k → ∞.

From (4.2), we have TS ⊂ Fg(β)q . It follows from Proposition 6 that TS is
relatively compact in C0(D), which implies that

‖Tu− Tuk‖∞ → 0, as k → ∞.

Thus T is a compact mapping from S to itself. Hence by Shauder’s fixed point
theorem, there exists u ∈ S such that

(4.3) u = V
(

ϕ( · , u)
)

.

Now, since q ∈ K∞(D), we deduce by (4.2) and Corollary 1, that ϕ( · , u) ∈
L1

loc(D). Moreover, from (4.2) and Proposition 6, we have V
(

ϕ( · , u)
)

∈ C0(D) ⊂
L1

loc(D). So applying ∆ on both sides of the equality (4.3), we conclude, by (1.6),
that u is a solution of (1.4).

On the other hand, since u ∈ S , u satisfies the lower estimates of (4.1).
Finally, combining (4.2) and (4.3), we have

u(x) ≤ g(β)V q(x) for x ∈ D,

which implies (4.1).

Example 3. Let α ≤ 0, 0 < µ < λ < 1 and ψ be a nonnegative measurable
function in Bc . Suppose that there exists a nonnegative measurable function k
on (1,∞) such that ψ(x) ≤ k(|x|) for x ∈ Bc , and

∫ ∞

1

(r − 1)k(r) dr <∞.

Then the problem











∆u+

(

u(x)
)λ

|x|α +
(

u(x)
)µψ(x) = 0, x ∈ Bc,

u|∂B = 0,

has a solution u ∈ C0(B
c) satisfying (4.1). Indeed, we take f(t) = tλ/(1 + tµ),

g(t) = tλ−µ , for t ∈ (0,∞) and p(x) = q(x) = ψ(x) for x ∈ Bc . So we have
obviously

lim
t→0

f(t)

t
= ∞ and lim

t→∞

g(t)

t
= 0.
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Moreover, if we suppose further that

∫ ∞

1

rn−1k(r) dr <∞,

then

u(x) ∼
|x| − 1

|x|n−1
for x ∈ Bc.

Indeed, using (4.1), we have for x ∈ Bc

u(x) � V k(|x|) �

∫ ∞

1

rn−1(|x| ∨ r)2−n
(

1 − (|x| ∨ r)2−n
)

k(r) dr

�

∫ ∞

1

rn−1(|x| ∨ r)2−n

(

1 −
1

|x| ∨ r

)

k(r) dr

� |x|2−n

(

1 −
1

|x|

)
∫ ∞

1

rn−1k(r) dr

�
|x| − 1

|x|n−1
.

Example 4. Let α, β ≥ 0 such that 0 < α + β < 1 and ν < 2 < µ . Then
the problem











∆u+

(

u(x)
)α

Log
(

1 + (u(x)
)β

)

|x|µ−ν
(

δD(x)
)ν = 0, x ∈ D,

u|∂D = 0,

has a solution u ∈ C0(D). Moreover, using (4.1) and Proposition 4, we have for
x ∈ D ,

δD(x)

|x|n−1
� u(x) �



































(

δD(x)
)2−ν

|x|n−ν
for µ > n and 1 < ν < 2,

δD(x)

|x|n−1
Log

(

4|x|

δD(x)

)

for µ > n and ν = 1,

δD(x)

|x|n−1
for µ > n and ν < 1.
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