
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 29, 2004, 177–184

PATHWISE CONNECTIVITY IN UNIFORM DOMAINS

WITH SMALL EXCEPTIONAL SETS

Timo Tossavainen

University of Joensuu, Department of Teacher Education

P.O. Box 55, FI-57101 Savonlinna, Finland; timo.tossavainen@joensuu.fi

Abstract. Let D be a uniform domain of the euclidean space Rn , n ≥ 2 , and suppose that
E ⊂ D is small compared to D . We establish a simple inequality in terms of Hausdorff content to
measure the size of the exceptional set of pathwise connectivity in D\E . Similar inequalities are
given in the special cases where D is a bounded convex domain of Rn , n ≥ 2 , or the boundary of
the unit ball Bn , n ≥ 3 . Also, a problem on the connectivity properties of a conformal boundary,
where such an inequality has applications, is briefly described.

1. Introduction

It is a general problem to study what kind of sets can be thrown out of a
domain so that the connectivity of it is not essentially destroyed. It is well known
that a set of topological dimension less than n− 1 does not separate a domain of
Rn , n ≥ 2. Also, using the Hausdorff measure Hα we can say that a set A does
not destroy the simple connectivity of a domain in Rn if Hα(A) = 0 for some
0 ≤ α ≤ n − 2.

However, the Hausdorff measure is not always the most useful tool in appli-
cations. One reason for this is the fact that Hausdorff measure is sensitive to the
topological dimension of the set to be measured. Indeed, Hα(A) is not finite if
the dimension of A is more than α . This also holds in the cases where A is a
compact subset of Rn .

On the other hand, when measuring sets we do not necessarily need to use
all the properties of the inner measure but we are satisfied with those of the outer
measure. Then the Hausdorff measure can be replaced with the Hausdorff content

H∞
α (of a set A), by which we mean the number

H∞
α (A) = inf

{ ∞
∑

k=1

rα
k : A ⊂

∞
⋃

k=1

B(xk, rk)

}

.

Here it is convenient to take 0 < α ≤ n for sets in Rn . To verify that H∞
α is an

outer measure in Rn , cf. [14].
Trivially, for any bounded A ⊂ Rn , we have H∞

α (A) < ∞ . Especially for a
ball B(x, r) it holds that H∞

α

(

B(x, r)
)

= rα .
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Before stating our results we record a few definitions. Assume from now on
that n ≥ 2 if not stated otherwise.

Let Bn be the unit ball of Rn . Following Alestalo’s definition in [1], a
domain D ⊂ Rn is (p, C)-uniform, where C ≥ 1 is constant and 0 ≤ p < n is an
integer, if every continuous function f : ∂Bp+1 → D has a continuous extension
g: Bp+1 → D such that

diam
(

g(Bp+1)
)

≤ Cdiam
(

f(∂Bp+1)
)

and
d
(

y, f(∂Bp+1)
)

≤ Cd(y, ∂D) for every y ∈ g(Bp+1).

The first inequality above is called the turning condition while the second one
is the lens condition, and together they form the uniformity conditions. (0, C)-
uniformity can be considered as a quantitative version of path-connectedness, and
similarly, (p, C)-uniformity of a domain D is a quantitative version of the property
πp(D) = 0 in algebraic topology; cf. [1].

Theorem A. Let 0 < α ≤ 1 , and let D ⊂ Rn be (0, C) -uniform. Assume

that E ⊂ D is such that H∞
α (E) ≤ δ , where δ < diam(D)/5C if D is bounded

and otherwise a fixed number. Then there is a set F such that

H∞
α (F ) ≤ (Cα + 2)δ,

and for every x, y ∈ D\F , there exists a path γ in D\E joining x and y such

that

diam(γ) ≤ inf
γx,y

diam(γx,y) + 5δ,

where the infimum is taken over all paths γx,y joining x and y in D.

If D is a bounded convex domain, we can give another upper bound for the
size of the bad set of the pathwise connectivity that also depends on the shape
of D .

To that end, let D ⊂ Rn be a bounded convex domain. Define for every
x ∈ D ,

R(D, x) =
infy∈Rn\D |x − y|
supy∈D |x − y|

and
R(D) = sup

x∈D
R(D, x).

Clearly, 0 ≤ R(D) ≤ 1, and the number R(D) tells us how roundish D is.
For example, R(B) = 1 for any ball B , and for D = Cone(x, y, λ, ε), we have
R(D) = λ for every 0 < ε ≤ 1. Here Cone(x, y, λ, ε) is a finite cone about
[x, y] = {tx + (1 − t)y : 0 ≤ t ≤ 1} with vertex at x , or more precisely, the union
of balls

⋃
{

B(tx + (1 − t)y, (1 − t)λ|x − y|) : 1 − ε ≤ t < 1
}

,

where ε, λ ∈ (0, 1] are fixed.
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Theorem B. Let 0 < α ≤ 1 , and D ⊂ Rn be bounded and convex with

R(D) = ρ > 0 . Assume that E ⊂ D is such that

H∞
α (E) ≤ δ <

ρ

10
diam(D).

Then there is a set F such that, for every x, y ∈ D\F , there exists a path γ in

D\E joining x and y so that

length(γ) ≤ |x − y| + 5δ.

Moreover,

(1.1) H∞
α (F ) ≤

(

2 + max

{

√

(

ρ2 + 1

2ρ2

)α

,
√

2α

})

δ.

For n ≥ 3, Theorem B can be modified so that D = ∂Bn , if we reset [x, y] to
be a geodesic arc of ∂Bn joining x and y . Then we have the following conclusions.

Theorem C. Let 0 < α ≤ 1 , and assume that E ⊂ ∂Bn is such that

H∞
α (E) ≤ δ , where δ is small. Then there exists a set F such that H∞

α (F ) ≤ 2δ
and, for every x, y ∈ ∂Bn\F , there is a path γ in ∂Bn\E joining them so that

length(γ) ≤ length([x, y]) + 5δ.

Notice that in all theorems we restrict α ≤ 1. This is due to the fact that
it is easy to separate, for example, a domain in R2 with

⋃

j B(xj, rj) so that
∑

j rα
j < δ for any fixed α > 1 and δ > 0. If the dimension n of the domain D is

greater than 2, a more natural upper bound for α is likely to be n− 1. However,
for simplicity, we leave this question for later considerations.

Another interesting question that so far remains somewhat open is how the
deletion of a small set E of a (p, C)-uniform domain D , where p > 0, affects the
higher uniformity of D\E . It is easy to see that a set E , for which H∞

α (E) < ε
for any fixed 0 < α ≤ 1 and ε > 0, may destroy the (n − 1, C)-uniformity of
D\E , where D ⊂ Rn is such a domain. On the other hand, there are no obvious
reasons why D\E could not be (p′, C ′)-uniform for some 0 < p′ < p whenever
E is small enough. However, we seem to lack the appropriate tools to verify this.
For example, consider how to give explicitly the cone construction of the (1, C)-
uniformity of Rn\E , where n ≥ 3 and H∞

α (E) ≤ ε for given 0 < α ≤ 1 and
ε > 0.

The idea to apply the Hausdorff measure or content to the theory of uniform
or convex sets is, of course, not new. Recently the Hausdorff content has appeared
in several areas of mathematical analysis; cf. [2], [4], [10] and [11], but our results
seem to be new in this kind of a setting. Only a version of Theorem C was originally
proved in [13]. In the last section, we shall briefly describe an application of this
kind of inequalities in the theory of conformal boundaries.
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2. The proof of Theorem A

In order to prove Theorem A, fix 0 < ε < 1, and notice that E can be covered
with countably many open balls B(xj , rj) such that

∞
∑

j=1

rα
j < (1 + ε)δ.

We shall prove the theorem by showing that the H∞
α -measure of the complement

of the largest path component of D\ ∪ B(xj, rj) does not exceed (Cα + 2)δ .
Replace the open balls of the cover of E with corresponding closed balls

and consider the complementary path components of the union of the first k
closed balls. To simplify our language, we say that every path component of
D\⋃k

j=1 B(xj, rj) except the largest (with respect to, for example, H∞
α ) of them

is blocked.
If a path component is blocked, it is already blocked, i.e. separated from the

largest path component, by a component of the union of these balls and perhaps
a subset of ∂D . This component can be taken to be a compact and connected
set, i.e. a continuum. Label the continua arising this way by Ej,k . Observe that a
single continuum can block several path components. Let Fj,k ⊂ D be the union
of the path components that are blocked by Ej,k .

We consider two cases. Assume first that
⋃

j Ej,k ∩ ∂D = ∅ with every k . In
this case we set

F =

(

∞
⋃

k=1

j(k)
⋃

j=1
Fj,k

)

∪
(

∞
⋃

j=1
B(xj, rj)

)

.

Then D\F is path connected.
By the classical result of Jung [7], every Fj,k can be covered by a ball with

radius diam(Ej,k)/
√

2 . Now, by elementary geometry,

H∞
α (Fj,k) ≤

(

diam(Ej,k)√
2

)α

≤
(

∑

i∈Ij,k
ri√

2

)α

≤
∑

i∈Ij,k
rα
i

2α/2
,

where Ij,k is the set of those indices i such that B(xi, ri) is in Ej,k . Furthermore,
for every k ,

H∞
α

(

j(k)
⋃

j=1

Fj,k

)

≤
j(k)
∑

j=1

(

diam(Ej,k)√
2

)α

≤
∑k

j=1 rα
j

2α/2
<

(1 + ε)δ

2α/2
.

For all k and l ≥ 0, we also have

(

j(k)
⋃

j=1
Fj,k

)

∪
(

k
⋃

j=1
B(xj, rj)

)

⊂
(

j(k+l)
⋃

j=1
Fj,k+l

)

∪
(

k+l
⋃

j=1
B(xj, rj)

)

.
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Thus, by Theorem 47 in [12],

(2.1) H∞
α (F ) = lim

k→∞
H∞

α

(

j(k)
⋃

j=1
Fj,k ∪

k
⋃

j=1
B(xj, rj)

)

≤ (1 + ε)δ

2α/2
+ (1 + ε)δ.

Consider next the case
⋃

j Ej,k ∩ ∂D 6= ∅ . Then, by the lens condition of
(0, C)-uniformity of the domain D , a single ball B(xj, rj) together with ∂D can
block only a subset Fj of D that can be covered with a ball of radius Crj . So,
in the worst case, every ball B(xj, rj) blocks with ∂D a path component Fj for
which

(2.2) H∞
α

(

⋃

j
Fj

)

≤
∑

j

(Crj)
α < Cα(1 + ε)δ.

Observe also that in this case the upper bound for δ guarantees that the largest
path component of D\⋃j B(xj , rj) exists uniquely.

Define now

F =

(

∞
⋃

k=1

j(k)
⋃

j=1

Fj,k

)

∪
(

∞
⋃

j=1

B(xj, rj)

)

∪
(

⋃

j

Fj

)

.

Then D\F is path connected and we have, by (2.1) and (2.2),

H∞
α (F ) ≤ (Cα + 2)δ

whenever ε > 0 is small enough.
In order to verify the last assertion of the theorem, let γ0 be any bounded

curve that joins x and y in D . Let d0 = diam(γ0). If, for every k , we have
γ0 ∩

(
⋃

j Ej,k

)

= ∅ , we are done. Suppose this is not the case. Then, for any k ,
we may pass by each Ej,k on γ0 by going around along the boundaries of Ej,k .
This gives us a new curve γk with

diam(γk) ≤ d0 +
k
∑

i=1

πri ≤ d0 + π(1 + ε)δ.

Since diam(γk) is bounded for every k , there exists a subsequence of (γk)
that converges to a curve γ , which joins x and y so that γ ∩ E = ∅ and

diam(γ) ≤ d0 + 5δ.

This completes the proof of Theorem A.
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3. The proofs of Theorems B and C

The setting in Theorem B is quite similar to the one in Theorem A, so we use
here the same notation as in the previous section as far as possible. Moreover, the
case

⋃

j Ej,k ∩ ∂D = ∅ with every k can be handled by repeating the argument of
the respective case in the proof of Theorem A. Therefore, assume that

⋃

j Ej,k ∩
∂D 6= ∅ .

By the convexity of D and the upper bound for δ , for every k ≥ 1, the worst
that can happen is that

⋃k
j=1 B(xj, rj) with ∂D blocks a union of cones (or subsets

of them). Therefore, fix any k ≥ 1 and assume that Fi ⊂ Cone(xi, yi, λi, εi) is
blocked by Ei =

⋃

j∈Ii
B(xj, rj) ∪ ∂D . Then the convexity of D implies λi ≥ ρ ,

and hence if H∞
α

(
⋃

j∈Ii
B(xj, rj)

)

= rα
i , it follows, by elementary geometry, that

(3.1) diam(Fi) ≤ max

{

√

(

ri

ρ

)2

+ r2
i , 2ri

}

.

Again, by the result of Jung, the set Fi can be covered by a ball with radius
diam(Fi)/

√
2 . It follows from (3.1) that, for every i ,

H∞
α (Fi) ≤

(

max

{
√

(

ρ2 + 1

2ρ2

)

,
√

2

}

ri

)α

= max

{

√

(

ρ2 + 1

2ρ2

)α

,
√

2α

}

H∞
α

(

⋃

j∈Ii

B(xj, rj)

)

.

Letting k → ∞ , this implies, as in the proof of Theorem A, that

(3.2)

H∞
α

(

⋃

i

Fi

)

≤
∑

i

max

{

√

(

ρ2 + 1

2ρ2

)α

,
√

2α

}

H∞
α

(

⋃

j∈Ii

B(xj, rj)

)

< max

{

√

(

ρ2 + 1

2ρ2

)α

,
√

2α

}

(1 + ε)δ.

Set now

F =

(

∞
⋃

k=1

j(k)
⋃

j=1

Fj,k

)

∪
(

∞
⋃

j=1

B(xj , rj)

)

∪
(

⋃

i

Fi

)

.

Then D\F is path connected and we have, by (3.2) and (2.1), as in the proof of
Theorem A,

H∞
α (F ) ≤

(

2 + max

{

√

(

ρ2 + 1

2ρ2

)α

,
√

2α

})

δ
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whenever ε > 0 is small enough.
To complete the proof of Theorem B, for any x, y ∈ D\F , we choose γ0 =

[x, y] and then repeat the argument of the last part of the proof of Theorem A to
show the existence of the suitable path γ between x and y .

To verify Theorem C, it is enough to notice that if D = ∂Bn for n ≥ 3, and
[x, y] is a geodesic arc of ∂Bn joining x and y , then the argument of the first
case of the proof of Theorem A and the same argument as used in the last part of
the proof of Theorem B still apply.

4. An application

We believe that Theorems A–C are of some interest on their own but, perhaps,
they serve better as applicative tools together with, say, the Besicovitch covering
theorem. As a matter of fact, the last theorem, or more precisely, a version of it,
has already been applied to the theory of conformal boundaries in this way.

In recent years, the theory of quasiconformal mappings of subdomains of
Rn , n ≥ 2, has been generalized in many ways. Following [2], we consider a
quasiconformal map f : Bn → Rn , n ≥ 3, by interpreting the average of the
Jacobian of f as a strictly positive continuous density ρ in Bn . In [2] it is shown
that a remarkable part of the properties of f follows from two simple geometric
conditions. There are also other classes of functions that can be studied similarly
by using suitable densities that satisfy the same conditions.

Let ρ be a suitable density. Then it induces a metric dρ in Bn . If ρ arises
from the quasiconformal mapping f , then dρ(x, y) is the internal euclidean dis-
tance of f(x) and f(y) in f(Bn).

The rho-boundary of the unit ball, ∂ρB
n is defined as (Bn, dρ)\(Bn, dρ),

where we take the abstract completion of the metric space (Bn, dρ). The metric
dρ extends in a natural way also to this boundary. Then ∂ρB

n is a metric space
and it can be characterized as the set of those ς ∈ ∂Bn for which dρ(0, ς) < ∞ .

Let n ≥ 3. One can show that there exists a finite constant M > 0 depending
on 0 < α ≤ 1 and δ > 0, such that the H∞

α -measure of the points ς ∈ ∂ρB
n , for

which dρ(0, ς) > M , is less than δ . There are also some other useful properties,
for which it is possible to find a set E such that the properties hold on ∂ρB

n\E
and H∞

α (E) < δ for any fixed δ > 0. One of the most important of these is that
the identity function

(4.1) id: (∂ρB
n\E, | · |) → (∂ρB

n\E, dρ)

is Hölder continuous.
Theorem C is now very useful, for example, in proving the dρ -pathwise con-

nectivity of ∂ρB
n\F , where H∞

α (F ) = 0 and 0 < α ≤ 1, in the following way.
Write δj = 1/j . Next, for j = 10, 11, 12, . . ., find the exceptional set Ej of both
the euclidean pathwise connectivity and the identity function of (4.1), for which
H∞

α (Ej) < δj . For every j , use Theorem C to get the corresponding set Fj .
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Finally, let F =
⋂

j Fj . Now it is easy to see that every x and y outside F can
be joined with a curve along which the identity function is continuous. For the
details, see [13] and [2].

Very recently, it was shown in [9] that the whole ∂ρB
n is pathwise connected

in the sense of dρ . The proof of this result relies on different arguments than the
use of Theorem C.

However, by the Hölder continuity of the identity function in (4.1) in the
major part of ∂ρB

n and the arguments used in [9], there are reasons to believe
that when n ≥ 4, the stronger connectivity properties with respect to dρ might
hold on the whole ∂ρB

n or at least on the major part of it. As mentioned in
the end of Introduction, some technical problems have prevented us from verifying
this so far. If one could find out whether the results of this paper can be extended
to cover also the uniformity of higher order, we would also be closer to the answer
to the question of the stronger connectivity properties of ∂ρB

n .
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