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Abstract. The Martin boundary corresponding to Q -Laplacian operator (where Q is the
Ahlfors regularity dimension of the space) was constructed in [HST]. In particular, it was shown
in [HST] that if the domain is bounded, uniform, and has uniformly fat complement, the (con-
formal) Martin kernel functions in the conformal Martin boundary of the domain vanish Hölder
continuously at the metric boundary points of the domain that do not arise as accumulation points
of the corresponding fundamental sequence of points in the domain. The aim of this note is to
extend the study of these Martin kernel functions to Q -almost locally uniform domains and by
exploring their behavior near the metric boundary points of the domain that are accumulation
points of any fundamental sequence associated with the Martin kernel function. We show that
the kernel function exhibits singular behavior near such boundary points, that is, they converge to
infinity along quasihyperbolic geodesic curves terminating at such boundary points.

We use this singular behavior of conformal Martin kernel functions to establish that conformal
mappings between two bounded locally uniform domains whose complements are uniformly fat have
non-tangential limits at every metric boundary of the domain of the mapping.

1. Introduction

Corresponding to certain degenerate elliptic operators it is possible to con-
struct singular solutions and use them to obtain a Martin compactification pertain-
ing to the operator; some recent papers such as [Ho], [HS], and [HST] have initiated
this study. In particular, Holopainen constructed singular functions corresponding
to the p -Laplacian (p ≥ 1) on bounded domains in Riemannian manifolds and used
them to classify manifolds that admit global singular functions. The paper [HS]
extends this construction of singular functions to certain metric measure spaces
equipped with a locally doubling measure supporting a Poincaré inequality. The
paper [HST] continued this study by constructing the conformal Martin boundary
(the Martin boundary corresponding to the operator that is conformally invariant)
for relatively compact domains in metric spaces of Q− -bounded geometry. It was
shown in [HST] that when the domain is uniform and its complement is uniformly
q -fat for some 1 ≤ q < Q , every conformal Martin boundary point corresponds
to a unique metric boundary point of the domain. It is still unknown whether in
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this case there is at most one conformal Martin boundary point corresponding to
every metric boundary point. In the case of the classical Martin boundary (corre-
sponding to the Laplacian) for relatively compact uniform domains in Riemannian
manifolds, it was shown by Anderson–Schoen, Ancona, and Aikawa in [AS], [An],
and [Ai] that the metric boundary and the Martin boundary are homeomorphic.

The aim of this note is to expand further on the singular behaviour of Martin
kernel functions constructed in [HST] for domains in metric measure spaces. The
domain studied in this note is a relatively compact locally uniform domain in a
metric space of Q− -bounded geometry such that the complement of the domain
is uniformly q -fat for some 1 ≤ q ≤ Q . For the definition of Q− -bounded geom-
etry as well as other relevant definitions of notions referred to in this section, see
Section 2. For uniform domains with uniformly q -fat complements, it was shown
in [HST] that if Mχ is a Martin kernel corresponding to a boundary point χ of
the domain in question and ζ is a different boundary point of the domain, then at
∂Ω near ζ the kernel Mχ converges in a Hölder continuous manner to zero; see
Theorem 3.1 below for a restatement of this result. The behaviour of Mχ near the
exceptional point χ was not studied in [HST]; the purpose of this note is to do so.
It is shown in Proposition 1.1 that whenever γ is a quasihyperbolic geodesic ray
in a locally uniform domain Ω (see Definition 2.11 in Section 2) with uniformly
Q -fat boundary (that is, the complement of the domain is dense in the capacitary
sense; see Definition 2.13 in Section 2) terminating at the singular point χ ∈ ∂Ω,
and Mχ is a conformal Martin kernel corresponding to χ , then Mχ tends to in-
finity along γ . Indeed, it is demonstrated in this note that along non-tangential
sequences converging to χ the Martin kernel Mχ tends to infinity.

Readers unfamiliar with the terminology used in this section such as Q− -
bounded geometry, Q -almost locally uniform domains, and Martin kernels Mχ

associated with the boundary point χ ∈ ∂Ω, should see Section 2.

Proposition 1.1. Let X be a metric measure space of Q− -bounded geom-

etry, Ω be a relatively compact Q -almost locally uniform domain in X with

uniformly Q -fat complement, χ ∈ ∂Ω be a point of local uniformity for Ω ,

and γ be a quasihyperbolic geodesic ray in Ω that terminates at χ . Then

limt→∞ Mχ

(

γ(t)
)

= ∞ .

We conclude by using this result to show a Fatou type result for conformal
maps between two such domains. Namely, we will demonstrate the following theo-
rem. In the study of quasiconformal mappings it is well known that quasiconformal
maps between two discs in R2 have radial limits along all radii. Many extensions
of this Fatou type result have appeared in literature for certain types of quasi-
conformal maps from balls in Rn , see [Jen], [Str], [V], and the references therein.
Recently a strong version of a Fatou type theorem has been proven by Bonk,
Heinonen, and Koskela in [BHK] for certain types of Gromov hyperbolic spaces
and uniform domains. The following theorem provides a partial Fatou type result
for more general domains than mere uniform domains, and claims that conformal
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maps between two Q -almost locally uniform domains have nontangential limits at
almost every boundary point of the domain, that is, the conformal map achieves
a limit as the point in the domain of the map moves along any r -cone towards
the boundary of the domain. The notion of Q -almost locally uniform domains
and related definitions will be given in the next section. For the definition of an
r -cone C(r) see Definition 2.12.

Theorem 1.2. Let (X, dX , µX) and (Y, dY , µY ) be two metric spaces of Q− -

bounded geometry, and U ⊂ X and V ⊂ Y be two relatively compact Q -almost

locally uniform domains such that X \U and Y \ V are uniformly Q -fat, the set

of boundary points that are not points of local uniformity for V are separated by

∂V , and let f : U → V be a conformal map. Then whenever χ ∈ ∂U is a point of

local uniformity for U and C(r) is a cone in U terminating at χ and (xn)n∈N is

a sequence in C(r) converging to χ , the limit limn→∞ f(xn) exists and the limit

is independent of r .

While the above theorem does not give details on the behavior of the conformal
mapping near boundary points that are not points of local uniformity for Ω, the
proof of the theorem suggests the following type of behavior provided the set of
points of non-local uniformity for U is separated by ∂U . If ζ is a boundary point
that is not of local uniformity for Ω, and (xn)n is a sequence in U converging to
ζ such that there is a Martin kernel function M ∈ ∂cMU with the property that
limn→∞ M(xn) = ∞ , then limn→∞ f(xn) exists, though perhaps not independent
of such sequence, or, strictly speaking, of the kernel M .

In the case that U , V are in addition globally uniform domains, Theorem 1.2
can be substantially strengthened by using the techniques of [BHK]; in this case,
all quasiconformal mappings f between two such domains extend as global qua-
siconformal mappings between the closures of the two domains. To see this note
that the inverse of the uniformization described in [BHK] is a quasiconformal map-
ping from the uniform domain to a Gromov hyperbolic space, and the lifting of
the quasiconformal map f by this uniformization results in a quasiconformal map-
ping between two Gromov hyperbolic spaces. A slight modification of the proof of
Theorem 9.8 of [BHK] (using the generalization outlined in [Her] together with the
fact that the boundary of the domains are uniformly fat) yields the quasiconformal
extension of the mapping to the Gromov compactification of the corresponding hy-
perbolic spaces, which in turn, when we use the uniformization procedure, yields
a quasiconformal extension of f to the metric closure of the two uniform domains.

The strength of Theorem 1.2 over the above observation lies in the flexibility
of its proof. Not only do we relax the requirement on the domains to be merely
Q -almost locally uniform, but the proof can be easily modified to apply to more
general domains that have slits and so are not even Q -almost locally uniform as
well as to domains with isolated boundary points (for which the uniform Q -fatness
condition fails) and combinations thereof. See Definition 2.5 for the definition of
conformal mappings between two metric spaces admitting a derivative structure.
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This note is organized as follows. Section 2 consists of definitions and nota-
tions used throughout this paper and in Proposition 1.1 and Theorem 1.2, while
Section 3 gives the preliminary results needed in the proof of the main results
Proposition 1.1 and Theorem 1.2 of this note. The final section gives the proof of
these two main results.

Acknowledgement. The author wishes to thank Juha Heinonen and David
Herron for valuable discussions on Gromov hyperbolic spaces and for pointing out
the strengthening of Theorem 1.2 in the case that Ω is a uniform domain, and the
referee for suggestions on improving the presentation of this paper.

2. Definitions and notation

We assume throughout this note that X is a locally compact metric space en-
dowed with a metric d and a non-trivial Borel regular measure µ so that bounded
sets have finite measure and non-empty open sets have positive measure.

In the setting of metric measure spaces with no Riemannian structure, the fol-
lowing notion of upper gradients, formulated by Heinonen and Koskela in [HeK1],
plays the role of derivatives. A Borel function g on X is an upper gradient of a
real-valued function f on X if for all non-constant rectifiable paths γ: [0, lγ] → X
parameterized by arc length,

∣

∣f
(

γ(0)
)

− f
(

γ(lγ)
)
∣

∣ ≤

∫

γ

g ds,

where the above inequality is interpreted as saying also that
∫

γ
g ds = ∞ whenever

∣

∣f
(

γ(0)
)
∣

∣ is infinite or
∣

∣f
(

γ(lγ)
)
∣

∣ is infinite. If the above inequality fails only for a
curve family with zero p -modulus (see e.g. Section 2.3 in [HeK1] for the definition
of the p -modulus of a curve family), then g is a p-weak upper gradient of u . It is
known that the Lp -closed convex hull of the set of all upper gradients of u that
are in Lp(X) is precisely the set of all p -weak upper gradients of u in Lp(X); see
Lemma 2.4 in Koskela–MacManus [KoMc].

Definition 2.1. We say that X supports a (1, p)-Poincaré inequality if there
are constants τ, C > 0 such that for all balls B ⊂ X , all measurable functions f
on X , and all p -weak upper gradients g of f ,

∫

−
B

|f − fB | dµ ≤ Cr

(
∫

−
τB

gp dµ

)1/p

,

where r is the radius of B and

fB :=

∫

−
B

f dµ :=
1

µ(B)

∫

B

f dµ.

Definition 2.2. As a metric measure space, X is said to be of locally Q− -

bounded geometry, Q > 1; if the measure µ is (locally) Ahlfors Q -regular (that is,
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the measure of balls of radii r is comparable to the quantity rQ ) and supports a
local (1, q)-Poincaré inequality for some 1 ≤ q < Q in the sense of Definition 2.1
above.

Following [Sh1], we consider a version of Sobolev spaces on the metric
space X .

Definition 2.3. Let

‖u‖N1,p =

(
∫

X

|u|p dµ

)1/p

+ inf
g

(
∫

X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u . The Newtonian space

on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p < ∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p = 0.

The space N1,p(X) equipped with the norm ‖ · ‖N1,p is a Banach space
and a lattice, see [Sh1]. In the seminal paper [C], Cheeger gives an alternative
definition of Sobolev spaces which leads to the same space whenever p > 1, see
Theorem 4.10 in [Sh1]. Cheeger’s definition yields the notion of partial derivatives
in the following theorem (Theorem 4.38 in [C]).

Theorem 2.4 (Cheeger). Let X be a metric measure space equipped with

a positive doubling Borel regular measure µ . Assume that X admits a (1, p) -

Poincaré inequality for some 1 < p < ∞ . Then there exists a countable col-

lection (Uα, Xα) of measurable sets Uα and Lipschitz “coordinate” functions

Xα = (Xα
1 , . . . , Xα

k(α)): X → Rk(α) such that µ
(

X \
⋃

α Uα

)

= 0 , and for all

α the following hold.

The measure of Uα is positive, and the functions Xα
1 , . . . , Xα

k(α) are linearly

independent on Uα and 1 ≤ k(α) ≤ N , where N is a constant depending only

on the doubling constant of µ and the constant from the Poincaré inequality. If

f : X → R is Lipschitz, then there exist unique bounded measurable vector-valued

functions dαf : Uα → Rk(α) such that for µ -a.e. x0 ∈ Uα ,

lim
r→0+

sup
x∈B(x0,r)

∣

∣f(x) − f(x0) − dαf(x0) ·
(

Xα(x) − Xα(x0)
)
∣

∣

r
= 0.

We can assume that the sets Uα are pairwise disjoint and extend dαf by
zero outside Uα . Regard dαf(x) as vectors in RN and let df =

∑

α dαf . The
differential mapping d: f 7→ df is linear and it is shown on p. 460 of [C] that there
is a constant C > 0 such that for all Lipschitz functions f and µ -a.e. x ∈ X ,

(1)
1

C
|df(x)| ≤ gf (x) := inf

g
lim sup
r→0+

∫

−
B(x,r)

g dµ ≤ C|df(x)|.
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Here |df(x)| is a norm coming from a measurable inner product on the tangent
bundle of X created by the above Cheeger derivative structure (see the discussion
in [C]), gf is the minimal p-weak upper gradient of f (see Corollary 3.7 in [Sh2]
and Lemma 2.3 in Björn [Bj]), and the infimum is taken over all upper gradients
g of f . Also, by Proposition 2.2 in [C], df = 0 µ -a.e. on every set where f is
constant.

By Theorem 4.47 in [C] or Theorem 4.1 in [Sh1], the Newtonian space N 1,p(X)
is equal to the closure in the N 1,p -norm of the collection of Lipschitz functions
on X with finite N1,p -norm. By Theorem 10 in Franchi–Haj lasz–Koskela [FHK],
there exists a unique “gradient” du satisfying (1) for every u ∈ N 1,p(X). More-
over, if {uj}

∞
j=1 is a sequence in N1,p(X), then uj → u in N1,p(X) if and only

if as j → ∞ , uj → u in Lp(X, µ) and duj → du in Lp(X, µ; RN). Hence the
differential structure extends to all functions in N 1,p(X). Throughout this note
we will use this structure, see for example Definition 2.7 below.

It was shown in [HKST] that if (Y1, d1, µ1) and (Y2, d2, µ2) are two metric
measure spaces of locally Q -bounded geometry, then a homeomorphism f : Y1 →
Y2 is quasiconformal if and only if f ∈ N 1,Q

loc (Y1; Y2) and there exists a constant
K ≥ 1 so that

Lip f(x)Q ≤ KJf (x)

for µ1 -almost every x ∈ Y1 , see [HKST, Theorem 9.8]. Here

Lip f(x) = lim sup
r→0

(

ess sup
d1(x,y)≤r

d2

(

f(x), f(y)
)

r

)

,

and

Jf (x) = lim sup
r→0

µ2

(

fB(x, r)
)

µ1

(

B(x, r)
)

denotes the infinitesimal volume distortion of f at x . This Radon–Nikodym
derivative exists because of the fact that f satisfies Lusin’s condition (N); see

[HKST]. For the definition of the metric space-valued Sobolev space N 1,Q
loc (Y1; Y2);

see [HKST, Section 3].
Under the standing assumptions of Q− -bounded geometry on X , every rel-

atively compact domain in X is of locally Q -bounded geometry. Therefore, if
U ⊂ X and V ⊂ Y are relatively compact subdomains of metric measure spaces
X and Y of locally Q -bounded geometry, then U and V are themselves of locally
Q -bounded geometry and hence the results of [HKST, Section 9] apply to quasi-
conformal maps from U to V . Let f : U → V be such a map. By the discussion in
[HKST, Section 10], there exists a matrix-valued map df , the transposed Jacobian,
on U so that for every Lipschitz function ϕ on V ,

d(ϕ ◦ f)(x) = df(x) dϕ
(

f(x)
)

for µ -a.e. x ∈ U .



Singular behavior of conformal Martin kernels 201

Definition 2.5. Let U , V be two relatively compact subdomains of two
metric measure spaces (X, dX , µX) and (Y, dY , µY ) respectively, both of Q− -
bounded geometry. Recall that a homeomorphism f : U → V is a conformal map
if f is a quasiconformal mapping so that for µX -a.e. x ∈ U ,

‖df(x)‖Q ≤ Jf (x) and ‖df−1(x)‖Q ≤ jf−1(x);

see for example Section 4.1 of [HST]. Here ‖df(x)‖ denotes the operator norm of
the matrix df(x).

By Lemma 4.4 of [HKST], conformal mappings preserve the class of Q -
harmonic functions; that is, a function u: U → R is Q -harmonic if and only
if u ◦ f−1 is Q -harmonic on V .

It is worthwhile noting that the conformality of the mapping depends on the
Cheeger derivative structure of X and of Y . It is clear from the construction given
in [C] that a given metric measure space of Q− -bounded geometry will support
more than one Cheeger derivative structure; hence, the conformality property of a
quasiconformal map f : U → V depends quite heavily on the two Cheeger deriva-
tive structures, as do the conformal Martin boundaries. It should also be noted
that even between two Euclidean domains, if the derivative structure considered
is different from the standard Euclidean structure (and there are infinitely many
of them), then the corresponding conformal mappings between the domains need
not be restrictions of Möbius maps; therefore Theorem 1.2 is applicable to a wider
class of mappings than just the class of Möbius maps.

Definition 2.6. The p-capacity of a Borel set E ⊂ X is the number

Cap(E) := inf
u

(
∫

X

|u|p dµ +

∫

X

|du|p dµ

)

,

where the infimum is taken over all u ∈ N 1,p(X) such that u = 1 on E .

To be able to compare the boundary values of Newtonian functions we need
a Newtonian space with zero boundary values. Let Ω ⊂ X be an open set and let

N1,p
0 (Ω) = {u ∈ N1,p(X) : u = 0 p -q.e. on X \ Ω}.

Corollary 3.9 in [Sh1] implies that N 1,p
0 (Ω) equipped with the N1,p -norm is a

closed subspace of N1,p(X). By Theorem 4.8 in [Sh2], if Ω is relatively compact,
the space Lipc(Ω) of Lipschitz functions with compact support in Ω is dense
in N1,p

0 (Ω).
Unless otherwise stated, C denotes a positive constant whose exact value is

unimportant, can change even within the same line, and depends only on fixed
parameters such as X , d , µ and p . If necessary, we will specify its dependence
on other parameters.

In the rest of this paper, Ω ⊂ X will always denote a bounded domain in
X such that Cap(X \ Ω) > 0. Furthermore, we assume that Ω is a relatively
compact domain.
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Definition 2.7. Let Ω ⊂ X be a domain. A function u: X → [−∞,∞] is
said to be p-harmonic in Ω if u ∈ N 1,p

loc (Ω) and for all relatively compact subsets

U of Ω and for every function ϕ ∈ N 1,p
0 (U),

∫

U

|du|p dµ ≤

∫

U

|d(u + ϕ)|p dµ,

or equivalently,
∫

U

|du|p−2du · dϕ dµ = 0.

Here CapQ(K; Ω) denotes the relative Q-capacity of a compact set K with

respect to an open set Ω ⊃ K ; recall that this is equal to inf
∫

Ω
|du|Q dµ , the

infimum being taken over all functions u ∈ N 1,Q(X) for which u | K ≥ 1 and
u | X \ Ω = 0. If such functions do not exist, we set CapQ(K; Ω) = ∞ . For more
on capacity, see [HeK2], [KiMa], [KaSh], [HKM, Chapter 2], and the references
therein. It should be observed that the relative capacity CapQ(K; Ω) is not the
same as Cap(K); however, CapQ(K; Ω) = 0 if and only if Cap(K) = 0.

Definition 2.8. Let Ω be a relatively compact domain in X and let y ∈ Ω.
An extended real-valued function g = g( · , y) on Ω is said to be a Q-singular

function with singularity at y if it satisfies the following four criteria:

(i) g is Q -harmonic in Ω \ {y} and g > 0 on Ω;
(ii) g|X\Ω = 0 p -q.e. and g ∈ N1,Q

(

X \ B(y, r)
)

for all r > 0;
(iii) y is a singularity, i.e., limx→y g(x) = ∞ ;
(iv) whenever 0 ≤ a < b < ∞ ,

(2) CapQ(Ωb; Ωa) = (b − a)1−Q,

where Ωb = {x ∈ Ω : g(x) ≥ b} and Ωa = {x ∈ Ω : g(x) > a} .

In [HoSh] it was shown that every relatively compact domain in a space of
locally Q− -bounded geometry supports a Q -singular function which plays a role
analogous to the Green function of the Euclidean Q -Laplacian operator.

Since we have fixed the regularity exponent Q of the measure µ in this
discussion, we shall simply call such functions singular functions, suppressing the
reference to the index. Following the arguments given by Holopainen in [Ho], it
can be seen that given y ∈ Ω there is precisely one Q -singular function satisfying
equation (2). This observation enables us to define a Martin boundary in a manner
similar to the classical potential theoretic Martin boundary.

Definition 2.9. Fix x0 ∈ Ω. Given a sequence (xn) of points in Ω, we say
that the sequence is fundamental (relative to x0 ) if the sequence has no accumu-
lation point in Ω and the sequence of normalized singular functions

Mxn
(x) = M(x, xn) :=

g(x, xn)

g(x0, xn)
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is locally uniformly convergent in Ω. Above we set M(x, x0) = 0 when x 6= x0 ,
and M(x0, x0) = 1.

Given a fundamental sequence ξ = (xn), we denote the corresponding limit
function

Mξ(x) := lim
n→∞

M(x, xn),

and call it the conformal Martin kernel for ξ . We say that two fundamental
sequences ξ and ζ are equivalent (relative to x0 ), ξ ∼ ζ , if Mξ = Mζ . It
is worth noting that Mξ is a non-negative Q -harmonic function in Ω, with
Mξ(x0) = 1. Hence Mξ > 0 in Ω by local Harnack’s inequality (see [KiSh] for
a proof of the local Harnack inequality). Note that if x̃0 is another point in Ω,
then g(x, xn)/g(x̃0, xn) = M(x, xn)/M(x̃0, xn). Therefore, the property of being
a fundamental sequence is independent of the particular choice of x0 . Further-
more, fundamental sequences ξ and ζ are equivalent relative to x0 if and only
if they are equivalent relative to any x̃0 ∈ Ω. Thus the following definition is
independent of the fixed point x0 .

Given a point χ ∈ ∂Ω we say that the function Mχ is a conformal Martin
kernel associated with χ if there is a fundamental sequence (yi)i in Ω so that
the sequence of singular functions M(yi, · ) with singularity at yi converge locally
uniformly to Mχ and yi → χ .

Definition 2.10. The collection of all equivalence classes of fundamental
sequences in Ω (or equivalently, the collection of all conformal Martin kernel func-
tions) is the conformal Martin boundary ∂cMΩ of the domain Ω. This collection
is endowed with the local uniform topology: a sequence ξn in this boundary is
said to converge to a point ξ if the sequence of functions Mξn

converges locally
uniformly to Mξ .

Definition 2.11. Let Ω ( X be a proper subdomain and let A ≥ 1. We say
that Ω is an A-uniform domain if every pair of distinct points x, y ∈ Ω can be
joined by a rectifiable curve γ lying in Ω for which l(γ) ≤ A d(x, y) and

min{l(γxz), l(γzy)} ≤ A δ(z)

for all points z on γ . Here δ(z) = δΩ(z) = dist(z, X \ Ω) denotes the distance
from z to the complement of Ω and γab denotes the portion of the curve γ which
lies between a and b . A curve γ in Ω which satisfies both of these conditions is
said to be an A-uniform curve. We say that Ω is uniform if it is A -uniform for
some A .

We say that Ω is locally uniform at x0 ∈ ∂Ω if x0 has a neighborhood Ux0
so

that Ux0
∩ Ω is uniform in Ω; that is, every pair of distinct points x, y ∈ Ux0

∩ Ω
can be joined by a rectifiable curve γ lying in Ω for which l(γ) ≤ Ax0

d(x, y) and
for all points z on γ ,

min{l(γxz), l(γzy)} ≤ Ax0
δ(z).
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We call a domain Q-almost locally uniform if the set of all points x ∈ ∂Ω at
which Ω is not locally uniform is a zero Q -capacity set.

We call a set A ⊂ ∂Ω to be separable by ∂Ω if for every x ∈ A and y ∈
∂Ω \ {x} there exists a compact set K ⊂ Ω so that A∩K is empty and x and y
lie in two different components of Ω \ K .

Clearly uniform domains are Q -almost locally uniform domains. A bounded
Euclidean domain in Rn obtained by attaching an external cusp to a ball in Rn

is an n -almost locally uniform domain for which the set of all points of local
non-uniformity is separable by the boundary of the domain.

Definition 2.12. Let r > 0. A set C(r) is said to be an r -cone terminating
at a point χ ∈ ∂Ω if there exists a quasihyperbolic geodesic γ in Ω terminating
in χ so that

C(r) = {x ∈ Ω : distΩ(x, γ) < r}.

Here distΩ(x, γ) denotes the distance from x to the curve γ in the quasihyperbolic
metric of Ω.

Definition 2.13. We say that Ω has uniformly Q-fat complement if there
exist constants c > 0 and r0 > 0 so that for every x ∈ X \ Ω and r ∈ (0, r0),

CapQ

(

B (x, r) \ Ω; B(x, 2r)
)

CapQ

(

B (x, r); B(x, 2r)
) ≥ c.

Recall that CapQ(E, U) denotes the Q -capacity of E in U , see the remarks
preceding Definition 2.8. See [HKM], [Le], [Mi], and [BMS] for additional infor-
mation on the uniform fatness condition.

3. Some preliminary results

In this section we give some preliminary results needed in the proof of the
main results of this note. The proof of some of these results follow verbatim
the corresponding proofs given in the paper [HST] and hence are omitted here;
interested readers are encouraged to read [HST] (also available on the website
http://www.math.jyu.fi/research/report83.html).

In [HST] attention was restricted to bounded uniform domains with uniformly
Q -fat complement. However, most of the results contained in [HST] hold true even
for locally uniform domains with uniformly Q -fat complement.

The following theorem is a modification of Lemma 3.13 of [HST], and char-
acterizes the behavior of Martin kernels near boundary points of local uniformity
for Ω that are not associated with the kernel function. The proof of this modified
theorem is obtained by using the same proof found in [HST, Lemma 3.13], and
therefore will not be included here.
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Theorem 3.1. Let Ω be a Q -almost locally uniform domain with uniformly

Q -fat complement. Let x∞ ∈ ∂Ω and let χ = (xn) be a fundamental sequence

with limn xn = x∞ . Then Mχ vanishes continuously on the points of local uni-

formity in ∂Ω\{x∞} : for each y∞ ∈ ∂Ω\{x∞} that is a point of local uniformity

of Ω there exists ry∞
> 0 so that

sup
y∈B(y∞,r)∩Ω

Mχ(y) ≤ Crs

for every 0 < r ≤ ry∞
, where C and s are constants which are independent of r .

The following lemma is a consequence of the method of construction of sin-
gular functions (see [HS]) together with Theorem 3.1 above.

Lemma 3.2. If Ω is a Q -almost locally uniform domain with uniformly

Q -fat boundary, then whenever x1 ∈ Ω , x2 ∈ ∂Ω , and K is a compact subset

of Ω that separates x1 and x2 in the sense that x1 and x2 belong to different

components of Ω \K , and K ∩∂Ω consists solely of points of local uniformity for

Ω (if non-empty), then Mx2
is bounded on K and Mx2

(x1) is majorized by the

same bound.

Proof. We first prove that for every y ∈ Ω that is not in the component of
Ω \ K containing x1 , the singular function g( · , y) is bounded on K by a bound
that depends solely on the data of K and g(x0, y) for a fixed x0 ∈ K . Indeed, if
ui is the Q -potential of B(y, ri) with respect to Ω and B(y, ri) is a subset of the
complement of the component of Ω\K that contains x , then by the construction in
[HS, Theorem 3.4] we have that g(x, y) is a locally uniform limit of the sequence of

functions gi = ui/CapQ

(

B(y, ri); Ω
)1/(Q−1)

as i → ∞ ; here ri → 0. So for some
i0 and i > i0 , |gi(x0, y)−g(x0, y)| < g(x0, y). Since the set K∩∂Ω consists solely
of points of local uniformity for Ω, by Theorem 3.1 above K∩∂Ω can be covered by
an open set U such that gi ≤ g(x0, y) on U∩Ω; here U is chosen to be independent
of i > i0 ; see the proof of [HST, Lemma 3.13]. Since K \ U is a compact subset
of Ω, by the Harnack inequality we have that supz∈K\U gi(z, y) ≤ CKgi(x0, y),
and hence for sufficiently large i , supz∈K gi(z, y) ≤ 2CKg(x0, y) =: M (note that
we used the local uniform convergence of gi to g to conclude that for sufficiently
large i , gi(x0, y) ≤ 2g(x0, y)).

As gi converges locally uniformly to g , and K \U is a compact subset of Ω,
for sufficiently large i we have |gi(z)− g(z, y)| < ε on K \U ; that is, gi < M + ε
on K , which in turn means that ui ≤ (M + ε)CapQ

(

B(y, ri); Ω
)

on K . Since ui

is a global (in Ω \ B(y, ri)) energy minimizer (that is, it is an energy minimizer
amongst all functions in N1,2(X) that have the same boundary data as ui in
the boundary set B(y, ri) ∪ (X \ Ω)), a truncation argument together with the
uniqueness of solutions to Dirichlet problem (see [Sh2]) demonstrates that gi ≤
M + ε on the component of Ω \ K that contains x ; that is, gi(x) ≤ M + ε for
sufficiently large i . Therefore g(x, y) ≤ M + ε for every ε > 0; in other words,
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g(x, y) ≤ M = 2CKg(x0, y). It follows that M(x, y) ≤ 2CK whenever x is in a
component of Ω \ K that does not contain x2 .

Now if (xn)n is a fundamental sequence that gives rise to Mx2
, for sufficiently

large n we have that xn does not lie in the same component as x1 in Ω\K . Since
Mx2

is a local uniform limit of the normalized functions M( · , xn), a repetition of
the above argument with M( · , xn) playing the role of gi now yields the desired
result.

Observe that if Ω is a Q -almost locally uniform domain and χ ∈ ∂Ω such
that χ is a point of local uniformity for Ω, then for every y ∈ ∂Ω \ {χ} there
exists a compact set K ⊂ Ω such that χ and y belong to different components of
Ω \K and K ∩ ∂Ω consists solely of points of local uniformity for Ω. To see this,
note that there exists a neighbourhood Uχ of χ such that Uχ∩Ω is uniform in Ω,
and hence all ζ ∈ Uχ ∩ ∂Ω are points of local uniformity for Ω. If y ∈ ∂Ω \ {χ} ,
we can find r > 0 such that B(χ, 2r) ⊂ Uχ and 2r < d(χ, y). Then the compact
set K = {x ∈ Ω : d(x, χ) = r} satisfies the conditions given above.

The following result follows from the above theorem and Lemma 3.2.

Corollary 3.3. If Ω is as in Theorem 3.1, x∞ ∈ ∂Ω , and if x∞ is a point

of local uniformity for Ω or the set of all points of local non-uniformity of ∂Ω
separable by ∂Ω , and if χ = (xn) a fundamental sequence with limn xn = x∞ ,

then Mχ vanishes continuously on the points of local uniformity in ∂Ω \ {x∞}
and is bounded in some neighbourhood of every y∞ ∈ ∂Ω \ {x∞} .

The shape of level sets for the Martin kernel functions was also explored
in [HST], resulting in the following proposition which states that the level sets are
almost convex in the quasihyperbolic metric of Ω; see Proposition 3.14 of [HST].
While Proposition 3.14 of [HST] was formulated only for the singular functions in
globally uniform domains, the proof of this proposition given in [HST] also applies
to the situation considered in this note near points of local uniformity. Hence we
have the following proposition.

Proposition 3.4. Let Ω be a Q -almost uniform domain whose complement

is uniformly Q -fat. Let g be a Martin kernel function on Ω associated with a

point χ ∈ ∂Ω of local uniformity for Ω . For τ ∈ (0,∞] , set

Eτ := {z ∈ Ω : g(z) ≥ τ}.

Then every quasihyperbolic geodesic γ connecting two points x, y ∈ Eτ ∩ Uχ lies

entirely in the set Ecτ , where c is a positive constant which is independent of x ,

y , τ and g .

Here Uχ is a neighbourhood of χ such that Ω ∩ Uχ is uniform in Ω. The
proof of the above proposition can be obtained by a trivial modification of the
proof of Proposition 3.14 of [HST] and is left to the reader.
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4. The singular behavior of Martin kernels and a proof of Theorem 1.2

In the following discussion, the quasihyperbolic metric of Ω plays a crucial
role. It follows from the Gehring–Hayman theorem (see [BHK]) that the “cigar”
type curves of uniform domains are closely associated with the quasihyperbolic
geodesic curves pertinent to that domain. Recall that the quasihyperbolic metric

kΩ in a domain Ω ( X is defined to be

(3) kΩ(x, y) := inf
γ

∫

γ

ds(z)

δ(z)
, x, y ∈ Ω,

where the infimum is taken over all rectifiable curves γ joining x to y in Ω and
the integral denotes the line integral of the weight δ(z)−1 over γ , evaluated by
using the arc length parametrization; see [GP]. If Ω is a Q -almost locally uniform
domain, then for any point w ∈ ∂Ω of local uniformity for Ω, any two points in
Ω∩Uw can always be joined by (at least) one quasihyperbolic geodesic, i.e., a curve
γ which achieves the infimum in (3) (see Lemma 1 of [GO] or Section 2 of [BHK]).
See [K] for an overview of the quasihyperbolic metric.

Lemma 4.1. Let Ω be a Q -almost locally uniform domain, and let χ ∈ ∂Ω
and Mχ be a conformal Martin kernel associated with χ . If χ is a point of local

uniformity of Ω or if the set of boundary points that are points of local non-

uniformity is separable by ∂Ω , then there exists a sequence (xi)i in Ω so that

limi xi = χ and limi Mχ(xi) = ∞ .

Proof. Suppose not. Then Mχ is bounded in a neighbourhood of χ , and
hence by Corollary 3.3 we have that Mχ is a bounded Q -harmonic function in Ω.
In addition, as Ω is Q -almost locally uniform, for Q -almost every boundary point
w ∈ ∂Ω we have

lim
Ω3y→w

Mχ(y) = 0,

and hence by Corollary 6.2 of [BBS] we have that Mχ is the zero function, a
contradiction.

We now are in a position to prove Proposition 1.1.

Proof of Proposition 1.1. By Lemma 4.1 there is a sequence (yi)i in Ω con-
verging to χ so that Mχ(yi) ≥ i . Fix ω ∈ Ω ∩Uχ and let γ be a quasihyperbolic
geodesic in Ω connecting χ to ω . Here Uχ is a neighbourhood of χ such that
Ω ∩ Uχ is uniform in Ω.

For n ∈ N let βi,n be a quasihyperbolic geodesic in Ω connecting yi to yn .
We assume here that βi,n are parametrized by arc-length (in the quasihyperbolic
geodesic metric of Ω). By the Arzela–Ascoli theorem and by the fact that Ω∩Uχ

is a proper (i.e., closed and bounded subsets are compact) metric space in its
quasihyperbolic metric, the sequence (βi,n)i has a subsequence that converges
locally uniformly to a quasihyperbolic geodesic ray βn connecting yn to χ . By
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Proposition 3.4 (see [HST, Proposition 3.14]), Mχ ◦ βi,n ≥ n/C whenever i ≥ n .
Since Mχ is continuous on Ω and βi,n converges locally uniformly to βn , we see
that Mχ ◦ βn ≥ n/C .

Let γ be another quasihyperbolic geodesic ending at χ , and let ω ∈ γ ∩
Ω. Observe that βn and γ are quasihyperbolic geodesic rays ending at χ and
emanating from yn and ω respectively. By [BHK, Theorem 3.6] and by [BS,
inequality (3.5)] the quasihyperbolic geodesic triangle constructed using βn , γ ,
and any quasihyperbolic geodesic α connecting yn to ω is δ -thin for some δ > 0
which is independent of ω , yn (but may depend on χ) provided ω ∈ Uχ∩Ω. Since
α is bounded in the quasihyperbolic metric of Ω, there must exist a neighbourhood
Un of χ so that βn ∩ Un ⊂

⋃

x∈γ∩Un

Bk(x, δ) and γ ∩ Un ⊂
⋃

x∈βn∩Un

Bk(x, δ).
Here Bk(x, r) := {y ∈ Ω : kΩ(x, y) < r} , kΩ being the quasihyperbolic metric
of Ω. Thus by the Harnack inequality, Mχ ◦ γ|Un

≥ e−Cδn/C . Letting n → ∞
yields the desired result.

On the other hand, note by [HST, Lemma 3.13] or Theorem 3.1 that if γ is a
quasihyperbolic geodesic ray that ends at any point in ∂Ω\{χ} of local uniformity
of Ω, then

lim
t→∞

Mχ ◦ γ(t) = 0,

and if the endpoint of γ in ∂Ω \ {χ} is not a point of local uniformity for Ω, then
Mχ ◦ γ is bounded.

Proposition 1.1 also indicates that along the non-tangential cones with ver-
tices ending at a boundary point χ of Ω, the function Mχ exhibits a singularity
behaviour. The following definition makes the notion of “non-tangential cones
ending at a boundary point” more precise.

Corollary 4.2. Let Ω satisfy the conditions of Theorem 1.1, χ ∈ ∂Ω be a

point of local uniformity of Ω , and let C(r) be an r -cone in Ω terminating at χ .

Then whenever (xn)n∈N is a sequence in C(r) converging to χ in the metric

topology of X , we have limn→∞ Mχ(xn) = ∞ .

This corollary is an easy consequence of Theorem 1.1 and the Harnack in-
equality applied to Mχ ; we leave the proof to the reader.

Now we are ready to prove the Fatou type Theorem 1.2 for conformal maps
between two domains in two metric measure spaces of Q− -bounded geometry. In
the following proof and in Theorem 1.2 a fixed Cheeger derivative structure is
considered for the metric spaces X and Y .

Proof of Theorem 1.2. Since f is conformal, composition of f with Q -
harmonic functions on the target space are Q -harmonic on the domain space. In
addition, the relative Q -capacities are conformal invariants.

Clearly the independence of the limit from r follows from the fact that given
two sequences in the cones C(r1) and C(r2), both terminating at the same bound-
ary point of U , then the new sequence obtained by interleaving the two sequences
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is a sequence in the cone C(r1 +r2) converging to the same terminal point. Hence
only the existence of the limit needs to be proven here.

Let (xn)n∈N be a sequence in a cone C(r) with terminal point χ ∈ ∂U so that
the limit limn→∞ xn = χ . Suppose the limit of the sequence

(

f(xn)
)

n∈N
does

not exist. As V is compact, we can find two subsequences (yn)n∈N and (zn)n∈N

of the original sequence (xn)n∈N so that the two limits y0 = limn→∞ f(yn) and
z0 = limn→∞ f(zn) exist, but are not equal. Let My0

denote a conformal Martin
kernel associated with the point y0 ∈ ∂V . Then as the two boundary points
y0 6= z0 , we see by Corollary 3.3 that

(

My0

(

f(zn)
))

n∈N
is a bounded sequence.

On the other hand, we know that the pull-back of a Q -harmonic function is
Q -harmonic in U ; hence it is easy to see that My0

◦ f is indeed a Martin kernel
corresponding to the endpoint χ in U . Thus by Corollary 4.2, limn→∞ My0

◦
f(xn) = ∞ . In particular, we must have limn→∞ My0

(

f(zn)
)

= ∞ , contradicting
the above conclusion. Thus it must be true that y0 = z0 . Now the proof is
complete.

Remark 4.3. It is possible that such a Fatou type theorem can be proven
for quasiconformal maps by a similar method. Such a proof would first require
the construction and study of Martin kernels for the operator obtained as the
push-forward of the Q -Laplacian operator by the quasiconformal mapping.

References

[Ai] Aikawa, H.: Boundary Harnack principle and Martin boundary for a uniform domain. -
J. Math. Soc. Japan 53, 2001, 119–145.

[An] Ancona, A.: Negatively curved manifolds, elliptic operators, and the Martin boundary.
- Ann. of Math. (2) 125, 1987, 495–536.

[AS] Anderson, M. T., and R. Schoen: Positive harmonic functions on complete manifolds
of negative curvature. - Ann. of Math. (2) 121, 1985, 429–461.

[BBS] Björn, A., J. Björn, and N. Shanmugalingam: The Perron method for p -harmonic
functions in metric spaces. - J. Differential Equations (to appear).

[Bj] Björn, J.: Boundary continuity for quasiminimizers on metric spaces. - Illinois J. Math.
46, 2002, 383–403.

[BMS] Björn, J., P. MacManus, and N. Shanmugalingam: Fat sets and Hardy inequalities
in metric spaces. - J. Anal. Math. 85, 2001, 339–369.

[BHK] Bonk, M., J. Heinonen, and P. Koskela: Uniformizing Gromov hyperbolic spaces. -
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