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Abstract. We study the behavior of a K -quasiregular mapping near points where its local
modulus of continuity has order 1/K . We prove that the mapping is spherically analytic at such
points and is asymptotically a rotation on circles. This result is used to prove sharp distortion
estimates, including a version of Schwarz’s lemma.

1. Introduction

We consider a K -quasiregular mapping f : Ω → C , where Ω is a domain
in C . Recall that f ∈ W 1,2

loc (Ω;R2) is K -quasiregular if |Df(z)|2 ≤ KJf (z)
for a.e. z ∈ Ω. Here |Df(z)| is the operator norm of the 2 × 2 differential
matrix Df(z) and Jf (z) = detDf(z). It is well known that f is locally Hölder
continuous with exponent 1/K [1]. Consequently, for z0 ∈ Ω and small δ > 0 the
local modulus of continuity

ωf (z0, δ) = max{|f(z) − f(z0)| : z ∈ Ω, |z − z0| ≤ δ}

is majorized by Aδ1/K for some A > 0. A number of sharper upper bounds have
been established for ωf (z0, δ), see [2], [17] and references therein. The upper limit

ωf (z0) = lim sup
δ→0

ωf (z0, δ)

δ1/K

is always finite, but can be strictly positive. An example is provided by the radial
stretch map fK(z) = |z|1/K−1z , for which ωfK

(0) = 1.
The purpose of this paper is to study the behavior of f near points where

ωf > 0, which are called points of maximal stretch. Unless K = 1, the mapping
f is not differentiable at a point of maximal stretch; nevertheless, Theorem 2.1
shows that it behaves in a rather regular way near it. In particular, for every
z0 ∈ Ω

lim
z→z0

|f(z) − f(z0)|

|z − z0|1/K
= ωf (z0)
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(which is trivially true when ωf (z0) = 0). Recall that the linear distortion function
of f

Hf (z0) = lim sup
r→0

sup
z1,z2

{
|f(z1) − f(z0)|

|f(z2) − f(z0)|
: |z1 − z0| = r = |z2 − z0|

}

is bounded by a constant depending on K and the degree of f at z0 [14, Theo-
rem 4.5]. Theorem 2.1 implies that Hf (z0) = 1 whenever ωf (z0) > 0. In the
present paper a common course of reasoning “small distortion =⇒ small modulus
of continuity” is reversed in an unusual way: “large modulus of continuity =⇒
small distortion”.

In Section 3 we give sharp estimates of the distance between images of two
points of maximal stretch. For f a K -quasiregular mapping of the unit disk to
itself, Theorem 3.3 gives a sharp upper bound for |f(z)| in terms of |z| , ωf (0),
and ωf (z). In contrast to the classical Hersch–Pfluger distortion theorem [11,
p. 64], the bound in Theorem 3.3 has a simple closed form.

2. Local behavior at a point of maximal stretch

Our first result describes the behavior of a K -quasiregular mapping f near
a point z0 with ωf (z0) > 0. Recall that

ωf (z0) = lim sup
z→z0

|f(z) − f(z0)|/|z − z0|
1/K .

Theorem 2.1. Let f : Ω → C be a K -quasiregular mapping, z0 ∈ Ω .

If ωf (z0) > 0 , then f is injective in a neighborhood of z0 and there exists a

continuous function θ: (0, 1) → R such that

(2.1) lim
z→z0

{
f(z) − f(z0)

|z − z0|1/K−1(z − z0)
− ωf (z0)e

iθ(|z−z0|)

}
= 0.

According to Theorem 2.1, f is spherically analytic [8], [9] and is asymptot-

ically a rotation on circles [3], [4] at any point of maximal stretch. The proof of
Theorem 2.1 is a combination of estimates of conformal capacity and recent results
of M. Brakalova and J. A. Jenkins [4]. First, we define the conformal capacity of
a compact set E with respect to domain Ω ⊃ E as follows.

cap(Ω, E) = inf

{∫

Ω

|∇u(z)|2 dL 2(z) : u ∈ C∞
0 (Ω) and u ≥ 1 on E

}
,

where L 2 is the two-dimensional Lebesgue measure. When E is connected,
cap(Ω, E) is equal to the reciprocal of the module of ring domain Ω \ E (see,
e.g. [16]).
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Proof of Theorem 2.1. Without loss of generality we may assume that z0 =
f(z0) = 0. The mapping f admits the Stoilow factorization f = ψ ◦ h , where
h is K -quasiconformal and ψ is a holomorphic function [11, p. 247]. Now if ψ′

vanishes at h(0), then as z → 0 we have
∣∣ψ

(
h(z)

)∣∣ = O
(
|h(z)|2

)
= O(|z|2/K),

hence ωf (0) = 0, a contradiction. Thus ψ′
(
h(0)

)
6= 0, which implies that f is

homeomorphic in a neighborhood of 0. We may assume that such a neighborhood
contains D . Here and in the sequel D(a, r) = {z : |z − a| < r} , D(r) = D(0, r),
and D = D(0, 1).

Let Ω′ denote the image of D under f . Then Ω′ ⊂ D(R) for some R ,
because f is continuous in D . Choose a sequence rj → 0 such that ωf (0, rj) ≥

ρj = 1
2
ωf (0)r

1/K
j for every j . The set Fj = f

(
D(rj)

)
is connected and meets

both 0 and ∂D(0, ρj). By results in [1, Chapter III] we have

cap(Ω′, Fj) ≥ cap
(
D(R), Fj

)
≥

2π

log(4R/ρj)

=
2πK

log(1/rj)
−

2πK2 log
(
8R/ωf (0)

)
(
log(1/rj)

)2 + o

(
1

(
log(1/r)

)2

)
.

Therefore,

(2.2) cap(Ω′, Fj) ≥
2πK

log(1/rj)
−

C
(
log(1/rj)

)2 ,

where C does not depend on j .
Now we fix j and obtain an upper bound for cap(Ω′, Fj) as follows. Let

g: Ω′ → D be the inverse of f and define u(w) =
(
log |g(w)|

)
/ log rj for w ∈ Ω′ .

Note that u is Hölder continuous in Ω′ \Fj , min{u, 1} ∈W 1,2
0 (Ω′), and u|Fj

≥ 1.
Therefore,

(2.3)

cap(Ω′, Fj) ≤

∫

Ω′\Fj

|∇u(w)|2 dL 2(w)

=
(
log(1/rj)

)−2
∫

Ω′\Fj

∣∣∇ log |g(w)|
∣∣2 dL 2(w).

The integrand can be expressed in terms of differential operators ∂ = ∂/∂z and
∂̄ = ∂/∂z̄ (at almost every point of Ω′ \ Fj ).

∣∣∇ log |g|
∣∣2 = 4

∣∣∂ log |g|
∣∣2 = |∂ log g + ∂ log g|2 =

∣∣∣∣
∂g

g
+

(
∂̄g

g

)∣∣∣∣
2

.

Now if w = f(z), an easy calculation yields ∂g(w) = ∂f(z)Jf (z)−1 and ∂̄g(w) =
−∂̄f(z)Jf (z)−1 . Changing the variable of integration and introducing the notation
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µ = ∂̄f/∂f and ϕ = arg z , we obtain

∫

Ω′\Fj

∣∣∇ log |g(w)|
∣∣2 dL 2(w) =

∫

D\D(rj)

∣∣∣∣
∂f(z)

zJf (z)
−

(
∂̄f(z)

zJf (z)

)∣∣∣∣
2

Jf (z) dL 2(z)

=

∫

D\D(rj)

|∂f(z) − e−2iϕ∂̄f(z)|2

|∂f(z)|2 − |∂̄f(z)|2
|z|−2 dL 2(z)

=

∫

D\D(rj)

|1 − e−2iϕµ(z)|2

1 − |µ(z)|2
|z|−2 dL 2(z).

Combining this with (2.2) and (2.3) yields

∫

D\D(rj)

|1 − e−2iϕµ(z)|2

1 − |µ(z)|2
|z|−2 dL 2(z) ≥ 2πK log(1/rj) − C,

which is equivalent to

∫

D\D(rj)

(
K −

|1 − e−2iϕµ(z)|2

1 − |µ(z)|2

)
|z|−2 dL 2(z) ≤ C.

Since the integrand is non-negative, we conclude that

(2.4)

∫

D

∣∣∣∣K −
|1 − e−2iϕµ(z)|2

1 − |µ(z)|2

∣∣∣∣|z|
−2 dL 2(z) <∞.

Furthermore, we have an estimate

0 ≤
|1 + e−2iϕµ(z)|2

1 − |µ(z)|2
−

1

K

= 2
1 + |µ(z)|2

1 − |µ(z)|2
−

|1 − e−2iϕµ(z)|2

1 − |µ(z)|2
−

1

K

=

(
2
1 + |µ(z)|2

1 − |µ(z)|2
−
K2 + 1

K

)
+

(
K −

|1 − e−2iϕµ(z)|2

1 − |µ(z)|2

)

≤ K −
|1 − e−2iϕµ(z)|2

1 − |µ(z)|2
,

where the last inequality follows from |µ(z)| ≤ (K − 1)/(K + 1). Therefore, (2.4)
implies

(2.5)

∫

D

∣∣∣∣K
−1 −

|1 + e−2iϕµ(z)|2

1 − |µ(z)|2

∣∣∣∣|z|
−2 dL 2(z) <∞
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By (2.4) and (2.5) the mapping f satisfies the conditions of [4, Theorem 1],
which says that there exists A > 0 such that |f(z)|/|z|1/K → A as z → 0. Thus
f is spherically analytic at 0. It is easy to see that the constant A must be equal
to ωf (0). Moreover, by [4, Lemma 3] the mapping f is asymptotically a rotation
on circles, that is,

lim
r→0

(
arg f(reθ2) − arg f(reθ1) − (θ2 − θ1)

)
= 0

uniformly in θ1, θ2 ∈ R . For r ∈ (0, 1) define θ(r) = arg f(r), where the argument
is chosen so that θ is continuous. It remains to observe that (2.1) holds with this
choice of θ .

Corollary 2.1. Let f : Ω → C be a K -quasiconformal mapping. Suppose

that lim infz→z0
|f(z) − f(z0)|/|z − z0|

K < ∞ for some z0 ∈ Ω . Then there exist

a constant A and a continuous function θ: (0, 1) → R such that

lim
z→z0

{
f(z) − f(z0)

|z − z0|K−1(z − z0)
−Aeiθ(|z−z0|)

}
= 0.

Proof. Apply Theorem 2.1 to f−1 .

Even though the statement of Corollary 2.1 almost mirrors that of Theo-
rem 2.1, the similarity is not complete. Corollary 2.1 does not apply to general
K -quasiregular mappings, as follows from considering the mapping f(z) = z2 at
z0 = 0.

Since 1-quasiregular mappings are holomorphic, for K = 1 the conclusion of
Theorem 2.1 can be strengthened as follows:

lim
z→z0

f(z) − f(z0)

z − z0
= f ′(z0)

exists. One might ask if the same is true for K > 1. The answer is given by the
following theorem.

Theorem 2.2. For any K > 1 there exists a K -quasiconformal mapping

f : C → C such that the assumptions of Theorem 2.1 are satisfied, but the limit

lim
z→z0

f(z) − f(z0)

|z − z0|1/K−1(z − z0)

does not exist.
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Proof. Let γ: (0, 1] → (0, 1] be an increasing continuous function such that

(2.6)

∫ 1

0

γ(r)
dr

r
= ∞ and

∫ 1

0

γ(r)2
dr

r
< ∞.

For instance, γ(r) =
(
log(e + 1/r)

)−1
would work. Fix K > 1 and let k =

(K − 1)/(K+ 1). Let f : C → C be the normal solution [1, p. 91] of the Beltrami
equation ∂̄f = µ∂f , where

µ(reiϕ) =

{
−kei(2ϕ+γ(r)), r ≤ 1;
0, r > 1.

Then

∫

D

∣∣∣∣K −
|1 − e−2iϕµ(z)|2

1 − |µ(z)|2

∣∣∣∣
dL 2(z)

|z|2
= 2π

∫ 1

0

∣∣∣∣
2k

(
1 − cos γ(r)

)

1 − k2

∣∣∣∣
dr

r

=
8πk

1 − k2

∫ 1

0

sin2
(

1
2γ(r)

) dr
r
< ∞,

so (2.4) holds. It follows that f satisfies the assumptions of Theorem 2.1 with
z0 = 0.

Since e−2iϕµ(reiϕ) does not depend on ϕ , it follows from the uniqueness
of normal solutions that f is a rotation on circles. That is, there exist con-
tinuous functions g: [0,∞) → [0,∞) and δ: (0,∞) → R such that f(reiϕ) =
g(r)ei(ϕ+δ(r)) . Actually, g and δ are absolutely continuous on every compact
subinterval of (0,∞), which can be seen as follows. Fix r0 > 0 and choose ε so
that 0 < ε < r0 and |δ(r)− δ(r0)| <

1
4
π whenever |r− r0| < ε . Now consider the

mapping
h(x+ iy) = log f(ex+iy) = log g(ex) + i

(
y + δ(ex)

)

defined on the rectangle

R =
{
(x, y) : log(r0 − ε) < x < log(r0 + ε), |y| < 1

4
π
}
.

Since h is a quasiconformal mapping, it is absolutely continuous on almost every
horizontal segment lying in R [11, p. 162]. Thus log g(ex) and δ(ex) are absolutely
continuous in a neighborhood of log r0 , which implies the absolute continuity of
g and δ in a neighborhood of r0 .

It remains to prove that δ(r) does not have a finite limit as r ↓ 0. For almost
every r ∈ (0, 1) we can compute ∂f and ∂̄f to find that

µ(reiϕ) = e2iϕ g
′(r) − g(r)/r+ ig(r)δ′(r)

g′(r) + g(r)/r+ ig(r)δ′(r)
.
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Rearranging the terms, obtain

keiγ(r) =
1 −

(
rg′(r)/g(r) + irδ′(r)

)

1 +
(
rg′(r)/g(r) + irδ′(r)

) .

Therefore,

rg′(r)

g(r)
+ irδ′(r) =

1 − keiγ(r)

1 + keiγ(r)
=

1 − k2 − 2ik sin γ(r)

|1 + keiγ(r)|2
.

Comparing the imaginary parts, we conclude that

−δ′(r) =
2k sin γ(r)

r|1 + keiγ(r)|2
≥

2k

(1 + k)2
sin γ(r)

r
.

By (2.6) the right-hand side is not integrable, so limr↓0 δ(r) = +∞ .

3. Distortion of distance between points of maximal stretch

The main tool used in the present section is the generalized reduced module of
a domain Ω ⊆ C which was introduced in a series of papers by V. N. Dubinin [5],
[6]. Besides Ω itself, the module depends on parameters Z = (z1, . . . , zn), ∆ =
(δ1, . . . , δn), and Ψ = (ψ1, . . . , ψn). Here Z is an n -tuple of distinct points in Ω,
δj ∈ R \ {0} , and ψj : [0,∞) → [0,∞) is a function of the form ψj(r) = µjr

νj

with µj , νj > 0 for each j .
The conformal capacity of Ω with respect to Z , ∆, Ψ, and r > 0 is defined

as follows.

capC(r; Ω, Z,∆,Ψ) = inf

{∫

Ω

|∇u(z)|2 dL 2(z) : u ∈ C∞
0 (Ω),

u = δj on D(zj , ψj(r))

}
.

Let ν =
(∑n

j=1 δ
2
j /νj

)−1
. The generalized reduced module of (Ω, Z,∆,Ψ) is equal

to

M(Ω, Z,∆,Ψ) = lim
r↓0

{(
capC(r; Ω, Z,∆,Ψ)

)−1
+

ν

2π
log r

}
,

provided that the limit exists. It is evident from the definition that M(Ω, Z,∆,Ψ)
is monotone with respect to Ω.

Before stating the basic result concerning the generalized reduced module we
need a few definitions. Given a domain Ω ⊂ C , its Green’s function gΩ: Ω×Ω →
(0,+∞] is determined by the conditions that gΩ( · , ζ) is harmonic in Ω \ {ζ} ,
vanishes at the regular boundary points of ∂Ω, and

gΩ(z, ζ) = − log |z − ζ| + γ(Ω, ζ) + o(1) as z → ζ .

The number γ(Ω, ζ) is called the Robin constant of Ω at ζ . The domain Ω is
called Greenian if gΩ exists, or, equivalently, if its complement contains a compact
set of positive logarithmic capacity [15]. We will use the following theorem, which
is a combination of results found in [6], [7].
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Theorem 3.1 ([6], [7]). If Ω is a Greenian domain, then

(3.1) M(Ω, Z,∆,Ψ) =
ν2

2π

{ n∑

j=1

δ2j
ν2

j

(
γ(Ω, zj) − logµj

)
+

∑

j 6=k

δjδk
νjνk

gΩ(zj , zk)

}
.

If Ω is not Greenian and
∑n

j=1 δj/νj = 0 , then

(3.2) M(Ω, Z,∆,Ψ) = −
ν2

2π

{ n∑

j=1

δ2j
ν2

j

logµj +
∑

j 6=k

δjδk
νjνk

log |zj − zk|

}
.

Since M(Ω, Z,∆,Ψ) is defined in terms of conformal capacity, it is not sur-
prising that it exhibits a similar quasiinvariance property. The special case n = 1
of the following proposition appeared in [13].

Proposition 3.1. Let f : Ω → C be a K -quasiregular mapping and suppose

that z1, . . . , zn ∈ Ω are points of maximal stretch. Let ∆ , Ψ , and ν be as above.

For 1 ≤ j ≤ n let wj = f(zj) and ψ̃j(r) = ωf (zj)ψj(r)
1/K . Suppose that either

(i) f is quasiconformal, or (ii) w1, . . . , wn are distinct and δ1, . . . , δn are of the

same sign. Then

(3.3) M
(
f(Ω),W,∆, Ψ̃

)
≥ K−1M(Ω, Z,∆,Ψ).

Proof. It follows from Theorem 2.1 that for small r > 0

D
(
wj ,

(
1 + o(1)

)
ψ̃j(r)

)
⊆ f

(
D

(
zj , ψj(r)

))
⊆ D

(
wj ,

(
1 + o(1)

)
ψ̃j(r)

)
.

If f is quasiconformal, these inclusions together with [6, Lemma 1] and quasiin-
variance of capacity imply

(3.4)
(
capC

(
r; f(Ω),W,∆, Ψ̃

))−1
≥

(
K capC(r; Ω, Z,∆,Ψ)

)−1
+ o(1).

Adding (ν/2πK) log r to both sides and passing to the limit r ↓ 0, we obtain (3.3).
Now suppose that the assumption (ii) holds. Without loss of generality

we may assume that δ1, . . . , δn are positive. If δj = 1 for every j , then the
inequality (3.4) follows from [14, Theorem 7.1] and [6, Lemma 1]; the rest of
the proof is as above. In the general case let δ∗j = 1, ψ∗

j (r) = ψj(r
1/δj ), and

ν∗ =
(∑n

j=1 δj/νj

)−1
(recall that ψj(r) = µjr

νj ). Then

M(Ω, Z,∆,Ψ) =
ν2

(ν∗)2
M(Ω, Z,∆∗,Ψ∗)

≤
Kν2

(ν∗)2
M

(
f(Ω),W,∆∗, Ψ̃∗

)

= KM(f(Ω),W,∆, Ψ̃).

Here the first step is based on Theorem 3.1; the inequality for reduced modules is
true because δ∗j = 1 for every j ; and in the last step we have used the fact that

transformations ψ 7→ ψ∗ and ψ 7→ ψ̃ commute.
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With an appropriate choice of Z , ∆ and Ψ, Theorem 3.1 and Proposition 3.1
yield sharp distortion estimates for quasiregular mappings. Our first result is that
the points of maximal stretch are mapped as far from each other as the Hölder
continuity allows.

Theorem 3.2. Let f : Ω → C be a K -quasiconformal mapping. For any

domain Ω1 b Ω there exists a constant C = C(Ω,Ω1) such that

(3.5) |f(z1) − f(z2)| ≥ C
√
ωf (z1)ωf (z2) |z1 − z2|

1/K

for any z1, z2 ∈ Ω1 . When Ω = C one can take C = 1 , and this value is best

possible for every K ≥ 1 .

Proof. Assume that ωf (z1), ωf (z2) > 0 and z1 6= z2 ; otherwise the statement
is trivial. Set parameters Z = (z1, z2), ∆ = (1,−1), ψ1(r) = r = ψ2(r), W =(
f(z1), f(z2)

)
, ψ̃1(r) = ωf (z1)r

1/K , and ψ̃2(r) = ωf (z2)r
1/K . By Proposition 3.1

and monotonicity of the generalized reduced modulus we have

(3.6) M(C,W,∆, Ψ̃) ≥ M
(
f(Ω),W,∆, Ψ̃

)
≥ K−1M(Ω, Z,∆,Ψ).

If C\Ω is not Greenian, one can plug (3.2) into the inequality (3.6) to obtain (3.5)
with C = 1.

Now suppose that G is Greenian. Consider the regular part of Green’s func-
tion hΩ: Ω × Ω → R , defined by hΩ(ζ1, ζ2) = gΩ(ζ1, ζ2) + log |ζ1 − ζ2| if ζ1 6= ζ2 ,
and hΩ(ζ1, ζ1) = γ(Ω, ζ1) otherwise. Since hΩ is continuous, the function |hΩ|
attains a finite maximum H on the compact set Ω1 × Ω1 . By (3.1) we have for
any z1, z2 ∈ Ω1

M(Ω, Z,∆,Ψ1) =
1

8π

{
γ(Ω, z1) + γ(Ω, z2) − 2gΩ(z1, z2)

}

≥
1

8π

{
2 log |z1 − z2| − 4H

}
.

This inequality together with (3.6) and (3.2) yields (3.5) with C = e−2H .
It remains to show that the constant C in (3.5) cannot be greater than 1.

Fix K ≥ 1 and introduce functions h1(z) = z/(1 − z), h2(z) = |z|1/K−1z , and
h3(z) = z/(1 + z), which are understood as bijective self-maps of the Riemann
sphere C . The composition h = h3 ◦h2 ◦h1 is a K -quasiconformal automorphism
of C . Straightforward computations show that h(0) = 0, h(1) = 1, and ωh(0) =
1 = ωh(1). Thus the value C = 1 is best possible in the case Ω = C .

Theorem 3.2 is not valid for K -quasiregular mappings, even when K = 1.
Indeed, for a holomorphic function f every point z with f ′(z) 6= 0 is a point of
maximal stretch. Obviously, two non-critical points of f may be mapped by f
into the same point.
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Next we consider a quasiregular mapping f : D → D that has at least two
points of maximal stretch. By composing f with appropriate Möbius transforma-
tions, we may assume that 0 is both a fixed point and a point of maximal stretch
for f . Note that under these assumptions ωf (0) ≤ 41−1/K , as follows from the
Hersch–Pfluger distortion theorem and calculations in [11, p. 65].

Theorem 3.3. Let f : D → D be a K -quasiregular mapping such that

f(0) = 0 . Then for any z ∈ D

(3.7) |f(z)| ≤
(
1 + ωf (0)ωf (z)|z|−2/K(1 − |z|2)1/K

)−1/2
.

For any K ≥ 1 and any z ∈ D there exists a K -quasiconformal mapping f for

which equality is attained in (3.7) .

Proof. Assume that f(z) 6= 0, ωf (0) > 0, and ωf (z) > 0; otherwise there is
nothing to prove. Let Z = (0, z), ∆ = (1, 1), ψ1(r) = r = ψ2(r), W =

(
0, f(z)

)
,

ψ̃1(r) = ωf (0)r1/K , and ψ̃2(r) = ωf (z)r1/K . By Proposition 3.1 and the mono-

tonicity of M we have M(D,W,∆, Ψ̃) ≥ K−1M(D, Z,∆,Ψ). Using (3.1) and the
identities γ(D, z) = log(1 − |z|2) and gD(z, 0) = − log |z| , obtain

log
1 − |f(z)|2

ωf (0)ωf (z)
+ 2 log

1

|f(z)|
≥

1

K

{
log(1 − |z|2) + 2 log

1

|z|

}
.

This inequality readily implies (3.7).
To prove that (3.7) is sharp, fix z0 ∈ (0, 1). There is t ∈ (0, 1) such that

z0 = 2t/(1 + t2). The holomorphic function h1(z) = (z2 − t2)/(1 − t2z2) maps
the half-disk D ∩ {Re z > 0} conformally onto D \ (−1,−t2). Composing h1

with the radial stretch map fK(z) = |z|1/K−1z and an appropriate branch of

h2(z) =
√

(z + t2/K)/(1 + t2/Kz) , we find that h2◦fK ◦h1 is a K -quasiconformal
automorphism of D ∩ {Re z > 0} which maps D ∩ {Re z = 0} onto itself. It can
be extended by reflection to a K -quasiconformal map F1: D → D . Note that
F1(±t) = ±t1/K . Finally, let F = h3 ◦F1 ◦h0 , where h0(z) = (z− t)/(1− tz) and
h3(z) = (z + t1/K)/(1 + t1/Kz).

We have F (0) = 0 and F (z0) = 2t1/K/(1 + t2/K). Furthermore,

ωF (0) = |h′0(0)h′1(−t)|
1/K |h′2(0)h′3(−t

1/K)| =

(
2

1 + t2

)1/K
1 + t2/K

2
;

ωF (z0) = |h′0(z0)h
′
1(t)|

1/K|h′2(0)h′3(t
1/K)| =

(
2(1 + t2)

(1 − t2)2

)1/K
(1 − t2/K)2

2(1 + t2/K)
.

Hence

1 + ωF (0)ωF (z0)

(
1 − |z0|

2

|z0|2

)1/K

= 1 +

(
4

(1 − t2)2

)1/K
(1 − t2/K)2

4

(
(1 − t2)2

4t2

)1/K

= 1 +
(1 − t2/K)2

4t2/K
=

(1 + t2/K)2

4t2/K

= |F (z0)|
−2
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as required.

4. Concluding remarks

One can generalize some of the above results by taking into account the local
degree of a mapping. For example, let f be a K -quasiregular mapping of degree
m at a point z . If lim supδ→0 δ

−m/Kωf (z, δ) > 0, then f is spherically analytic
at z , as follows from Theorem 2.1 and the Stoilow factorization. The following
problems indicate other possible directions for further research.

Problem 4.1. Extend Theorem 2.1 to dimension n ≥ 3 .

It is clear that in higher-dimensional setting the definition of ωf (z) and the
statement of Theorem 2.1 will have to be modified. In particular, the constant K

should be replaced with K
1/(n−1)
I , where KI is the inner distortion of f . See [10]

for comparison of different distortion functions.
It is known [12] that the linear distortion Hf (z) of a K -quasiconformal map-

ping in the plane is bounded by K whenever Df(z) exists and |Df(z)| > 0. By
Theorem 2.1 we have Hf (z) = 1 at the points where lim supδ→0 δ

−1/Kωf (z, δ) > 0.
It may be possible to interpolate between the two estimates as follows.

Problem 4.2. Prove that for any α ∈ [1/K, 1] and any planar K -quasiregu-

lar mapping f the condition lim supδ→0 δ
−αωf (z, δ) > 0 implies Hf (z) ≤ αK .

As an example, consider h1(z) = |z|α−1z and h2(x + iy) = αKx + iy . The
mapping f = h2 ◦ h1 satisfies the above conditions at the origin, where its linear
distortion is Hf (0) = αK . There could be a higher-dimensional analogue of Prob-
lem 4.2, but the situation is complicated by the fact that despite recent progress
(e.g. [9]), the local topological behavior of spatial quasiregular mappings is not yet
fully understood.
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