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Departamento de Matemática Aplicada, E-46022 Valencia, Spain; jbonet@mat.upv.es
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Abstract. We study wedge operators defined on spaces of operators between Köthe echelon
or co-echelon spaces of order 1 < p < ∞ . In this case the wedge operator, defined by T → LTR
for non-zero operators L and R , maps bounded sets into relatively weakly compact sets if and
only if the operator L or the operator R maps bounded sets into relatively compact sets. This is
an extension of a result of Saksman and Tylli for the sequence space lp . The corresponding result
for operators mapping a neighbourhood into a relatively weakly compact set does not hold, as an
example shows.

1. Introduction and notation

A continuous, linear operator T ∈ L(X, Y ) between Banach spaces is weakly
compact if it maps the closed unit ball of X into a weakly relatively compact subset
of Y . There are two possible extensions of this concept in case the continuous
linear operator T ∈ L(E, F ) is defined between locally convex spaces E and F .
As in [5], we say that T is reflexive if it maps bounded sets into weakly relatively
compact sets, and it is called weakly compact (as in [10, 42.2]) if there is a 0-
neighborhood U in E such that T (U) is weakly relatively compact in F . Here
we complete our study [4] of reflexive and weakly compact wedge operators defined
on spaces of operators between locally convex spaces, analyzing the case of echelon
or co-echelon Köthe spaces and extending results due to Saksman and Tylli [15].

Let E1 , E2 , E3 , E4 be complete locally convex spaces. The wedge operator
of R ∈ L(E1, E2) and L ∈ L(E3, E4) is defined by R∧L: L(E2, E3) → L(E1, E4),
T → LTR . The compactness of the wedge operator in case each Ei is a Banach
space was studied by Vala [17]. He proved that, if R and L are non-zero, R ∧ L
is compact if and only if R and L are compact. Apiola [1] and Geue [7] presented
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a complete generalization of Vala’s result to the locally convex setting for the
nowadays so-called Montel operators which are those that map bounded sets into
relatively compact sets. The case of compact operators between locally convex
spaces was treated by Wrobel [19]. An operator is called compact if it maps a
0-neighborhood into a relatively compact set. Weakly compact wedge operators
in the Banach space case were studied by Saksman and Tylli [15], [16], Racher [14]
and Lindström, Schlüchtermann [11]. Saksman and Tylli proved in [15, 2.9] that
if R and L are weakly compact operators between Banach spaces and if R or L
is compact, then the operator R ∧ L is weakly compact. The extensions of this
result to reflexive and weakly compact operators between locally convex spaces
were obtained by the authors in [4, 2.8, 2.9, 2.14, 2.15]. Consequences about
reflexive and weakly compact composition operators on weighted spaces of vector
valued holomorphic functions on the disc were presented in [4, Theorem 4.3]. In
the case the spaces Ei are all Fréchet, or all complete barrelled (DF)-spaces, if
L: E3 → E4 and Rt: (E2)

′

b → (E1)
′

b are reflexive and if L or Rt is Montel, then
R ∧ L is reflexive. The work of Saksman and Tylli [15] already ensures that this
result is not optimal: by [15, 2.11], if E is a Banach space which is an L1 -space
or a L∞ -space, Ei = E for each i and R and L are non-zero, then R ∧ L is
weakly compact on L(E) if and only if L and R are weakly compact. On the
other hand, they show in [15, 3.2, 3.3] (see also [16]) that R∧L is weakly compact
on L(lp), 1 < p < ∞ , if and only if L or R is compact. We extend this result
below for reflexive operators in the case of Köthe echelon and co-echelon spaces of
order 1 < p < ∞ in Theorems 7 and 8 respectively. The cases of Köthe echelon
spaces of order one or zero is also treated in Propositions 1 and 6. Example 9
shows that the corresponding results for weakly compact operators does not hold.
The sequence space representations of function spaces due to Valdivia and Vogt,
see e.g. [18, Chapter 3], yield immediate consequences of our results.

We use standard notation for functional analysis and locally convex spaces [9],
[10], [12]. The family of all closed absolutely convex 0-neighborhoods of a locally
convex space E is denoted by U0(E), the family of all closed absolutely convex
bounded subsets of E by B(E), and the family of all continuous seminorms on
E by cs(E). The transpose of an operator T is denoted by T t . The space of
all (continuous, linear) operators between the locally convex spaces E and F is
denoted by L(E, F ), and we write Lb(E, F ) when this space is endowed with
the topology of uniform convergence on the bounded subsets of E . A basis of
0-neighborhoods in Lb(E, F ) is given by W (B, V ) :=

{

f ∈ L(E, F ) | f(B) ⊂ V
}

,
as B runs in B(E) and V in U0(F ). We briefly recall the notation and essential
facts about Köthe echelon and co-echelon spaces, see [2], [12].

A Köthe matrix A = (an)n∈N is an increasing sequence of strictly positive
functions on N . Corresponding to each Köthe matrix A = (an)n and 1 ≤ p < ∞ ,
we associate the spaces
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λp(A) =

{

x =
(

x(i)
)

i∈N
∈ CN (or RN);

for all n ∈ N : qp
n(x) =

(

∑

i

(

an(i)|x(i)|)p

)1/p

< ∞

}

,

λ∞(A) =
{

x =
(

x(i)
)

i∈N
∈ CN (or RN);

for all n ∈ N : q∞n (x) = sup
i

an(i)|x(i)| < ∞
}

,

λ0(A) =
{

x =
(

x(i)
)

i∈IN
∈ CN (or RN);

for all n ∈ N :
(

an(i)x(i)
)

i
converges to 0

}

,

the last space endowed with the topology induced by λ∞(A). The spaces λp(A)
are called (Köthe) echelon spaces of order p , 1 ≤ p ≤ ∞ or p = 0; they are Fréchet
spaces with the sequence of norms pn = qp

n , n = 1, 2, . . . . If A consists of a single
function a =

(

a(i)
)

i
, we sometimes write lp(a) instead of λp(A), 1 ≤ p ≤ ∞ , and

c0(a) instead of λ0(A). The Banach space lp(a) is a diagonal transform (via a)
of the space lp = lp(1), 1 ≤ p ≤ ∞ . With this notation, λp(A) = projn lp(an),
i.e. λp(A) is the countable projective limit of the Banach spaces

(

lp(an)
)

n∈N
.

For a Köthe matrix A = (an)n , denote by V = (vn)n the associated decreas-
ing sequence of functions vn = 1/an , and put

kp(V ) = ind
n

lp(vn), 1 ≤ p ≤ ∞, and k0(V ) = ind
n

c0(vn).

That is, kp(V ) is the increasing union of the Banach spaces lp(vn), respectively
c0(vn), endowed with the strongest locally convex topology under which the in-
jection of each of these Banach spaces is continuous. The spaces kp(V ) are called
co-echelon spaces of order p . They are (LB)-spaces, and they are complete if
p 6= 0. For a given decreasing sequence V = (vn)n of strictly positive functions
on N or for the corresponding Köthe matrix A = (an)n , we associate as in [2] the
system

λ∞(A)+ =

{

v̄ =
(

v̄(i)
)

i
∈ RN

+
; for all n ∈ N : sup

i

v̄(i)

vn(i)
= sup

i
an(i)v̄(i) < ∞

}

,

which will be denoted by V = V (V ). The system V can be used to characterize
the bounded subsets of λp(A), as follows, [2]: Let A be a Köthe matrix on N . A

subset B of λp(A) , 1 ≤ p ≤ ∞ , is bounded if and only if there exists a strictly

positive weight v̄ ∈ V so that

B ⊂ v̄B(lp) =
{

y ∈ CN (or RN); y(i) = v̄(i)z(i), i ∈ N, for some z ∈ B(lp)
}

,
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where B(lp) denotes the closed unit ball of the Banach space lp . This result will
be used several times in the proofs below.

The duality of the echelon and co-echelon spaces is as follows: For 1 < p < ∞
or p = 0 , if (1/p) + (1/q) = 1 (where we take q = 1 for p = 0), then

(

λp(A)
)′

b
=

kq(V ) and
(

kp(V )
)′

b
= λq(A) . See [2] for the remaining cases.

Every bounded subset of the co-echelon space kp(V ), 1 < p < ∞ , is contained
in the unit ball of one of the steps lp(vn). Moreover, the inductive limit topology
of kp(V ), 1 < p < ∞ , can be described using the system V of associated weights
as follows, [2]:

kp(V ) = proj
v̄∈V

lp(v̄).

2. Main results

We first treat the case of Köthe echelon spaces of order one which is easy.

Proposition 1. Let L: λ1(A
3) → λ1(A

4) and R: λ1(A
1) → λ1(A

2) be non-

zero operators on Köthe echelon spaces of order 1 . The wedge operator R ∧ L:
Lb

(

λ1(A
2), λ1(A

3)
)

→ Lb

(

λ1(A
1), λ1(A

4)
)

is reflexive if and only if L and R are

Montel.

Proof. First suppose that R ∧ L is reflexive. By [4, 2.1], L and Rt are
reflexive. By [5, 1.2], R is also reflexive. Since every weakly compact subset of a
Köthe echelon space of order one is compact [18, Chapter 2, Section 2.2(2), p. 214],
L and R are Montel operators. Now, if L and R are Montel, then L and Rt

are Montel, see [6, 2.3]. The extension due to Apiola [1] of Vala’s classical result
implies that R ∧ L is a Montel operator, hence reflexive.

The following well-known result will be used several times. It can be seen
e.g. in [8, Proposition 3, p. 123]: Let E and F be locally convex spaces. Suppose

that f ∈ L(E, F ) and g ∈ L(F, E) satisfy that g ◦ f coincides with the identity

on E . Then f is a topological isomorphism from E onto f(E) ⊂ F and f(E)
is a complemented subspace of F . The following result about compact operators
on classical Banach sequence spaces is proved for example in the proofs of [15,
Propositions 3.2 and 3.3]. We state it in the form which will be needed later.

Lemma 2. (a) Let 1 < p < ∞ . If f ∈ L(lp, lp) is not compact, then there

exist a complemented subspace X0 of lp isomorphic to lp and a complemented

subspace Y0 of lp such that f | X0 is an isomorphism from X0 onto Y0 .

(b) If f ∈ L(c0, c0) is not compact, then there exist a subspace X0 of c0

isomorphic to c0 and a subspace Y0 of c0 such that f | X0 is an isomorphism

from X0 onto Y0 . In particular, f is not weakly compact.

Proposition 3. Let 1 < p < ∞ and let A = (an)n and B = (bn)n be

Köthe matrices. If f ∈ L
(

λp(A), λp(B)
)

is not Montel, there is a complemented
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subspace X0 ⊂ λp(A) isomorphic to lp and there is a complemented subspace Y0

of λp(B) such that f | X0 is a isomorphism from X0 onto Y0 .

Proof. Since f : λp(A) → λp(B) is not a Montel operator, there is a bounded
subset M of λp(A) whose image f(M) is not relatively compact in λp(B). By
[2, Proposition 2.5], there is v̄ ∈ V (A) such that v̄(i) > 0 for each i ∈ N and

M ⊂ Mv̄ :=

{

x =
(

x(i)
)

∈ λp(A)
∣

∣

∣

∞
∑

i=1

(

|x(i)|

v̄(i)

)p

≤ 1

}

.

Therefore M ⊂ Mv̄ and Mv̄ can be seen as the unit ball of the Banach sequence
space lp(1/v̄). We denote by j: lp(1/v̄) → λp(A) the canonical inclusion. The
set fj(Mv̄) is not relatively compact in λp(B). As λp(B) = projn lp(bn), there is
n ∈ N such that πnfj: lp(1/v̄) → lp(bn) is not compact. Here πn: λp(B) → lp(bn)
is the canonical injection with dense range.

We apply Lemma 2(a) to obtain a subspace X0 of lp(1/v̄) which is comple-
mented, isomorphic to lp , and a subspace Y0 of lp(bn) which is complemented
and such that the operator (πnfj) | X0 is an isomorphism from X0 onto Y0 . The
proof is now completed in several steps:

(1): j: X0 → λp(A) is a topological isomorphism into.

Clearly j is injective and continuous. Suppose that (xk)k ⊂ X0 satisfies that
j(xk) → 0 in λp(A). Then πnfj(xk) → 0 in lp(bn). Since (πnfj) | X0 is an
isomorphism, xk → 0 in X0 .

We denote by P2: lp(bn) → lp(bn) the continuous projection onto Y0 . We
have P2(y) = y for each y ∈ Y0 . The operator (πnfj)−1P2(πnf): λp(A) → X0 is
well-defined, linear and continuous. Moreover, if x ∈ X0 , we have

(πnfj)−1P2(πnf)j(x) = (πnfj)−1(πnfj)(x) = x,

since (πnfj)(x0) ∈ Y0 . We apply [8, Proposition 3, p. 123] mentioned above to
obtain that

(2): X0 is isomorphic to j(X0), hence to lp , and j(X0) is a complemented
subspace of λp(A).

(3): If we consider fj(X0) as a subspace of λp(B), then πn: fj(X0) → Y0 is
a topological isomorphism.

Indeed, πn is linear and continuous, and it is injective on fj(X0) because
πnfj is an isomorphism on X0 . Moreover, πn is surjective: given y ∈ Y0 , x =
(πnfj)−1y ∈ X0 and πn

(

fj(x)
)

= y . Suppose now that (xk)k ⊂ X0 satisfies

πn

(

fj(xk)
)

→ 0 in Y0 . Then xk → 0 in X0 , thus fj(xk) → 0 in λp(B).

Part (3) implies that π−1
n (Y0) is a Banach subspace of λp(B) which is iso-

morphic to X0 , hence to lp .
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(4): π−1
n (Y0) is a complemented subspace of λp(B).

Consider π−1

n : Y0 → λp(B), which is linear and continuous by (3), and
P2πn: λp(B) → Y0 which is also linear and continuous. As (P2πn)π−1

n (y) = P2y =
y for each y ∈ Y0 , the conclusion follows again from [8, Proposition 3, p. 123].

Proposition 4. Let 1 < p < ∞ and let V = (vn)n and W = (wn)n be

decreasing sequences of strictly positive weights on N . If f ∈ L
(

kp(V ), kp(W )
)

is

not Montel, there is a complemented subspace X0 ⊂ kp(A) isomorphic to lp and

there is a complemented subspace Y0 of kp(B) such that f | X0 is a topological

isomorphism from X0 onto Y0 .

Proof. This can be proved along the lines of the proof of Proposition 3. Since
f : kp(V ) → kp(W ) is not a Montel operator, there is a bounded subset M of
kp(V ) whose image f(M) is not relatively compact in kp(W ). There is n such
that, if we denote by jn: lp(vn) → kp(V ) the canonical inclusion, the image by
fjn of the closed unit ball of lp(vn) is not relatively compact in kp(W ). By
the description of the topology of kp(W ) mentioned in the introduction, there is a
strictly positive element w ∈ W such that πfjn: lp(vn) → lp( w ) is not compact,
where π: kp(W ) → lp( w ) is the canonical inclusion with dense range. The proof
now continues as before, applying Lemma 2(a) to πfjn: lp(vn) → lp( w ).

Proposition 5. An operator f : λ0(A) → λ0(B) is reflexive if and only if it

is Montel.

Proof. We proceed again as in the proof of Proposition 3. If the opera-
tor f : λ0(A) → λ0(B) is not Montel, we find v̄ ∈ V (A) and n ∈ N such
that πnfj: c0(1/v̄) → c0(bn) is not compact. Here j: c0(1/v̄) → λ0(a) and
πn: λ0(B) → c0(bn) are the canonical inclusions. By Lemma 2(b), there are a
closed subspace X0 of c0(1/v̄) isomorphic to c0 and a closed subspace Y0 of
c0(bn) such that (πnfj) | X0 is an isomorphism from X0 onto Y0 . As in the part
(1) of the proof of Proposition 3 we conclude that j: X0 → λ0(A) is a topological
isomorphism into, and as in the proof of part (3), πn: fj(X0) ⊂ λ0(B) → Y0 is also
a topological isomorphism into. Therefore, the restriction of f to j(X0) ⊂ λ0(A)
is an isomorphism into λ0(B) and j(X0) is isomorphic to c0 . This implies that
f is not reflexive.

If A is a Köthe matrix and we apply Proposition 5 to the identity id: λ0(A) →
λ0(A), we conclude the following result of Valdivia [18, Chapter 2, Section 4, 2(1)]:
a Köthe echelon space λ0(A) is reflexive if and only if it is a Montel space.

Proposition 6. Let L: λ0(A
3) → λ0(A

4) and R: λ0(A
1) → λ0(A

2) be non-

zero operators on Köthe echelon spaces of order 0 . The wedge operator R ∧ L:
Lb

(

λ0(A
2), λ0(A

3)
)

→ Lb

(

λ0(A
1), λ0(A

4)
)

is reflexive if and only if L and R are

Montel.
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Proof. First suppose that R ∧ L is reflexive. By [4, 2.1], L and Rt are
reflexive. By [5, 1.2], R is also reflexive. Proposition 5 implies now that L and
R are Montel operators. Conversely, if L and R are Montel, then L and Rt

are Montel, see [6, 2.3]. The extension due to Apiola [1] of Vala’s classical result
implies that R ∧ L is a Montel operator, hence reflexive.

Theorem 7. Let 1 < p < ∞ . Let L: λp(A
3) → λp(A

4) and R: λp(A
1) →

λp(A
2) be non-zero operators between Köthe echelon spaces of order p . The wedge

operator R∧L: Lb

(

λp(A
2), λp(A

3)
)

→ Lb

(

λp(A
1), λp(A

4)
)

is reflexive if and only

if L or R is a Montel operator.

Proof. As all the Köthe echelon spaces here are reflexive, the operators L and
R are reflexive. Therefore, it is enough to show that the condition is necessary
by [4, 2.11] and [6, 2.3]. Suppose now that neither R nor L is a Montel operator.
We apply Proposition 3 to find a complemented subspace X0 of λp(A

1) isomorphic
to lp such that the restriction R1: X0 → R(X0) is a topological isomorphism
and R(X0) is complemented in λp(A

2). We denote by j1: X0 → λp(A
1) the

inclusion and by P1: λp(A
2) → R(X0) the continuous projection. Analogously,

Proposition 3 provides us with a complemented subspace Y0 of λp(A
3) isomorphic

to lp such that the restriction L2: Y0 → L(Y0) is a topological isomorphism and
L(Y0) is complemented in λp(A

4). We denote by j2: Y0 → λp(A
3) the injection

and by P2: λp(A
4) → L(Y0) the continuous projection.

Since R1 and L2 are isomorphisms, it is easy to see that the wedge operator

R1 ∧ L2: Lb

(

R(X0), Y0

)

→ Lb

(

X0, L(Y0)
)

is an isomorphism, too. Moreover,

Lb

(

R(X0), Y0

)

' Lb

(

X0, L(Y0)
)

' Lb(lp, lp)

is not a reflexive space, because it contains a copy of l∞ .
Suppose that the wedge operator

R ∧ L: Lb

(

λp(A
2), λp(A

3)
)

→ Lb

(

λp(A
1), λp(A

4)
)

is reflexive. Then the operator

(j1 ∧ P2) ◦ (R ∧ L) ◦ (P1 ◦ j2): Lb

(

R(X0), Y0

)

→ Lb

(

X0, L(Y0)
)

is also reflexive. It is easy to see that

(j1 ∧ P2) ◦ (R ∧ L) ◦ (P1 ◦ j2) = R1 ◦ L2,

which is an isomorphism between non-reflexive spaces; a contradiction.
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If we use Proposition 4 instead of Proposition 3, the proof above shows the
following characterization in the case of co-echelon spaces.

Theorem 8. Let 1 < p < ∞ . Let L: kp(V
3) → kp(V

4) and R: kp(V
1) →

kp(V
2) be non-zero operators between Köthe co-echelon spaces of order p . The

wedge operator R ∧ L: Lb

(

kp(V
2), kp(V

3)
)

→ Lb

(

kp(V
1), kp(V

4)
)

is reflexive if

and only if L or R is a Montel operator.

As a consequence of [4, 2.14, 2.15], if 1 < p < ∞ , L: λp(A
3) → λp(A

4) and
R: λp(A

1) → λp(A
2) satisfy that L and Rt are weakly compact and L or Rt is

compact, the wedge operator R∧L: Lb

(

λp(A
2), λp(A

3)
)

→ Lb

(

λp(A
1), λp(A

4)
)

is
weakly compact. It is a natural question whether a result similar to Theorem 7
would hold for weakly compact operators on Köthe echelon spaces of order 1 <
p < ∞ . The answer is negative as the following example shows. The authors
thank P. Domański for his suggestions concerning the example.

Example 9. Let 1 < p < ∞ . Grothendieck gave an example of a Köthe
echelon space λp(A) which is a Fréchet Montel space with a quotient isomorphic
to the Banach space lp . See e.g. [10, 33.6(2)]. We denote by Q: λp(A) → lp the
quotient map. The operator Q is weakly compact but not compact.

We set λp(A
1) = λp(A), λp(A

2) = lp , λp(A
3) = λp(A), λp(A

4) = lp ,
R: λp(A

1) → λp(A
2), R = Q and L: λp(A

3) → λp(A
4), L = Q .

Since R and L are bounded (i.e. they map a 0-neighbourhood into a bounded
set), it is easy to see that the wedge operator

R ∧ L: Lb

(

lp, λp(A)
)

→ Lb

(

λp(A), lp
)

is also bounded. As λp(A) is a Montel Köthe echelon space, the space Lb

(

λp(A), lp
)

is a reflexive (DF)-space by [3]. Therefore the wedge operator R ∧ L is weakly
compact. However, neither R nor L is compact.

An example in which all the spaces E1 , E2 , E3 , E4 coincide can be easily
obtained as follows: define the spaces E1 := λp(A) × lp , i = 1, 2, 3, 4, and the
operators

R: λp(A) × lp → λp(A) × lp, R(x, y) =
(

0, Q(x)
)

,

L: λp(A) × lp → λp(A) × lp, L(x, y) =
(

0, Q(x)
)

.

In this case T : λp(A) × lp → λp(A) × lp has the form

(

T11 T12

T21 T22

)

and
(R ∧ L)(T )(x, y) =

(

0, QT12Q(x)
)

for each (x, y).
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