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Abstract. Two methods are used to find growth estimates (in terms of the p -characteristic)
for the analytic solutions of

f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = 0

in the disc {z ∈ C : |z| < R} , 0 < R ≤ ∞ . By restricting to special cases, these estimates
yield known results in the complex plane without appealing to the commonly used Wiman–Valiron
theory.

1. Introduction

Our main problem is classical: We study the growth of the solutions of the
complex differential equations of the form

(1.1) f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = 0,

where the coefficients A0(z), . . . , Ak−1(z) are analytic in the disc DR = {z ∈ C :
|z| < R} , 0 < R ≤ ∞ . We use the special notation C (= D∞ ) for the complex
plane and D (= D1 ) for the unit disc.

A typical way of classifying the growth is by means of Nevanlinna theory,
see [7] and [12]. In this direction, H. Wittich [15] considers the case where the
coefficients, and hence the solutions, are entire functions. His classical result,
originally published in 1966, is stated as follows.

Theorem A ([12, Theorem 4.1]). All solutions of (1.1) are entire and of

finite order of growth if and only if the coefficients A0(z), . . . , Ak−1(z) in (1.1)
are polynomials.
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Assuming that all solutions of (1.1) are entire and of finite order of growth,
it follows by the standard order reduction procedure and logarithmic derivative
estimates that the coefficients of (1.1) are polynomials. We note that the original
proof in [15] of the reverse implication does not make use of Wiman–Valiron theory,
whereas the proof in [12] does. As a consequence of our main results we offer two
new proofs of the reverse implication, see Section 6.

Today, much more is known about the relation between the degrees of the
coefficient polynomials and the possible orders of growth of the solutions. For
example, we have:

Theorem B ([12, Proposition 7.1]). Suppose that the coefficients A0(z), . . .,
Ak−1(z) in (1.1) are polynomials and let f be a solution of (1.1) . Then the order

of growth %(f) of f satisfies

%(f) ≤ 1 + max
j=0,...,k−1

deg(Aj)

k − j
.

For more delicate results in this direction, we refer to the work of G. G. Gun-
dersen, E. Steinbart and S. Wang, see, e.g., [6].

Besides Nevanlinna theory, a commonly used tool to obtain growth estimates
is Wiman–Valiron theory, which is very powerful in the complex plane, but is
known to be insufficient in any finite disc. The main purpose of the present paper
is to find two growth estimates for the solutions of (1.1) in any disc DR , where
0 < R ≤ ∞ . This is done by using two methods, both independent of Wiman–
Valiron theory. By restricting to special cases, our main results also imply some
classical results such as Theorem B above.

The basic ideas that we use have been applied earlier to special cases

(1.2) f ′′ + A(z)f = 0

and

(1.3) f (k) + A(z)f = 0, k ∈ N,

of (1.1) in D or in C only.
In [3], an alternative way, independent of Wiman–Valiron theory, is used to

prove the following well-known result.

Theorem C ([16, Kapitel 5]). Let k ∈ N and let A(z) be a polynomial.

Then every non-trivial solution f of (1.3) is an entire function of order of growth

1 + deg(A)/k .

Indeed, the upper bound %(f) ≤ 1 + deg(A)/k in [3] is proved by gener-
alizing the method of successive approximations, while the lower bound %(f) ≥
1+deg(A)/k follows by the sharp logarithmic derivative estimates developed ear-
lier in [5].

In Section 6 we give an alternative proof for the following well-known result.
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Theorem D ([16, Kapitel 5], [6]). Suppose that the coefficients A0(z), . . . ,
Ak−1(z) in (1.1) are polynomials satisfying

(1.4)
deg(Aj)

k − j
≤

deg(A0)

k

for all j = 1, . . . , k − 1 . Let f be a transcendental solution of (1.1) . Then

%(f) = 1 +
deg(A0)

k
.

We prove growth estimates for the solutions of (1.1) relying on two meth-
ods, allowing the coefficient functions to have arbitrarily rapid growth. The first
method is based on a representation theorem for solutions of (1.1), while the sec-
ond relies on a comparison theorem by H. Herold [10]. The representation theorem
is introduced in Section 3 and it generalizes analogous earlier results for the solu-
tions of (1.2) and (1.3). The estimates are stated in terms of the p -characteristic,
see [14] and Section 2 of the present paper. The main results and their proofs are
given in Sections 3–5. A further discussion in Section 6 completes the paper.

2. The p-characteristic

Our estimates in Sections 4 and 5 are stated in terms of the p -characteristic
of the solutions of (1.1). To this end, let f be analytic in the disc DR , where
0 < R ≤ ∞ . For 0 < p < ∞ , we define the p-characteristic as

mp(r, f) :=

(

1

2π

∫ 2π

0

(
+

log |f(reiθ)|
)p

dθ

)1/p

, 0 ≤ r < R,

see, e.g., [14]. Obviously, m1(r, f) = m(r, f) is the Nevanlinna proximity function.
In estimating the growth of the p -characteristic, the following elementary

result appears to be useful, see [4, p. 57].

Lemma E. Let an ≥ 0 for n = 1, . . . , N . Then

( N
∑

n=1

an

)p

≤

( N
∑

n=1

ap
n

)

, 0 < p ≤ 1,

and
( N

∑

n=1

an

)p

≤ Np−1

( N
∑

n=1

ap
n

)

, 1 ≤ p < ∞.
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3. A representation theorem

Let us first recall that any solution of (1.3), where A(z) is analytic either in
D or in C , possesses an integral representation, see, e.g., [8, Theorem 4.1] and the
proof of [2, Lemma 4], respectively. These integral representations for solutions of
(1.3) are rather simple generalizations of the corresponding representation result
for solutions of (1.2), see, e.g., the proof of [1, Lemma 1].

The proof of the representation theorem is essentially independent of the size
of the domain, hence it can be carried out in any disc DR , 0 < R ≤ ∞ . We first
state the result for the solutions of (1.3).

Theorem F. Let f be a solution of (1.3) in DR , 0 < R ≤ ∞ . Then, for

any z, z0 ∈ DR ,

f(z) =

k−1
∑

n=0

f (n)(z0)

n!
(z − z0)

n −
1

(k − 1)!

∫ z

z0

(z − ξ)k−1A(ξ)f(ξ) dξ,

where the path of integration is a piecewise smooth curve in DR joining z0 and z .

Next, we give a representation theorem for the solutions of the general equa-
tion (1.1).

Theorem 3.1. Let f be a solution of (1.1) in DR , 0 < R ≤ ∞ . Then, for

any z, z0 ∈ DR ,

f(z) =

k−1
∑

n=0

cn(z − z0)
n +

k−1
∑

j=0

j
∑

n=0

dj,n

∫ z

z0

(z − ξ)k−j+n−1A
(n)
j (ξ)f(ξ) dξ,

where the constants cn ∈ C depend on the initial values of f at z0 , dj,n ∈ Q ,

and the path of integration is a piecewise smooth curve in DR joining z0 and z .

Proof. Write (1.1) in the form

(3.1) f (k) = −Ak−1(z)f (k−1) − · · · − A1(z)f ′ − A0(z)f.

We next integrate (3.1) k times from z0 to z along any fixed piecewise smooth
curve in DR joining z0 and z . This will be done in several steps.

After integrating f (k) , we have

(3.2)

∫ z

z0

· · ·

∫ z

z0

f (k)(ξ) dξk = f(z) −
k−1
∑

n=0

f (n)(z0)

n!
(z − z0)

n.

For any continuous function ϕ ,

(3.3)

∫ z

z0

· · ·

∫ z

z0

ϕ(ξ) dξk =
1

(k − 1)!

∫ z

z0

(z − ξ)k−1ϕ(ξ) dξ,
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as is easily verified by differentiation. Hence

(3.4)

∫ z

z0

· · ·

∫ z

z0

A0(ξ)f(ξ) dξk =
1

(k − 1)!

∫ z

z0

(z − ξ)k−1A0(ξ)f(ξ) dξ.

Integrating Aj(z)f (j) , where j ∈ {1, . . . , k− 1} , is not so easy. Let us look at the
simplest case j = 1 first. By (3.3),

∫ z

z0

· · ·

∫ z

z0

A1(ξ)f
′(ξ) dξk

=

∫ z

z0

· · ·

∫ z

z0

(

A1(ξ)f(ξ)
)′

dξk −

∫ z

z0

· · ·

∫ z

z0

A′
1(ξ)f(ξ) dξk

=

∫ z

z0

· · ·

∫ z

z0

A1(ξ)f(ξ) dξk−1 −
A1(z0)f(z0)

(k − 1)!
(z − z0)

k−1

−

∫ z

z0

· · ·

∫ z

z0

A′
1(ξ)f(ξ) dξk(3.5)

=
1

(k − 2)!

∫ z

z0

(z − ξ)k−2A1(ξ)f(ξ) dξ

−
1

(k − 1)!

∫ z

z0

(z − ξ)k−1A′
1(ξ)f(ξ) dξ

A1(z0)f(z0)

(k − 1)!
(z − z0)

k−1.

If k > 2, further terms Aj(z)f (j) must be integrated as well. In general, by the
binomial formula,

Ajf
(j) = (Ajf)(j) −

j
∑

n=1

(

j

n

)

A
(n)
j f (j−n)

= (Ajf)(j)

−

j
∑

n=1

(

j

n

)(

(A
(n)
j f)(j−n) −

j−n
∑

m=1

(

j − n

m

)

A
(n+m)
j f (j−n−m)

)

= (Ajf)(j) −

j
∑

n=1

(

j

n

)

(A
(n)
j f)(j−n)(3.6)

+

j
∑

n=1

(

j

n

) j−n
∑

m=1

(

j − n

m

)

A
(n+m)
j f (j−n−m)

...

=

j
∑

n=0

aj,n(A
(n)
j f)(j−n)
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for some constants aj,n ∈ Q . Hence, applying (3.3) and (3.6),

∫ z

z0

· · ·

∫ z

z0

Aj(ξ)f
(j)(ξ) dξk =

j
∑

n=0

aj,n

∫ z

z0

· · ·

∫ z

z0

(A
(n)
j f)(j−n)(ξ) dξk

=

j
∑

n=0

aj,n

∫ z

z0

· · ·

∫ z

z0

A
(n)
j (ξ)f(ξ) dξk−j+n

+

k−1
∑

n=k−j

bj,n(z − z0)
n(3.7)

=

j
∑

n=0

aj,n

(k − j + n − 1)!

∫ z

z0

(z − ξ)k−j+n−1A
(n)
j (ξ)f(ξ) dξ

+

k−1
∑

n=k−j

bj,n(z − z0)
n,

where bj,n ∈ C are constants depending on the initial values of f at z0 . Combin-
ing (3.1), (3.2), (3.4), (3.5) and (3.7), we get the assertion.

4. Estimates based on the representation theorem

The growth estimates in [8, Theorem 4.2] and in [2, Lemma 4] are proved for
solutions of (1.3) in D and in C , respectively, by applying the classical Gronwall
lemma to Theorem F. Again the proof is essentially independent of the size of the
domain, and so it can be carried out in any disc DR , 0 < R ≤ ∞ . We first state
the growth estimates for the solutions of (1.3).

Theorem G. Let f be a solution of (1.3) in DR .

(a) If 0 < R ≤ 1 , then

|f(reiθ)| ≤

(k−1
∑

n=0

|f (n)(0)|

n!
rn

)

exp

(

1

(k − 1)!

∫ r

0

|A(seiθ)|(R − s)k−1 ds

)

for all θ ∈ [0, 2π) and r ∈ [0, R) .
(b) If 1 < R ≤ ∞ , then

|f(reiθ)| ≤

(k−1
∑

n=0

|f (n)(eiθ)|

n!
rn

)

exp

(

1

(k − 1)!

∫ r

0

|A(seiθ)|sk−1 ds

)

for all θ ∈ [0, 2π) and r ∈ (1, R) .

At the present stage, it is rather obvious that Theorem 3.1 yields analogous
growth estimates for the solutions of the general equation (1.1) in DR .
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Theorem 4.1. Let f be a solution of (1.1) in DR .

(a) If 0 < R ≤ 1 , then there exist a constant C1 = C1(k) > 0 , depending on the

initial values of f at z0 = 0 , and a constant C2 = C2(k) > 0 , such that

|f(reiθ)| ≤ C1 exp

(

C2

k−1
∑

j=0

j
∑

n=0

∫ r

0

|A
(n)
j (seiθ)|(R − s)k−j+n−1 ds

)

for all θ ∈ [0, 2π) and r ∈ [0, R) .
(b) If 1 < R ≤ ∞ , then there exist a constant C1 = C1(k) > 0 , depending on

the initial values of f at z0 = eiθ , and a constant C2 = C2(k) > 0 , such that

|f(reiθ)| ≤ C1r
k−1 exp

(

C2

k−1
∑

j=0

j
∑

n=0

∫ r

0

|A
(n)
j (seiθ)|sk−j+n−1 ds

)

for all θ ∈ [0, 2π) and r ∈ (1, R) .

Proof. (a) Theorem 3.1, in the case when z0 = 0 and the path of integration
is the line segment [0, z] , yields

(4.1) |f(reiθ)| ≤ C1 +

∫ r

0

(

C2

k−1
∑

j=0

j
∑

n=0

|A
(n)
j (seiθ)|(R − s)k−j+n−1

)

|f(seiθ)| ds,

where C1 > 0 is a constant depending on the initial values of f at z0 = 0, and
C2 = max{|dj,n|} > 0. The assertion in Part (a) follows by applying the Gronwall
lemma [12, p. 86] to (4.1).

(b) Similarly as above, with z0 = eiθ and the path of integration being the
line segment [eiθ, z] , we obtain

(4.2) |f(reiθ)| ≤ C1r
k−1+

∫ r

1

(

C2

k−1
∑

j=0

j
∑

n=0

|A
(n)
j (seiθ)|(r−s)k−j+n−1

)

|f(seiθ)| ds,

where C1 > 0 is a constant depending on the initial values of f at z0 = eiθ and
C2 = max{|dj,n|} > 0. We note that, for all 1 ≤ s ≤ r , j ∈ {0, . . . , k − 1} and
n ∈ {0, . . . , j} ,

(4.3)
(r − s)k−j+n−1

rk−1
≤

1

rj−n
≤

sk−j+n−1

sk−1
.

Dividing (4.2) by rk−1 and using (4.3), we obtain

(4.4)
|f(reiθ)|

rk−1
≤ C1 +

∫ r

1

(

C2

k−1
∑

j=0

j
∑

n=0

|A
(n)
j (seiθ)|sk−j+n−1

)

|f(seiθ)|

sk−1
ds.

Applying the Gronwall lemma to (4.4), we get

|f(reiθ)| ≤ C1r
k−1 exp

(

C2

k−1
∑

j=0

j
∑

n=0

∫ r

1

|A
(n)
j (seiθ)|sk−j+n−1 ds

)

,

from which we conclude the assertion in Part (b).
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We next give growth estimates for the solutions f of (1.1) in terms of the
p -characteristic mp(r, f), where 1 ≤ p < ∞ .

Corollary 4.2. Let f be a solution of (1.1) in DR and let 1 ≤ p < ∞ .

(a) If 0 < R ≤ 1 , then there exist a constant C1 = C1(k) > 0 , depending on

the initial values of f at z0 = 0 , and on p , and a constant C2 = C2(k) > 0 ,

depending on p , such that

mp(r, f)p ≤ C1 + C2

k−1
∑

j=0

j
∑

n=0

∫ 2π

0

∫ r

0

|A
(n)
j (seiθ)|p(R − s)p(k−j+n−1) ds dθ

for all r ∈ [0, R) .
(b) If 1 < R ≤ ∞ , then there exist a constant C1 = C1(k) > 0 , depending on f

and on p , and a constant C2 = C2(k) > 0 , depending on p , such that

mp(r, f)p ≤ C1

(

log rk−1
)p

+ C2

k−1
∑

j=0

j
∑

n=0

∫ 2π

0

∫ r

0

|A
(n)
j (seiθ)|psp(k−j+n−1) ds dθ

for all r ∈ (1, R) .

Proof. (a) The case p = 1 is an immediate consequence of Theorem 4.1(a).
If 1 < p < ∞ , Theorem 4.1(a) together with Lemma E and the Hölder inequality
yield the assertion.

(b) We apply Theorem 4.1(b) for a fixed θ ∈ [0, 2π). For each θ we might
get a different constant C1 , but, as f is a fixed function analytic in DR , where
R > 1, the functions f, f ′, . . . , f (k−1) are bounded on ∂D . Hence a finite constant
C1 , depending on f and on p , can be found.

5. Estimates based on Herold’s comparison theorem

In this section we prove another growth estimate for the solutions of (1.1).
For this we need the following version of Herold’s comparison theorem [10, Satz 1],
which can be easily verified by a careful examination of the original proof.

Theorem H. Let pj(x) , j = 1, . . . , n , be complex valued functions defined

on [a, b) , let E ⊂ [a, b) be a finite set of points, and let Pj(x) , j = 1, . . . , n , be

real valued non-negative functions such that |pj(x)| ≤ Pj(x) for all x ∈ [a, b)\E .

Moreover, let Pj(x) be continuous for all x ∈ [a, b)\E . If v(x) is a solution of the

differential equation

v(n) −
n

∑

j=1

pj(x)v(n−j) = 0,

and V (x) satisfies

V (n) −
n

∑

j=1

Pj(x)V (n−j) = 0
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on [a, b)\E , where

|v(k)(a)| ≤ V (k)(a)

for all k = 0, . . . , n − 1 , then

|v(k)(x)| ≤ V (k)(x)

for all x ∈ [a, b)\E and k = 0, . . . , n − 1 .

We apply Theorem H to obtain the next result, which is a generalization of
[13, Lemma 2] (unit disc estimate) and of [1, Lemma 2] (complex plane estimate).
The estimates in [13] and [1] are for the solutions of equation (1.2). Note that,
differing from [13], the proof here does not appeal to the maximal theorem due to
Hardy and Littlewood [4, Theorem 1.8].

Theorem 5.1. Let f be a solution of (1.1) in DR , where 0 < R ≤ ∞ , let

nc ∈ {1, . . . , k} be the number of nonzero coefficients Aj(z) , j = 0, . . . , k−1 , and

let θ ∈ [0, 2π) and ε > 0 . If zθ = νeiθ ∈ DR is such that Aj(zθ) 6= 0 for some

j = 0, . . . , k − 1 , then, for all ν < r < R ,

(5.1) |f(reiθ)| ≤ C exp

(

nc

∫ r

ν

max
j=0,...,k−1

|Aj(te
iθ)|1/(k−j) dt

)

,

where C > 0 is a constant satisfying

(5.2) C ≤ (1 + ε) max
j=0,...,k−1

(

|f (j)(zθ)|

(nc)j max
n=0,...,k−1

|An(zθ)|
j/(k−n)

)

.

Proof. Let ν < r < R , and denote

(5.3) hθ(x) := max
j=0,...,k−1

|Aj(xeiθ)|1/(k−j)

for convenience. Take % such that r < % < R , and let ε0 > 0. Then hθ

is Riemann integrable on [ν, %] , and so there exists a partition P := {ν =
x0, x1, . . . , xn−1, xn = %} of [ν, %] such that xj 6= r for all j = 0, . . . , n , and

(5.4) U(P, hθ) −

∫ %

ν

hθ(s) ds < ε0,

where U(P, hθ) is the upper Riemann sum of hθ , corresponding to the partition P .
Define the auxiliary function gθ: [ν, %] −→ R ,

gθ(t) := nc · sup
xj≤x≤xj+1

hθ(x), xj ≤ t ≤ xj+1, j = 0, . . . , n − 1.
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Then gθ(t) is a step function, which satisfies gθ(t) ≥ nc · hθ(t) for all t ∈ [ν, %] .
Moreover,

U(P, hθ) =
1

nc

∫ %

ν

gθ(s) ds,

and so, by (5,4),

(5.5)
1

nc

∫ r

ν

gθ(s) ds <

∫ r

ν

hθ(s) ds + ε0.

Next, we define the auxiliary function

V (t) := exp

(
∫ t

ν

gθ(s) ds

)

on [ν, %) and the constants

δj :=

{

0, if Aj(z) ≡ 0,
1, otherwise,

where j = 0, . . . , k − 1. Then, since g
(l)
θ (t) ≡ 0 for all t ∈ [ν, %)\P when l ≥ 1,

V (t) satisfies the equation

V (k) −
1

nc
gθ(t)δk−1V

(k−1) − · · · −
1

nc
gθ(t)

k−1δ1V
′ −

1

nc
gθ(t)

kδ0V = 0

on [ν, %)\P . Since gθ(ν) 6= 0, the constant

C0 := max
j=0,...,k−1

(

|f (j)(zθ)|

gθ(ν)j

)

is well-defined. Furthermore,

(5.6) C0 ≤ max
j=0,...,k−1

(

|f (j)(zθ)|

(nc)j max
n=0,...,k−1

|An(zθ)|
j/(k−n)

)

,

and
|f(νeiθ)| ≤ C0V (ν) = C0,

|f ′(νeiθ)| ≤ C0V
′(ν) = C0gθ(ν),

...

|f (k−1)(νeiθ)| ≤ C0V
(k−1)(ν) = C0gθ(ν)k−1.
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Clearly v(t) := f(teiθ) solves the equation

v(k) + pk−1(t)v
(k−1) + . . . + p0(t)v = 0,

where pj(t) := ei(k−j)θAj(te
iθ), j = 0, . . . , k − 1. Moreover, since

|pj(t)| = |Aj(te
iθ)| ≤

1

nc
gθ(t)

k−jδj

for all j = 0, . . . , k − 1, and

|v(ν)| ≤ C0V (ν),

|v′(ν)| ≤ C0V
′(ν),

...

|v(k−1)(ν)| ≤ C0V
(k−1)(ν),

we have, by Theorem H and (5.5),

|f(reiθ)| = |v(r)| ≤ C0V (r) = C0 exp

(
∫ r

ν

gθ(s) ds

)

≤ C0 exp

(
∫ r

ν

nc · hθ(s) ds + ncε0

)

= C exp

(

nc

∫ r

ν

hθ(s) ds

)

,

where, by (5.6) and choosing ε0 to be sufficiently small, C satisfies (5.2). Since
ν < r < R is arbitrary, the assertion follows.

Example 5.2. The function f(z) = ekz is the solution of the initial value
problem

f (k) − kkf = 0, f (j)(0) = kj , j = 0, . . . , k − 1.

On the other hand, Theorem 5.1 gives |f(z)| ≤ (1 + ε)ek|z| , where ε > 0 is
arbitrary.

The following corollary is analogous to Corollary 4.2.

Corollary 5.3. Let f be a solution of (1.1) in DR , where 0 < R ≤ ∞ , and

let 1 ≤ p < ∞ . Then, for all 0 ≤ r < R ,

mp(r, f)p ≤ C

(k−1
∑

j=0

∫ 2π

0

∫ r

0

|Aj(se
iθ)|p/(k−j) ds dθ + 1

)

,

where C = C(k) > 0 is a constant depending on p , and on the initial values of f
at the point zθ , where Aj(zθ) 6= 0 for some j = 0, . . . , k − 1 .

Proof. The case p = 1 follows directly by Theorem 5.1. Suppose then that
1 < p < ∞ . Using Theorem 5.1, Lemma E, and the Hölder inequality, we obtain

mp(r, f)p ≤ C

(
∫ 2π

0

∫ r

0

hθ(s)
p ds dθ + 1

)

,

where C > 0 is a constant of the type described in the statement of the corollary
and hθ is defined in (5.3). The assertion follows by using Lemma E again.
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6. Alternative proofs, and further discussion

We give alternative proofs of Theorems B–D and of the reverse implication in
Theorem A, as described in Section 1. Moreover, we discuss some other applica-
tions of our growth estimates.

Theorems A–D. As indicated in Section 1, the proofs of Theorems A–D
are typically based on Wiman–Valiron theory, although there are alternative ways
to prove Theorems A–C. We offer new proofs of Theorems A–D by applying the
growth estimates in Sections 4 and 5.

Theorem B can be proved by applying Corollary 5.3 in the case when p = 1
and R = ∞ . On the other hand, Corollary 4.2(b) gives the upper bound

max
0≤j≤k−1

{deg(Aj) + k − j} = max
0≤j≤k−1

{(

deg(Aj)

k − j
+ 1

)

(k − j)

}

for the order of growth of the entire solutions of (1.1). This agrees with the
estimate in Theorem B, provided that the maximum is attained at j = k − 1.

In this setting, Corollary 5.3 seems to be stronger than Corollary 4.2. How-
ever, this is not the case in general, see the discussion below. We also note the
trivial fact that both of these corollaries can be used to obtain the reverse impli-
cation in Theorem A.

Finally, we give an alternative proof for Theorem D, from which Theorem C
immediately follows. To see that the inequality

%(f) ≤ 1 +
deg(A0)

k

holds, we use Corollary 5.3 and (1.4). The proof of the inequality

%(f) ≥ 1 +
deg(A0)

k

is an easy modification of the reasoning in [3, Section 7]. The original idea was
pointed out to the first author by G. G. Gundersen. Namely, we write (1.1) in the
form

A0(z) = −
f (k)(z)

f(z)
− Ak−1(z)

f (k−1)(z)

f(z)
− · · · − A1(z)

f ′(z)

f(z)

and use the logarithmic derivative estimates [5, Corollary 2] to obtain

(6.1) deg(A0) ≤ max
j=1,...,k

{

deg(Aj) + j
(

%(f) − 1
)

+ ε
}

,

where Ak(z) := 1 and ε > 0 is arbitrary. Comparing (6.1) and (1.4) and letting
ε −→ 0, we get the assertion.
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Remark. Under the assumptions of Theorem D, all transcendental solutions
of (1.1) are of finite type.

Iterated order of growth. Our growth estimates can be used to obtain
information on the iterated order of growth of the solutions of (1.1) in the spirit of
[12, Theorem 7.3] (see also [11]), where Wiman–Valiron theory plays a fundamental
role. For example, if the expressions |Aj(z)| are of growth O(e|z|

s

) at most, that
is, if the functions Aj(z) are entire and of finite order of growth, then all solutions
of (1.1) are entire and are of finite iterated 2-order (also known as the hyper
order) by [12, Theorem 7.3]. To offer another viewpoint, we note that, in the

case p = 1, the expressions |A
(n)
j (seiθ)|sk−j+n−1 in Corollary 4.2(b) and the

expressions |Aj(se
iθ)|1/(k−j) in Corollary 5.3 are all of the growth O(e|z|

s

) at
most. Therefore, Corollary 4.2(b) and Corollary 5.3 can both be applied to get an
alternative proof, independent of Wiman–Valiron theory, for the finiteness of the
iterated 2-order of the solutions of (1.1).

Remark. The discussion above can be further extended to the case when the
coefficients Aj(z) are of finite order (or of finite iterated order) of growth in any
disc DR , 0 < R ≤ ∞ . To the best of our knowledge, iterated orders have not
been treated earlier in this sense in a finite disc.

Real differential equations. Theorems 4.1 and 5.1 restricted to the real
line yield immediate growth estimates for the solutions of linear real differential
equations of the form (1.1) on the interval (−R, R), where 0 < R ≤ ∞ .

Oscillation. Theorem F together with a growth estimate based on the Herold
comparison theorem, see [2, Lemma 3], are used in [2] to obtain a certain oscilla-
tion result for entire solutions of (1.3). We have been able to extend these auxiliary
results for the general equation (1.1), see Theorems 3.1 and 5.1 above. The ques-
tion as to whether or not these extended results could be applied to obtain an
analogous oscillation result to that in [2] for the solutions of (1.1) is left open.

Unit disc. In a preprint [9] by the authors, the estimates in Corollaries 4.2
and 5.3 are used together with some function spaces arguments to study the ana-
lytic solutions of (1.1) in D . It is shown that neither of these estimates is better
than the other in the case 1 ≤ p < 2.
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