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Abstract. In classical function theory, a function is holomorphic if and only if it is complex
analytic. For higher dimensional spaces it is natural to work in the context of Clifford algebras.
The structures of these algebras depend on the parity of the dimension n of the underlying vector
space. The theory of holomorphic Cliffordian functions reflects this dependence. In the case of odd
n the space of functions is defined by an operator (the Cauchy–Riemann equation) but not in the
case of even n . For all dimensions the powers of identity (zn, xn) are the foundation of function
theory.

I. Introduction

A complex analytic function f(z) may be defined as being locally the sum of
a convergent power series f(z) =

∑∞
N=1 aNz

N−1 or as being holomorphic, that is
such that

(
∂

∂x
+ i

∂

∂y

)

f(x+ iy) = 0.

A real analytic function u(x) may be defined as being locally the sum of a con-
vergent power series or by u(x) = f(x + i0) where f is a complex holomorphic
function such that f(z̄) = f(z). The main difference between the complex and the
real case is the existence or non-existence of a differential relation characterizing
holomorphy.

We extend the definitions of analyticity and holomorphy to functions defined
on Clifford algebras R0,n distinguishing between the case of odd n , n = 2m+ 1,
and the case of even n , n = 2m . We show that the equivalence between analyticity
and holomorphy still holds. The cases of odd n and even n interrelate in a
way that reflects the difference between the structures of the algebras R0,2m and
R0,2m+1 . In particular the center of R0,2m is R although the center of R0,2m+1

is R ⊕ Re12···2m+1 , where e12···2m+1 is a pseudoscalar.
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II. Notation

Let Vn be an anti-Euclidean vector space of dimension n . For any orthonor-
mal basis e1, . . . , en of Vn we have for all distinct i and j in {1, . . . , n}

e2i = −1 and eiej = −ejei.

If I ⊂ {1, . . . , n} and I = {i1, . . . , ik} with i1 < · · · < ik we set eI =
ei1ei2 · · · eik

. For I = ∅ , we set e∅ = e0 = 1. Then (eI)I⊂{1,...,n} is a basis of
the Clifford algebra R0,n seen as a real vector space. If A =

∑

I⊂{1,...,n}AIeI ,
with AI ∈ R , is an element of R0,n we call A0 = A∅ the scalar part of A and
denote it by A0 = S(A). Following the R − C case and also Leutwiler and
Eriksson-Bique [EL2], we introduce the decomposition

R0,n = R0,n−1 ⊕ enR0,n−1.

(For convenience in our computations we have chosen enR0,n−1 instead of R0,n−1en .)
This decomposition means that given a vector en there are two maps from R0,n

to R0,n−1 , denoted R and J , such that for any A in R0,n we have

A = RA+ enJA.

We have chosen the notation R and J and the following notation for con-
jugation to stress the fact that for n = 1, we have R0,1 = C , R0,0 = R which
yield the usual relations between C and R . If A ∈ R0,n , we call the conjugate
of A and denote by Ā the element of R0,n defined by

Ā = RA− enJA.

If z is a paravector, that is an element of R ⊕ Vn , we have

z = z0 + z1e1 + · · ·+ znen with z0 ∈ R, z1 ∈ R, . . . , zn ∈ R.

We denote by |z| the positive real number such that |z|2 = z2
0 + z2

1 + · · ·+ z2
n

and by x = Rz = z0 + z1e1 + · · · + zn−1en−1 the paravector in R ⊕ Vn−1 such
that

z = x+ znen and z̄ = x− znen.

We define z∗ by z∗ = z0 − z1e1 − · · · − znen . Then |z|2 = zz∗ = z∗z .

We introduce the differential operators

D =
∂

∂z0
+ e1

∂

∂z1
+ · · · + en

∂

∂zn
,

D∗ =
∂

∂z0
− e1

∂

∂z1
− · · · − en

∂

∂zn
and

∆ = DD∗ = D∗D.
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Note that ∆ is the usual Laplacian.
If α = (α0, α1, . . . , αn) ∈ (N ∪ {0})n+1 is a multi-index we denote its length

by |α| = α0 + α1 + · · · + αn . The elementary multi-index εk is defined by εk =
(δk0, δk1, . . . , δkn) where δij is the Kronecker symbol equal to 1 if i = j and to 0
if i 6= j .

The order on the set of multi-indexes is the lexicographical order.

III. Analytic Cliffordian polynomials

Laville and Ramadanoff [LR1] have defined holomorphic Cliffordian polyno-
mials for odd n . The same definitions can also be used for even n . We will see
that these homogeneous polynomials are the building blocks of analytic Cliffordian
functions in both cases. Therefore we call them analytic Cliffordian polynomials.
Polynomials with the same structure were introduced by Heinz Leutwiler in [Le1]
and also in [EL1]. Monogenic polynomials are particular cases of analytic Cliffor-
dian polynomials [BDS] and [DSS].

III.1. Three classes of analytic Cliffordian polynomials.

Definition 1.a. Let a be a paravector and N ∈ N . We call elementary
analytic monomial and denote by Ma

N (z) the homogeneous monomial function of
degree N − 1 defined by

Ma
N (z) = (az)N−1a = a(za)N−1.

Remark 1. We may also define Ma
N (z) for all integers by Ma

0 (z) = z−1

and for N < 0, Ma
N (z) = Mz−1

1−N (a−1). It is often convenient to write a(za)N−1

instead of Ma
N (z). We have then for N ∈ Z and

√
a a paravector such that

(√
a

)2
= a

a(za)N =
√
a
(√
a z

√
a

)N√
a .

These polynomials are close to similar ones in [Le2].

Remark 2. The monomial Ma
N (z) = |a|NMa/|a|

N (z) = |z|N−1Ma
N (z/|z|).

Proposition 1. We have Ma
N (z) ∈ R ⊕ Vn and |Ma

N (z)| = |a|N |z|N−1 .

Proof. Computing aza explicitly, we get aza ∈ R ⊕ Vn and |aza| = |a|2|z| .
Note that

(∗) Ma
N (z) = aM z

N−1(a)a.

Proposition 2. We have

Ma
N (z) = D∗

1

N
S

(
(az)N

)
.
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Proof. Let us define θ by |a| |z| cos θ = S(az), 0 ≤ θ ≤ π . Then 2S(az) =
az + z∗a∗ and aza = (az + z∗a∗)a− z∗a∗a = 2S(az)a− |a|2z∗ = 2|a| |z| cos θa−
|a|2|z|2z−1 . A simple recursion using (∗) yields

Ma
N (z) = |a|N−1|z|N−1 sinNθ

sin θ
a− |a|N |z|N sin(N − 1)θ

sin θ
z−1.

Since 2S
(
(az)N

)
= Ma

N (z)z + z∗M
a
N (z)∗ , we get

S
(
(az)N

)
= |a|N |z|N cos(Nθ).

From the definitions of |z| and θ , we get D∗|z| = |z|z−1 and

D∗θ =
cos θ

sin θ
z−1 − |a|−1|z|−1 1

sin θ
a.

Finally

D∗S(az)N = N |a|N |z|Nz−1 cos(Nθ) −N |a|N |z|N sinNθD∗θ = NMa
N (z).

Corollary. We have

zN = D∗
1

N + 1
S(zN+1).

Proof. Choose a = e0 and replace N by N + 1 in Proposition 2.

Remark. Let TN (x) and UN (x), x ∈ R , be the classical Tchebycheff poly-
nomials of the first and second kind. Recall that

TN (x) = cos(N Arc cosx),

UN (x) =
sin

(
(N + 1) Arc cosx

)

sin(Arc cosx)
.

Thus, when |a| = 1, |z| = 1, we get

S
(
(az)N

)
= TN

(
S(az)

)
and Ma

N (z) = UN−1

(
S(az)

)
a− UN−2

(
S(az)

)
z−1.

Definition 1.b. Let a1, . . . , ak be paravectors and let N1, . . . , Nk be integers
belonging to N∪{0} . We set N = N1 + · · ·+Nk and denote by PN1,...,Nk

the set
of partitions I of {1, . . . , N} into a union of disjoint subsets I = (I1, . . . , Ik) such
that Card I1 = N1, . . . ,Card Ik = Nk . For I ∈ PN1,...,Nk

and ν ∈ {1, . . . , N} ,
we define bIν by bIν = aj where j is the element of {1, . . . , k} such that ν ∈ Ij .
We define the a1, . . . , ak symmetrical analytic homogeneous polynomial of degree
N − 1 in z and Nj in aj by

Sa1,...,ak

N1,...,Nk
(z) =

∑

I∈PN1,...,Nk

(N−1∏

ν=1

(bIνz)

)

bIN .

Proposition 3. The polynomial Sa1,...,ak

N1,...,Nk
is a real linear combination of

elementary analytic Cliffordian monomials of degree N1 + · · · +Nk − 1 .
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Proof. For any real λ , we have

Ma+λb
N (z) =

∑

p+q=N

λqSa,b
p,q(z).

Choose N + 1 different values for λ ; one gets a Van der Monde matrix which is
invertible. This shows the result for k = 2. We can iterate the same argument
noting that for any real λ

S
a1,...,ak−1,ak+λak+1

N1,...,Nk−1,Nk
(z) =

∑

p+q=Nk

λqS
a1,...,ak−1,ak,ak+1

N1,...,Nk−1,p,q (z).

Definition 2. For each multi-index α ∈ (N ∪ {0})n+1 we define Qα as the
homogeneous polynomial in z0, . . . , zn of degree |α| − 1, by

Qα(z) = ∂αz
2|α|−1

where ∂α is the differential operator of order |α| : ∂α = ∂|α|/∂zα0

0 ∂zα1

1 . . . ∂zαn
n .

Definition 3. For each multi-index α 6= (0, 0, . . . , 0) we define the analytic
Cliffordian polynomial Pα by

Pα(z) =
∑

σ∈Sα

(|α|−1
∏

ν=1

(eσ(ν)z)

)

eσ(|α|)

where Sα is the set of maps σ from {1, . . . , |α|} to {0, 1, . . . , n} such that

Card
(
σ−1({k})

)
= αk for all k in {0, 1, . . . , n} .

III.2. Relations among the Ma
N (z) , the Qα(z) and the Pα(z) . For any N

in N , the real linear space generated by the elementary analytic monomials M a
N ,

the real linear space generated by the Qα with |α| = N and the real linear space
generated by the Pα with |α| = N are identical.

Proposition 4. The polynomial Qα(z) = ∂αM
1
2|α|(z) .

Corollary. For any multi-index α , Qα(z) ∈ R⊕Vn and there exists a scalar

polynomial qα(z) homogeneous of degree |α| such that Qα(z) = D∗qα(z) .

Proof. ∂α and D∗ commute and M1
2|α||z| = z2|α|−1 . Use Proposition 1 and

corollary of Proposition 2.

Proposition 5. We have

Qα(z) = kαPα(z) +
∑

α′>α

|α′|=|α|

λαα′Pα′(z)

where kα =
(

2|α|−1
α0

)

α0!α1! · · ·αn! and λαα′ ∈ Z .
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Proof. Let β = (α1, . . . , αn) ∈ (N − {0})n be the multi-index such that
α = (α0, β). From the definition of Qα follows:

Qα(z) =

(
2|α| − 1
α0

)

α0!
∂|β|

∂zα1

1 · · ·∂zαn
n
z2|β|−1+α0 .

Consider z2|β|−1+α0 as an explicit product of 2|β|−1+α0 factors each equal
to z , that is: z2|β|−1+α0 = z · z · z · · · z . To apply ∂/∂xk is equivalent to replace
each z once by ek and to add all the products obtained. If we never derivate two
successive z then we get α1! · · ·αn!Pα(z). If we derivate two successive z , we get
factors ekeh which anihilate if k 6= h because ekeh = −ehek and else −1 if k = h .
Since 1 = e0 we get the terms of Pα′ with α′ > α in the lexicographical order.

Corollary 1. The polynomial Pα(z) = k−1
α Qα(z) +

∑
α′>α

|α′|=|α|

µαα′Qα′(z)

where µαα′ ∈ Q .

Corollary 2. For any multi-index α , Pα(z) ∈ R ⊕ Vn and there exists a

scalar polynomial pα(z) homogeneous of degree |α| such that Pα(z) = D∗pα(z) .

Proposition 6. The monomial function Ma
N (z) =

∑

|α|=N aαPα(z) , where

aα := aα0

0 aα1

1 · · ·aαn
n .

Proposition 7. For α = (α0, α1, . . . , αn) , we have Pα(z) = Se0,e1,...,en
α0,α1,...,αn

(z) .

Proof. The definition of Pα is the definition of S in which the k paravectors
a1 · · ·ak are the (n+ 1) elements of a basis of S ⊕ V : e0, e1, . . . , en .

Corollary. The real linear space generated by the Pα with |α| = N is

independent of the basis e1, . . . , en of Vn .

Remarks. In the case of odd n , this is already known.
Note that generally the polynomials Pα(z) with |α| = N are not R -linearly

independent. For example, if n = 3 and N = 4 we have

3P4000+3P0400+3P0040+3P0004+P2200+P2020+P2002+P0220+P0202+P0022 = 0.

III.3. Some properties of the polynomials Pα.

Proposition 8. For α = (α0, . . . , αn) , the polynomial pα(z) is even in zk if

αk is even and odd in zk if αk is odd.

Proof. We know that Pα(z) ∈ R ⊕ Vn . Then we can write

Pα(z) = A0(z) +A1(z)e1 + · · ·+ An(z)en.

Suppose αk even. Pα(z) is a sum of terms like

ei1zei2z · · · zei|α|
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in which ek occurs αk times, that is an even number of times. Write z = z0 +
z1e1+· · ·+znen and develop all the terms. The terms which contribute to Ak(z)ek

must contain an odd number of times the vector ek and then zkek has to appear
an odd number of times. Ak(z) is then a sum of terms which are all odd in zk and
Ak(z) is odd in zk . Since Pα(z) = D∗pα(z), we have Ak(z) = −(∂/∂zk)pα(z).
Since pα(z) is homogeneous, we can conclude that pα(z) is even in zk .

If αk is odd the proof is the same.

Examples. p(2,0,1,0)(z) = (3z2
0 − z2

1 − z2
2 − z2

3)z2 is even in z0, z1 and z3 and
odd in z2 . p(1,1,1,0)(z) = 8z0z1z2 is odd in z0, z1 and z2 and even in z3 .

Corollary. If αn is even, then Pα(z̄) = Pα(z); if αn is odd then Pα(z̄) =
−Pα(z) .

Proof. Let us write

Pα(z) = A0(z) + A1(z)e1 + · · ·+ An−1(z)en−1 + An(z)en.

If αn is even, then pα(z) is even in zn and the polynomials

Ak = ± ∂

∂zk
pα(z)

for k 6= n , are all even in zn , but An is odd in zn . Thus

Pα(z̄) = A0(z) + A1(z)e1 + · · · +An−1(z)en−1 − An(z)en = Pα(z).

If αn is odd, A0, A1, . . . , An−1 are odd in zn and An is even in zn , so that

Pα(z̄) = −A0(z) −A1(z)e1 − · · · − An−1(z)en−1 +An(z)en = −Pα(z).

Remark. We have

∂

∂zi
Pα(z) = e2i

{

2|α|Pα−εi
(z) − (αi + 1)

n∑

k=0

Pα+εi−2εk
(z)

}

.

IV. Analytic Cliffordian functions and holomorphic

Cliffordian functions

Definition 1. Let Ω be a domain of R⊕Vn and f : Ω → R0,n . We say that
f is a left analytic Cliffordian function if any ω in R ⊕ Vn has a neighbourhood
Ωω in Ω such that for any z in Ωω , f(z) is the sum of a convergent series

f(z) =
∞∑

N=1

∑

a∈AN

Ma
N (z − ω)Ca

where for each N in N , AN is a finite subset of R ⊕ Vn , for each a in AN ,
Ca ∈ R0,n and

∑∞
N=1

∑

a∈AN
|a|N |z − ω|N−1|Ca| is convergent in Ωω .
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Remark 1. The relation Ma
N (z − ω) =

∑

p+q=N (−1)qSa,aωa
p,q (z) and Propo-

sition 3 prove the consistency of the definition with respect to translations. Con-
sequentely we will restrict ourselves to the case ω = 0.

Remark 2. The above definition is obviously intrinsic, but we get an equiv-
alent definition if we replace the monomials Ma

N by the polynomials Pα ; the
function f : R⊕ Vn → R0,n is left analytic Cliffordian in a neighbourhood Ω of 0
if for every z in Ω, f(z) is the sum of a convergent series

f(z) =

∞∑

N=1

∑

|α|=N

Pα(z)cα

where α are multi-indexes belonging to ({0} ∪ N)1+n , and for each α we have
cα ∈ R0,n and

∑∞
N=1

∑

|α|=N |Pα(z)| |cα| is convergent.

Definition 2. Let Ω be a domain in R⊕ Vn . A function u: R⊕ Vn → R0,n

is called a left holomorphic Cliffordian function

(i) for odd n , if D∆mu = 0 where m = 1
2
(n− 1),

(ii) for even n , if for any ω ∈ Ω a neighbourhood Λω in R ⊕ Vn+1 and a left
holomorphic Cliffordian function f defined on Λω exist such that

– for all z in Λω : z̄ is in Λω and f(z̄) = f(z),
– for all x in Λω ∩ (R ⊕ Vn), u(x) = f(x).

+

+ ωz

z Λω

R ⊕ Vn+1

Ren+1

R ⊕ Vn

Theorem. Let Ω be a domain of R ⊕ Vn . A function f : Ω → R0,n is left

analytic Cliffordian if and only if it is left holomorphic Cliffordian.

For odd n , the theorem has already been proven in [LR1]. Let n be even,
n = 2m . Let u be a left analytic Cliffordian function on a neighbourhood Ω of 0
and let Sn(r) be a sphere of center 0 and radius r > 0 included in Ω. For |x| < r
we have

u(x) =
∞∑

N=1

∑

a∈AN

Ma
N (x)Ca
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where
∑∞

N=1

∑

a∈AN
|a|N |x|N−1|Ca| is convergent. Choose Λ0 = Sn+1(r) the

interior of the sphere of center 0 and radius r in R⊕ Vn+1 and let f : Sn+1(r) →
R0,n+1 be defined by

f(z) =

∞∑

N=1

∑

a∈AN

Ma
N (z)Ca.

Then f is left holomorphic Cliffordian on Sn+1(r) and f(x) = u(x). Since
a ∈ R ⊕ Vn , one gets Ma

N (z̄) = Ma
N (z). And since Ca ∈ R ⊕ Vn , we have

f(z̄) = f(z).

Conversely, let f be a left holomorphic Cliffordian function defined on a
neighbourhood Λ0 of 0 in R ⊕ Vn+1 such that f(z̄) = f(z). We want to show
that u: Λ0 ∩ R ⊕ Vn → R0,n , x 7−→ u(x) = f(x) is left analytic Cliffordian.

Since n+ 1 is odd, f is analytic Cliffordian and we can write

f(z) =

∞∑

N=1

∑

|β|=N

Pβ(z)cβ = D∗

∞∑

N=1

∑

|β|=N

pβ(z)cβ .

Let HN be the real linear space of scalar homogeneous polynomials in z0, . . .,
zn, zn+1 of total degree N and (m + 1)-harmonic generated by (pβ)|β|=N (the

dimension of HN is Cn
N+n − Cn

N ). We can extract a subset BN of
{
β ∈ ({0} ∪

N)n+2/|β| = N
}

such that (pβ)β∈BN
is a basis of HN . D∗ is a linear map from

HN to R ⊗ Vn+1 and KerD∗ is a subspace of HN . Let (ψj)j∈J be a basis of
KerD∗ ; since (pβ)β∈BN

is a basis of HN there is a subset B◦
N of BN such that

(
(ψj)j∈J , (pβ)β∈B◦

N

)
is a basis of HN . Then (ψj ⊗ eI)j∈J ,I⊂{1,...,n+1}, (pβ ⊗

eI)β∈B◦
N

,I⊂{1,...,n+1} is a basis of the real linear space HN ⊗R0,n+1 , and there are
unique real numbers θj,I and dβ,I such that

∑

|β|=N

pβ(z)cβ =
∑

j∈J

∑

I⊂{1,...,n+1}

θj,Iψj(z)eI +
∑

β∈B◦
N

∑

I⊂{1,...,n+1}

dβ,Ipβ(z)eI .

Let us write dβ =
∑

I dβ,IeI , using homogeneity we get for any analytic Cliffordian
function f the existence and unicity of the coefficients dβ in R0,n+1 such that

f(z) =
∞∑

N=1

∑

β∈B◦
N

Pβ(z)dβ .

Let B◦+

N be the set of multi-indexes β = (β0, . . . , βn, βn+1) where β ∈ B◦
N

and βn+1 is even and B◦−

N = B◦
N −B◦+

N . If β ∈ B◦+

N , the corollary of Proposition 8

implies Pβ(z̄) = Pβ(z) and if β ∈ B◦−

N we have Pβ(z̄) = −Pβ(z). The relation

f(z̄) = f(z) becomes then

∞∑

N=1

{
∑

β∈B◦+

N

Pβ(z)dβ −
∑

β∈B◦−
N

Pβ(z)dβ

}

=
∞∑

N=1

{
∑

β∈B◦+

N

Pβ(z)d̄β +
∑

β∈B◦−
N

Pβ(g)d̄β

}

.
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By homogeneity we get

∑

β∈B◦+

N

Pβ(z)(d̄β − dβ) +
∑

β∈B◦−
N

Pβ(z)(d̄β + dβ) = 0

and by conjugation

∑

β∈B◦+

N

Pβ(z)(dβ − d̄β) +
∑

β∈B◦−
N

Pβ(z)(dβ + d̄β) = 0.

By unicity of the coefficients of the Pβ for β ∈ B◦
N , we get dβ = d̄β if

β ∈ B◦+
N and d̄β = −dβ if β ∈ B◦−

N . Let us write aβ = dβ = dβ̄ if β ∈ B◦+
N and

en+1bβ = dβ = −d̄β if β ∈ B◦−
N , we get

f(z) =
∞∑

N=1

{
∑

β∈B◦+

N

Pβ(z)aβ +
∑

β∈B◦−
N

Pβ(z)en+1bβ

}

,

where aβ ∈ R0,n and bβ ∈ R0,n . The two following lemmas will then prove the
theorem.

Lemma 1. Let n = 2m and β = (β0, . . . , βn, βn+1) . If βn+1 is even then

the restriction of Pβ to R ⊕ Vn is analytic Cliffordian from R ⊕ Vn to R0,n .

Proof. First we show that if x ∈ R ⊕ Vn then Pβ(x) ∈ R0,n or better
Pβ(x) ∈ R⊕ Vn . We know that Pβ(z) = D∗pβ(z) in R0,n+1 and pβ(z) is even in
zn+1 since βn+1 is even. So

[
∂

∂zn+1
pβ(z)

]

zn+1=0

= 0

and Pβ(x) ∈ R ⊕ Vn for x = Rz .
Secondly we show that Pβ(x) is analytic Cliffordian. We know that

Pβ(x) =
∑

σ∈Sβ

( n∏

ν=1

(
eσ(ν)x

)
)

eσ(n+1),

which means that Pβ(x) is the sum of all different polynomials deduced from

(∗) e0xe0 · · · e0
︸ ︷︷ ︸

β0 times e0

x e1xe1 · · · e1
︸ ︷︷ ︸

β1 times e1

xe2xe2 · · · · · · enx en+1xen+1x · · ·xnen+1
︸ ︷︷ ︸

βn+1 times en+1

by permutations of the e′is . Note that

en+1 = (−1)me1 2···ne1 2···n+1
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and that the pseudo scalar e1 2···2m 2m+1 belongs to the center of R0,2m+1 . Since
βn+1 is even and since (e1 2···n+1)

2 ∈ {1,−1} , we deduce that up to a sign we can
replace (∗) by:

(∗∗) e0xe0 · · · e0
︸ ︷︷ ︸

β0 times e0

x e1xe1 · · · e1
︸ ︷︷ ︸

β1 times e1

xe2xe2 · · · · · · enx e1 2···nxe1 2···n · · ·xe1 2···n
︸ ︷︷ ︸

βn+1 times e1 2···n

.

Let us choose a basis in Vn such that x = x0e0 + x1e1 . Then e1 commutes
with x and for i ≥ 2, eiei+1 commutes with e1 , x and of course e0 . Suppose
β2 > 0, for each term of the form

Ae2Be1 2···nC

we have another term equal to Ae1 2···nBenC . But then the commutation rules
give, since n = 2m ,

Ae2Be1 2···nC +Ae1 e···nBe2C = 0.

Thus β2 = 0. And similarly β3 = · · · = βn = 0. We get:

Pβ(x) =
∑

σ∈Sβ

(|β|−1
∏

ν=1

Eσ(ν)x

)

Eσ(|β|)

where E0 = e0 , E1 = e1 and En+1 = e1 2···n . Commuting systematically e1 and
e3e4, e5e6, . . . , en−1en from En+1 to the right

Pβ(x) =

(
∑

σ∈Sα

(|α|−1
∏

ν=1

eσ(ν)x

)

eσ(|α|)

)

(e1)
βn+1(e3 4···n)βn+1

where α = (β0, β1, βn+1, 0, . . . , 0) ∈ ({0} ∪ N)n+1 . Thus Pβ(x) = ±Pα(x) with
Pα analytic Cliffordian.

Lemma 2. Let n = 2m and β = (β0, . . . , βn, βn+1) . If βn+1 is odd then the

restriction of Pβen+1 to R ⊕ Vn is analytic Cliffordian from R ⊕ Vn to R0,n .

Proof. Now pβ(z) is odd in zn+1 so
[
∂

∂zi
pβ(z)

]

zn+1=0

= 0 for i = 0, . . . , n, and

Pβ(x) = −
[

∂

∂zn+1
pβ(z)

]

zn+1=0

en+1

and Pβ(x)en+1 is a scalar. For the second part of the proof we reduce the sum

Pβ(x)en+1 =
∑

σ∈Sβ

(|β|−1
∏

ν=1

eσ(ν)x

)

eσ(|β|)en+1

as in Lemma 1.
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Corollary 1. The space of left analytic Cliffordian functions is an R -vector

space and an R0,n -right module, closed relatively to scalar derivations.

To deduce Corollary 2 and 3 from the above theorem, the following lemma is
convenient.

Lemma 3. If v ∈ R ⊕ V2m , then
∑2m

i=0 eivei = (1 − 2m)v∗ .

Corollary 2. If f is left analytic Cliffordian, then Df is also left analytic

Cliffordian.

Proof. If n is odd let n = 2m+1. Since f is left analytic Cliffordian it is left
holomorphic Cliffordian and D∆mf = 0. But since D commutes with D and ∆
we have

D∆m(Df) = D(D∆mf) = 0.

Thus Df is left holomorphic Cliffordian or left analytic Cliffordian.
If n is even let n = 2m . Let us write: x = z0 + z1e1 + · · · + z2me2m and

D′ =
∑2m

i=0 ei∂/∂zi . Then we have D = D′ + e2m+1∂/∂z2m+1 .
We want to show that if u is left analytic Cliffordian then D′u is also left

analytic Cliffordian. In fact, we need only to show this for u(x) = M a
N (x) for any

a ∈ R ⊕ V2m and any N ∈ N . A straightforward computation gives

D′Ma
N (x) =

N−1∑

k=1

2m∑

i=0

eiM
a
k (x)eiM

a
N−k(x)

and since Ma
k (x)inR⊕ V2m , Lemma 3 gives us

D′Ma
N (x) = −(2m− 1)

N−1∑

k=1

[
Ma

k (x)
]

∗
Ma

N−k(x).

If N is odd, let N = 2M + 1; we have

D′Ma
2M+1(x) = −2(2m− 1)

M∑

k=1

|a|2k|x|2k−2S
(
(xa)2M−2k+1

)
.

If N is even, let N = 2M ; we have

D′Ma
2M (x) = −(2m− 1)

{

|a|2M |x|2M−2 + 2
M∑

k=1

|a|2k|x|2k−2S
(
(xa)2M−2k

)
}

.

The same computations in R0,2m+1 give

DMa
2M+1(z) = −2(2m)

M∑

k=1

|a|2k|z|2k−2S
(
(za)2M−2k+1

)
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and

DMa
2M (z) = −(2m)

{

|a|2M |z|2M−2 + 2
M∑

k=1

|a|2k|z|2k−2S
(
(za)2M−2k

)
}

.

Then we have for any N

D′Ma
N (x) =

2m− 1

2m

[
DMa

N (z)
]

z=x
.

Since a ∈ R0,2m , we have S
(
(za)N−2k

)
= S

(
(xa)N−2k

)
, and since |z̄| =

|z| , we have DMa
N (z̄) = DMa

N (z) = DMa
N (z). The theorem then proves that

D′Ma
N (x) is left analytic Cliffordian.

Corollary 3. If f is left analytic Cliffordian, then D∗f∗ is also left analytic

Cliffordian.

Proof. Let us write f as

f(z) =
∞∑

N=1

∑

|α|=N

Pα(z)cα =
∞∑

N=1

∑

|α|=N

D∗pα(z)cα

and define the left analytic Cliffordian function f̃ by

f̃(z) =

∞∑

N=1

∑

|α|=N

Pα(z)cα∗.

Then we have

D∗f∗(z) =
(
Df(z)

)

∗
=

∞∑

N=1

∑

|α|=N

∆pα(z)cα∗ = Df̃(z).

By Corollary 1, Df̃ is left analytic Cliffordian, thus D∗f∗ is also left analytic
Cliffordian.

V. Cauchy’s problem and boundary data

V.1. Our aim. We intend to generalize to Clifford algebras of any dimen-
sions the method of extending real analytic functions into complex holomorphic
functions. Let Ω be a domain of R ⊕ V2m and u: Ω → R0,2m . The Cauchy
problem {

D∆mf = 0,
f |Ω = u
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where the unknown function f has to be defined on an open set Λ containing Ω,
seems not well defined since the partial differential equations are of order 2m+ 1.
The Cauchy–Kowalewski theorem tells us that we need the normal derivatives of
f to R ⊕ V2m up to the order 2m . We will see that the algebraic and analytic
properties of f and u enable us to compute these derivatives uniquely given the
function u .

We will denote by A2m the linear space of left analytic Cliffordian func-
tions defined on Ω and taking their values in R0,2m . Similarly, A2m+1 is the
linear space of left analytic Cliffordian functions defined on Λ and with values
in R0,2m+1 .

V.2. The operator (A | On).

Definition. Let A ∈ R0,n . We define (A | On): An −→ An by:
(i) for all a ∈ R ⊕ Vn and for all N ∈ N we have

(A | On)Ma
N (z) =

N−1∑

k=1

Ma
k (z)AMa

N−k(z),

(ii) for all f ∈ An and for all K ∈ R0,n , (A | On)
(
f(z)K

)
=

(
A | On)f(z)

)
K ,

(iii) (A | On) is R -linear and continuous.

Consequence. If f(z) =
∑∞

N=1

∑

a∈An
Ma

N (z)Ca , then

(A | On)f(z) =
∞∑

N=1

∑

a∈AN

(
(A | On)Ma

N (z)
)
Ca.

Proposition 9. If f ∈ An , then (∂/∂zk)f(z) = (ek | On)f(z) .

Proof. We need only to verify the proposition for f(z) = M a
N (z). We have

∂

∂zk
azaz · · · za = aekaz · · · za+ azaek · · · za+ · · ·+ azaz · · · eka

= (ek | On)azaz · · · za.

Proposition 10. If f ∈ An and if λ belongs to the center of R0,n then

(λA | On)f = λ(A | On)f.

Lemma. If v ∈ R ⊕ V2m , then

2m∑

i=0

eivei = (−1)m(1 − 2m)e1 2···2mve1 2···2m.

Proof. Both sides of the equality are equal to (1 − 2m)v∗ .
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Proposition 11. If u ∈ A2m , then

e1 2···2m(e1 2···2m | O2m)u =
(−1)m+1

2m− 1
Du.

Proof. We need only to verify the relation for u(x) = M a
N (x). Using the

definition and the lemma, we get

(−1)m(1 − 2m)e1 2···2m(e1 2···2m | O2m)u =
N−1∑

k=1

2m∑

i=0

eiM
a
k (x)eiM

a
N−k(x)

=
2m∑

i=0

ei

N−1∑

k=1

Ma
k (x)eiM

a
N−k(x)

=
2m∑

i=0

ei
∂

∂xi
Ma

N (x) = DMa
N (x).

Proposition 12. For µ ∈ {0} ∪ N , we have

(e1 2···2m | O2m)2µu =
(−1)mµ

(2m− 1)2µ
∆µu,

(e1 2···2m | O2m)2µ+1u =
(−1)1+mµ

(2m− 1)2µ+1
e1 2···2mD∆µu.

Proof. From Proposition 3, we get

(e1 2···2m | O2m)u =
−1

2m− 1
e1 2···2mDu =

−1

2m− 1
D∗u∗e1 2···2m.

Corollary 2 of Section IV shows that D∗u∗e1 2···2m is left analytic Cliffordian.
Thus we may apply the operator as many times as we want. We get

(
(e1 2···2m | O2m

)2
u =

−1

2m− 1
e1 2···2mD

{ −1

2m− 1
D∗u∗e1 2···2m

}

=
1

(2m− 1)2
e1 2···2m∆u∗e1 2···2m

=
1

(2m− 1)2
(e1 2···2m)2∆u =

(−1)m

(2m− 1)2
∆u.

A simple recursion gives then the general formulae.
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V.3. Analytic extension.

Theorem. Let Ω be a domain of R ⊕ V2m and let u: Ω → R0,2m be left

analytic Cliffordian. There exist a domain Λ in R ⊕ V2m+1 with Ω ⊂ Λ and a

unique left holomorphic Cliffordian function f defined on Λ ⊂ R ⊕ V2m+1 , such

that f |Ω = u . That function f is such that f(z̄) = f(z) and if we denote by

∂/∂n the normal derivative to Ω , we have for any µ in {0} ∪ N

(
∂

∂n

)2µ

f
∣
∣
∣
Ω
=

(−1)µ

(2m− 1)2µ
∆µu,

(
∂

∂n

)2µ+1 ∣
∣
∣
Ω
=

(−1)µ+1

(2m− 1)2µ+1
e2m+1D∆µ u.

Proof. 1◦ Suppose f is a solution. We use the usual notation

z = z0 + z1e1 + · · · + z2me2m + z2m+1e2m+1 = x+ z2m+1e2m+1.

Thus we have
(
∂

∂n

)j

f =

(
∂

∂z2m+1

)j

f.

Since f is left analytic Cliffordian, we have

∂

∂z2m+1
f =

(
e2m+1 | O2m+1

)
f

and thus
(
∂

∂n

)j

f =
(
e2m+1 | O2m+1

)j
f.

Note that e2m+1 = (−1)me1 2···2m2m+1e1 2···2m and that (−1)me1 2···2m2m+1

belongs to the center of R0,2m+1 . Using Proposition 10 we get

(
∂

∂n

)j

f =
(
(−1)me1,2···2m2m+1

)j
(e1 2···2m | O2m+1)

jf.

Taking the restriction to z = x ∈ Ω, we get
(
∂

∂n

)j

f |Ω(x) = (−1)mj(e1 2···2m2m+1)
j(e1 2···2m | O2m)ju(x).

Proposition 12 gives us then for j = 2µ and j = 2µ+ 1
(
∂

∂n

)2µ

f |Ω(x) =
(−1)µ

(2m− 1)2µ
∆µu(x)

and
(
∂

∂n

)2µ+1

f |Ω(x) =
(−1)µ+1

(2m− 1)2µ+1
e2m+1D∆µu(x).

2◦ Using the above conditions for j ≤ 2m , the theorem of Cauchy–Kowalew-
ski proves the existence of Λ′ ⊂ R ⊕ V2m+1 with Λ′ ∩ (R ⊕ V2m) = Ω and the
existence and unicity of f in Λ′ .
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3◦ Knowing the existence of f , the usual Taylor formula gives us

f(z) =
∞∑

µ=0

(−1)µ

(2m− 1)2µ(2µ)!
(z2m+1)

2µ∆µu(x)

+ e2m+1

∞∑

µ=0

(−1)µ+1

(2m− 1)2µ+1(2µ+ 1)!
(z2m+1)

2µ+1D∆µu(x).

This formula shows, since Du(x) ∈ R0,2m , that f(z̄) = f(z) in a subdomain
Λ of R ⊕ V2m+1 such that Ω ⊂ Λ ⊂ Λ′ .

VI. Fueter’s method

Fueter’s method is well known and widely used to construct functions con-
nected to monogenic functions [Fu], [De], [Qi]. It is known to be effective to
construct holomorphic Cliffordian functions in the case of odd n . We show that
it is still valid for our definition in the case of even n .

Theorem. Let ϕ be a complex holomorphic function defined on Dϕ an

open subset of the upper half-plane and let p and q be the real functions of two

variables defined by

∀ ζ = xi+ iη ∈ Dϕ, ϕ(ζ) = p(ξ, η) + iq(ξ, η).

Let ~z = z1e1 + · · ·+ znen , for z0 + i|~z | ∈ Dϕ we define u(z0 + ~z ) by

u(z0 + ~z ) = p(z0, |~z| ) +
~z

|~z |q(z0, |~z |).

Then u is a (left and right) holomorphic Cliffordian function.

Proof. For odd n , this result is already known [LR1].

If n is even, let n = 2m . Let x = z0 + ~z and z = x+ z2m+1e2m+1 . Define f
by

f(z) = p(z0, |~z + z2m+1e2m+1|) +
~z + z2m+1e2m+1

|~z + z2m+1e2m+1|
q(z0, |~z + z2m+1e2m+1|).

From the case of odd n , we know that f is a left and right holomorphic
Cliffordian function. The theorem of Section IV shows then that u is a left and
right holomorphic Cliffordian function, since we have f(z̄) = f(z) and u(x) =
f(x).
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