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MAPPINGS OF FINITE DISTORTION:

REMOVABILITY OF CANTOR SETS
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Abstract. Let f be a mapping of finite distortion omitting a set of positive conformal
modulus. We show that if the distortion of f satisfies a certain subexponential integrability
condition, then small regular Cantor sets are removable.

1. Introduction

We call a mapping f ∈ W 1,1
loc (Ω,Rn) a mapping of finite distortion if it

satisfies

(1.1) |Df(x)|n ≤ K(x, f)J(x, f) a.e.,

where K(x, f) < ∞ and if also J( · , f) ∈ L1
loc(Ω). Here Ω ⊆ Rn is a domain

i.e. an open and connected set. When K( · , f) ∈ L∞(Ω), f is called a mapping
of bounded distortion, or a quasiregular mapping. Quasiregular mappings are
by now well understood, see the monographs [25] and [28]. Many basic results
of quasiregular mappings have recently been generalized for mappings of finite
distortion under some integrability assumptions on the distortion function K .
Let us describe an assumption that has turned out to be sharp in many respects.
Let Φ: [0,∞) → [0,∞) be a strictly increasing, differentiable function. We call
such functions Orlicz functions and we make the following two assumptions:

(Φ-1)

∫ ∞

1

Φ′(t)

t
dt = ∞ ,

(Φ-2) t Φ′(t) increases to infinity when t → ∞ .

We shall consider mappings of finite distortion f for which there exists a Φ,
satisfying conditions (Φ-1) and (Φ-2), such that

(1.2) exp
(
Φ

(
K( · , f)

))
∈ L1

loc(Ω).
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It has been shown that mappings of finite distortion satisfying this assumption
are continuous, open and discrete, and that they have the Lusin property, i.e. they
map sets of measure zero to sets of measure zero, see [7], [9] [11], [12], [13] for
these as well as other results.

The main methods in the study of quasiregular mappings are modulus in-
equalities and quasilinear partial differential equations. Until very recently, only
the latter method has been available in the more general setting of mappings of
finite distortion. In [15], Koskela and Onninen generalize the modulus inequalities
to the class of mappings of finite distortion satisfying assumption (1.2). Their
results open new possibilities in the development of this theory. In this paper we
prove a certain removability theorem using these inequalities. See [2], [3], [4], [17],
[21], [22], [24] and [30] for other results concerning modulus inequalities in cases
where the distortion is unbounded.

Let us next recall some removability results related to the setting of this paper.
Recall that the (conformal) n -modulus of a path family Γ is defined by

M(Γ) = inf

{∫

Rn

%n(x) dx : %: Rn → [0,∞) is a Borel function such that

∫

γ

% ≥ 1 for each locally rectifiable γ ∈ Γ

}
.

For a mapping of finite distortion f , define the Kn−1 -modulus MKn−1( · ,f)(Γ) by

MKn−1( · ,f)(Γ) = inf

{∫

Rn

%n(x)Kn−1(x, f) dx : %: Rn → [0,∞) is a Borel

function such that

∫

γ

% ≥ 1 for each locally rectifiable γ ∈ Γ

}
.

For a set A ⊆ Rn , we denote MKn−1( · ,f)(A) = MKn−1( · ,f)(Γ), where Γ is the
family of all non-constant curves starting at A . Note that since K(x, f) ≥ 1 for
all x ∈ Ω, the inequality M(Γ) ≤ MKn−1( · ,f)(Γ) always holds. If E and F are
compact sets contained in a domain D ⊆ Rn , we then denote by ∆(E, F, D) the
family of all curves joining E and F in D .

Already in 1970 Martio, Rickman and Väisälä [20] proved that a set of zero
conformal modulus is removable for a quasimeromorphic (see below) mapping
omitting a set of positive conformal modulus. This theorem holds also for map-
pings of finite distortion satisfying assumption (1.2), if we assume the removable
set to be of zero Kn−1 -modulus; see [23] for discussion. Later Iwaniec and Mar-
tin [8] and Iwaniec [5] have shown that there exists a bound m(K) > 0 so that
sets with Hausdorff dimension smaller than m are removable for bounded K -
quasiregular mappings. In dimension three, Rickman [29] has shown that for each
λ > 0 there exists a Cantor set E in R3 with Hausdorff dimension smaller than
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λ , and a bounded K(λ)-quasiregular mapping f : R3 \ E → R3 that does not
extend continuously to any point of E .

In [10] Järvi and Vuorinen showed that even when the omitted set consists only
of a sufficiently large finite number of points, then some self-similar Cantor sets
are removable for quasiregular mappings. Their proof is based on Rickman’s work
on the generalizations of the Picard theorems and the corresponding continuity
estimates near the omitted values; see [26] and [27]. In this paper we shall give
a removability result similar to the theorem by Järvi and Vuorinen. Our proof
uses the modulus inequlities of [15] and the methods in [10]. Since we do not
have any decent Rickman–Picard theorems for mappings of finite distortion, we
have to make a stronger assumption on the omitted set; we shall assume that the
omitted set is of positive conformal modulus. Naturally, the removable Cantor sets
in our case are also smaller than in the quasiregular case. We shall state our main
theorem in Section 3. Since the statement is a bit technical, we give a simplified
statement at the end of this introduction.

Our notation will be similar to [10]. We denote by R
n

the one-point com-

pactification of Rn , and give R
n

the chordal metric




q(x, y) =
|x − y|√

(1 + |x|2)(1 + |y|2)
, x, y 6= ∞,

q(x,∞) =
1√

1 + |x|2
.

We shall denote a chordal ball with center x and radius r by Q(x, r), while the
corresponding Euclidean notation is B(x, r). Also, for a set A , d(A) will denote
the Euclidean diameter of A , and q(A) the chordal diameter. For modulus, the
notation introduced earlier will also be used for curve families in R

n
.

We extend the definition of a mapping of finite distortion to R
n
-valued map-

pings as follows: Let f : Ω → R
n

be a mapping, Ω ⊆ Rn . Then f is a mapping of
finite distortion, if each x ∈ Ω has a neighborhood U ⊆ Ω so that g ◦fU : U → Rn

is a mapping of finite distortion for some Möbius transformation g: R
n\{p} → Rn ,

where fU is the restriction of f to U . Note that assumption (1.2) is well-defined
for R

n
-valued mappings also, since the distortion does not depend on the Möbius

transformation g . In the case of quasiregular mappings, the R
n
-valued general-

izations are often called quasimeromorphic mappings.
Let us state a special case of Theorem 3.7 below.

Theorem 1.1. Let F ⊆ R
n

be the image of the one-third Cantor set under
the stereographic projection, and let E be a regular (as defined in Section 2)
Cantor set. Moreover, let f : B(0, 1)\E → R

n\F be a mapping of finite distortion
for which

(1.3) I =

∫

B(0,1)

exp(γK) < ∞, where γ > 0.
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Then there exists a constant C = C(I, γ, n) > 0 such that if

H|log t|−C (E) = 0,

then f extends to mapping of finite distortion f̃ : B(0, 1) → R
n

satisfying (1.3).
Moreover, C(I, γ, n) → ∞ as γ → ∞ , and thus E may have positive conformal
modulus when γ is large enough (compared to the other data).

Here HΛ is the Hausdorff measure with respect to a gauge function Λ. In
our main theorem, Theorem 3.7, the function Φ(t) = γt (see (1.2)) is replaced
by a general Orlicz function. Also, general omitted sets are considered, and the
size of the removable Cantor set will depend on the modulus of the omitted set.
Estimates for the size of the removable Cantor sets are given in Section 4.

Earlier removability results for mappings of finite distortion have been proved
in [1], [6], [16] and [23]. In [1] it is proved that if

(1.4) f : D(0, 1) \ E → C

is a bounded mapping of finite distortion satisfying (1.3) for a large enough con-
stant γ , and if E ⊆ D(0, 1) is any compact set with H|log t|−3/2(E) = 0, then
E is removable for f . It follows, in particular, that in this case all sets of zero
conformal modulus are removable. They also show that if γ is small, then there
are regular Cantor sets E of zero conformal modulus that are not removable for
mappings f as in (1.4). Thus Theorem 1.1 can be viewed as an extension of their
result, and their example shows that our theorem is in a sense sharp. In fact
they have given, using Rickman’s nonremovability result mentioned above, also a
similar example in dimension three.

2. Cantor sets

We shall construct our Cantor set inductively. First, remove an open interval
of length 1− t1 from the middle of [0, 1]. Denote E1 =

[
0, 1

2 t1
]
∪

[
1− 1

2 t1, 1
]
. In

the second step remove similarly an open interval of length 1
2 t1(1 − t2) from the

middle of each of the two intervals in E1 . The resulting set E2 then consists of
four intervals of equal length. Continuing similarly, we have in the pth step a set
Ep consisting of 2p intervals of length

(2.1)

∏p
i=1 ti
2p

=
Tp

2p
.

Let
Ẽp = Ep × Ep × · · · × Ep ⊂ Rn.

We obtain the Cantor set E by setting

E =
∞⋂

p=1
Ẽp.
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We shall give a decomposition of the complement of E , which will be useful in
proving Theorem 3.7. The set Ẽp consists of 2np cubes. By (2.1), each cube is
contained in a ball with the same center and of radius rp =

√
n Tp/2p+1 , and such

balls are disjoint even if we enlarge the radii to

Rp =
rp√
n

(
2

tp
− 1

)
.

From now on we assume that Rp > rp , which is implied by tp < 2/
(
1 + 2

√
n

)
.

Let the centers of these balls be z(p, i), i = 1, . . . , 2np , and let

(2.2) Sp,i := Sn−1
(
zp,i, α(rp, Rp)

)
, i = 1, . . . , 2np,

where α(rp, Rp) ∈ (rp, Rp) is suitably chosen, see Theorem 3.7. Each Sp,i en-
closes 2n of the spheres Sp+1,j of the next generation, and we denote by Gp,i the
domain bounded by Sp,i and the spheres of the next generation. Then we have
the decomposition

2n⋃
i=1

(B1,i \ E) =
∞⋃

p=1

2np⋃
i=1

Gp,i,

where B1,i = B
(
z1,i, α(r1, R1)

)
, i = 1, . . . , 2n .

3. Modulus of continuity on annuli

We will use the following modulus inequality, which is a counterpart for the
Poletsky inequality of quasiregular mappings. This is a special case of Theorem 4.1
in [15].

Lemma 3.1. Let f : Ω → Rn be a mapping of finite distortion satisfying
(1.2), with an Orlicz function Φ for which (Φ -1) and (Φ -2) hold. Let Γ be a path
family in Ω . Then

(3.1) M(fΓ) ≤ MKn−1( · ,f)(Γ).

For spherical rings we have the following upper bound for the Kn−1 -modulus,
see [15, Theorem 5.3].

Lemma 3.2. Suppose that I =
∫

B(0,1)
exp

(
Φ(K)

)
< ∞. Let 0 < 4r < R < 1 .

Then there exist C1, C2 > 0 depending on n , Φ and I such that

(3.2) MKn−1( · ,f)(Γ) ≤ C1

(∫ R/2

2r

ds

sΦ−1
(
log(C2s−n)

)
)1−n

=: ϕ(I, R, r),

where Γ is the family of all curves connecting B(0, r) and Rn \ B(0, R) .
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In what follows, ϕ will stand for the function defined in inequality (3.2). The
next lemma gives a lower n -modulus bound, see [10, Lemma 2.12] for a proof.

Lemma 3.3. Let F ⊂ B(0, t) be a continuum. Then there exists a constant
λ > 0 so that

M(Γ) ≥
(

log

(
λt

d(F )

))1−n

,

where Γ is the family of all curves connecting F to Sn−1(0, t) .

Now we have the following estimate on annuli.

Lemma 3.4. Let 0 < a < b < ∞ , s > 0 , and let

f : B(0, b) \B(0, a) → B(0, s)

be a mapping of finite distortion with
∫

B(0,b)\B(0,a)

exp
(
Φ(K)

)
≤ I.

If α(a, b) ∈ (a, b) , then

(3.3) d
(
fSn−1

(
0, α(a, b)

))
≤ λs exp

(
−

(
ϕ
(
I, b, α(a, b)

)
+ϕ

(
I, α(a, b), a

))1/(1−n))
.

Proof. Fix x, y ∈ Sn−1
(
0, α(a, b)

)
with |f(x) − f(y)| = d

(
fSn−1

(
0, α(a, b)

))

and a continuum C ⊆ Sn−1
(
0, α(a, b)

)
joining x and y . Let Γ′ be the family

of all curves joining fC and Sn−1(0, s) and let Γ be the family of the maximal
liftings (see [28, Chapter II, Section 3]) of paths of Γ′ starting at C . Then |γ| ∩
∂
(
B(0, b) \ B(0, a)

)
6= ∅ for all γ ∈ Γ. The Kn−1 -modulus of the family Γ can

now be estimated by the moduli of two spherical rings, and by Lemma 3.2

MKn−1(Γ) ≤ ϕ
(
I, b, α(a, b)

)
+ ϕ

(
I, α(a, b), a

)
.

On the other hand, Lemma 3.3 implies that

M(Γ′) ≥
(

log

(
λs

d
(
fSn−1

(
0, α(a, b)

))
))1−n

,

and thus by Lemma 3.1,

(
log

(
λs

d
(
fSn−1

(
0, α(a, b)

))
))1−n

≤ M(Γ′) ≤ MKn−1(Γ)

≤ ϕ
(
I, b, α(a, b)

)
+ ϕ

(
I, α(a, b), a

)
,

which implies (3.3).
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Lemma 3.4 is also locally valid for mappings taking values in R
n
. We state

this as a corollary, see [10, Corollary 2.14] for a proof of a similar statement.

Corollary 3.5. Let 0 < a < b < ∞ , 0 < s < 1/
√

2 , and let

f : B(0, b) \B(0, a) → Q(0, s)

be a mapping of finite distortion with
∫

B(0,b)\B(0,a)

exp
(
Φ(K)

)
≤ I.

Then
(3.4)

q
(
fSn−1

(
0, α(a, b)

))
≤

√
2λs exp

(
−

(
ϕ
(
I, b, α(a, b)

)
+ ϕ

(
I, α(a, b), a

))1/(1−n))
.

The following lemma will give continuity estimates for R
n
-valued mappings

omitting sets of positive conformal modulus. See [28, Lemma III 2.6] for the proof.

Lemma 3.6. Let F be a compact subset of Rn such that M(F ) > 0 .
Moreover, let 0 < L < 1 and choose a ball B(x, r) containing F , with the
property q

(
R

n \ B(x, r)
)

< 1
2L . Assume that C is a continuum in R

n
with

q(C) ≥ L . Then

(3.5) M(Γ) ≥ 3−n min
{
C(n),

(
log(2λr/L)

)1−n
, M(Γx,L)

}
=: η(L),

where Γ is the family of all curves joining F and C , λ is as in Lemma 3.3 and
Γx,L = ∆

(
F, Sn−1(x, 2r), B(x, 2r)

)
.

We are finally ready to state our main theorem. The proof will be given in
Section 5.

Theorem 3.7. Assume that E is a Cantor set defined as in Section 2.
Moreover, assume that F ⊆ R

n
is a closed set of positive conformal modulus. Let

f : B(0, 1) \ E → R
n \ F be a mapping of finite distortion satisfying

(3.6) I =

∫

B(0,1)

exp
(
Φ(K)

)
< ∞

with an Orlicz function Φ for which (Φ -1) and (Φ -2) hold. Moreover, assume that
in the construction of Section 2, for each p ∈ N there exists α(rp, Rp) ∈ (rp, Rp)
such that

(3.7)
ϕ
(
I, Rp, α(rp, Rp)

)
+ ϕ

(
I, α(rp, Rp), rp

)

≤ min
{
(3n + log λ)1−n, η

((
2
√

2 (2n + 1)
)−1)}

=: w,

where λ is as in Lemma 3.3 and η as in (3.5). Then f extends to mapping of
finite distortion f̃ : B(0, 1) → R

n
satisfying (3.6).



276 Kai Rajala

4. Estimates for the Cantor set

In this section we will estimate the Hausdorff dimensions of the removable
sets in Theorem 3.7 with respect to suitable gauge functions. We first note that

∫

0

ds

sΦ−1
(
log(C2s−n)

) =
1

n

∫ ∞ Φ′(t)

t
dt = ∞

as soon as assumptions (Φ-1) and (Φ-2) hold for Φ, and thus for each I, R > 0,
ϕ(I, R, r) → 0 as r → 0. So, given the distortion function and the omitted
set in Theorem 3.7, there exists a sequence (tp) so that if the construction of
the Cantor set is carried out by using this sequence, then the assumptions of
Theorem 3.7 are satisfied. One may for example choose α(a, b) =

√
ab , which

is the most convenient choice in the case of quasiregular mappings. In principle
it is also possible to estimate the size of the largest possible set satisfying these
assumptions. However, if we do not know the Orlicz function Φ, these estimates
are quite implicit. For this reason we will only consider the case where the Orlicz
function is of form Φ(t) = γt , γ > 0. In particular, we will establish the bound
given in Theorem 1.1.

First we want to choose the numbers α(rp, Rp) so that we have the small-
est possible upper bound for ϕ

(
I, Rp, α(rp, Rp)

)
+ ϕ

(
I, α(rp, Rp), rp

)
. From the

equation ϕ
(
I, Rp, α(rp, Rp)

)
= ϕ

(
I, α(rp, Rp), rp

)
we have

α(rp, Rp) = exp
(
−

√
|log rp| |logRp|

)
.

From the inequality
2ϕ

(
I, α(rp, Rp), rp

)
≤ w,

where w is as in Theorem 3.7, we then have the essentially sharp condition

(4.1) rp ≤ Rb
p, where b = exp

(
3C

1/(n−1)
1 nw1/(1−n)/γ

)
.

Since

Rp =
rp√
n

(
2

tp
− 1

)
=

Tp

2p+1

(
2

tp
− 1

)
≥ Tp−1

2p+1
=

rp−1

2
√

n
,

the radii rp can be defined by the requirement

rp ≤
(

rp−1

2
√

n

)b

.

So if we set
rp = C(n)−(2b)p
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for a large enough constant C(n) > 1, condition (4.1) is then satisfied for all
p ∈ N . The gauge function Λ for the Hausdorff measure HΛ has to be defined
so that the sequence (

2npΛ
(
C(n)−(2b)p))

p

behaves essentially like a sequence converging to a positive number (recall that in
the pth step there are 2np balls). So the correct function is of type

(4.2) Λ(t) = |log t|−n logb 2.

Since our Cantor construction is regular and the gauge function Λ is nice, this
‘obvious upper bound’ for the gauge function is also a lower bound. Because sets
with finite H|log t|1−n−ε -measure have positive conformal modulus (see cf. [1]), it
especially follows that when γ is large enough compared to the other data so that
n logb 2 > n − 1, the removable set may have positive conformal modulus.

5. Proof of Theorem 3.7

Let the Cantor set E and the decomposition be as above. By composing f
with a Möbius transformation, we may assume that ∞ /∈ E . So there is no problem
in using Lemma 3.6. We shall first show that there exists a continuous extension
f̃ of f , defined in B(0, 1). To prove this, we show that for each p = 0, 1, . . . the
following estimates hold for every r = p , p + 1, . . . and i = 1, . . . , 2nr :

(5.1)





q(fGr+1,i) ≤
1

2
√

2
(Ah)p,

q(fSr+2,i) ≤ λAphp+1, A =
√

2 2(2n + 1)λ,

where λ is as in Lemma 3.3. Here we require Ah < 2−n , i.e.

h <
1

2n+3/2(2n + 1)λ
.

For p = 0 and fixed r , i , let Γ be the family of all paths connecting fSr+2,i

and F . Moreover, denote by Γ′ the family of all maximal liftings of paths in Γ
starting at Sr+2,i . Since all paths in Γ′ intersect S(zr+2,i, Rp) ∪ S(zr+2,i, rp),
Lemmas 3.1 and 3.2, together with assumption (3.7) imply

M(Γ) ≤ MKn−1(Γ′) ≤ MKn−1(Γ∗) ≤ w,

where Γ∗ is the family of all paths joining Sr+2,i and the complement of B(zr+2,i, Rp)\
B(zr+2,i, rp). Thus by Lemma 3.6,

(5.2) q(fSr+2,i) ≤
1

2
√

2 (2n + 1)
,
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and this holds for the spheres S1,i also. From inequality (5.2) and the openness
of f , it follows that the chordal diameter of a set fGk,i is bounded by the sum of
the chordal diameters of the images of the spheres forming the boundary of Gk,i :

q(fGr+1,i) ≤ q(fSr+1,i) +

2n∑

j=1

q(fSr+2,j) ≤
2n + 1

2
√

2 (2n + 1)
=

1

2
√

2
.

This is the first inequality in (5.1). For the second inequality we notice that Sr+2,i

is on the common boundary of Gr+1,i1 and Gr+2,i2 for some i1 , i2 . Thus by the
first inequality of (5.1), f maps the annulus B(zp,i, Rr+3) \B(zp,i, rr+3) into a
ball of chordal diameter 1/

√
2 , and Corollary 3.5 combined with assumption (3.7)

gives
q(fSr+2,i) ≤ λh.

Note that assumption (3.7) suffices for this, since

ϕ
(
I, Rp, α(rp, Rp)

)
+ ϕ

(
I, α(rp, Rp), rp

)
≤ (3n + log λ)1−n

implies

exp
(
−

(
ϕ
(
I, Rp, α(rp, Rp)

)
+ ϕ

(
I, α(rp, Rp), rp

))1/(1−n))
<

1

2n+3/2(2n + 1)λ
.

Thus both inequalities in (5.1) hold for p = 0. We then assume that (5.1) holds
for a fixed p . Using the second inequality in (5.1) and the openness of f as above,
we then have

q(fGr+2,i) ≤ λ(2n + 1)hp+1 =
1

2
√

2
(Ah)p+1,

which is the first inequlity in (5.1) for p + 1. For the second inequality, notice
again that Sr+3,i is on the common boundary of Gr+2,i1 and Gr+3,i2 for some
i1 , i2 . Thus by the first inequality of (5.1), f maps the annulus B(zp,i, Rr+3) \
B(zp,i, rr+3) into a ball of chordal diameter Ap+1hp+1/

√
2 , and Lemma 3.4 and

the openness of f give
q(fSr+3,i) ≤ λAp+1hp+2.

This proves (5.1) for all p .
Now let Bs,i be the ball whose boundary is Ss,i . Then there are 2(m−s)n

balls Bm,j , m > s , in Bs,i and by (5.1),

(5.3)

q(f̃(Bs,i \ E)) ≤ q

(
f

(
∞⋃

m=s
Gm,j

))
≤ 1

2
√

2

∞∑

m=s

2(m−s)nAm−1hm−1

=
1√
2

2−sn−1A−1h−1
∞∑

m=s

(2nAh)m → 0
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as s → ∞ , whenever 2nAh < 1. Thus f has a limit at every x ∈ E .
Denote the extended mapping by f̃ . To show that f̃ is a mapping of finite

distortion, we have to show that f̃ is absolutely continuous on all lines parallel to
coordinate axis, that the weak partial derivatives of f̃ are locally integrable and
that also the Jacobian of f̃ is locally integrable. We may assume that f̃ takes
values in Rn . First, since the Hausdorff dimension of E is less than n − 1 and
f has the ACL property, it follows that also f̃ has the ACL property, see cf. [31,
Theorem 35.1]. Thus weak partial derivatives exist. Secondly, by using inequality
(1.1), the subexponential integrability of K and Hölder’s inequality, one sees that
the local integrability of the Jacobian guarantees local integrability of the partial
derivatives. Thus it suffices to show that the Jacobian of f̃ is locally integrable.
For this we first show that f̃ satisfies the Lusin condition, which is implied by
|f̃E|=0. Since the question is local, we may assume that f̃E ⊆ B(0, 1). By
the construction of E , E can be covered by 2np balls B(zp,i, rp), i = 1, . . . , 2np

for each p = 1, 2, . . . . Thus f̃E can be covered by the sets f̃B(zp,i, rp). As in
inequality (5.3), we have

q
(
f̃B(zp,i, rp)

)
≤ (Ah)p−1

1 − 2nAh
for p = 1, 2, . . . .

Denote

λp =
(Ah)p−1

1 − 2nAh
.

Then we can estimate the θ -Hausdorff contents by

H
λp

θ (f̃E) ≤
2np∑

i=1

d
(
f̃B(zp,i, rp)

)θ ≤ 2np2θλθ
p → 0 as p → 0,

whenever 2n(Ah)θ < 1. This holds for

θ >
n log 2

log
1

Ah

.

By our choice of h , it particularly follows that |f̃E| = 0. Having the Lusin prop-
erty, we will prove the local integrability of the Jacobian by standard arguments us-
ing the topological degree, cf. [14, Lemma 3.3]. Let x0 ∈ E . Since E∪ f̃−1

(
f̃(x0)

)

is totally disconnected, there exists a sphere Sn−1(x0, ε) such that Sn−1(x0, ε) ∩
f̃−1

(
f̃(x0)

)
= ∅ . Let V be the f̃(x0)-component of R

n \ f̃Sn−1(x0, ε) and let

U be the x0 -component of f̃−1V . Then U is an open neighborhood of x0 . The
topological degree µ

(
f̃(x0), f̃ , U

)
is now well-defined, and we have

N(y, f̃ , U) ≤ µ
(
f̃(x0), f̃ , U

)
= m < ∞,
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see cf. [19]. Here N(y, f̃ , U) = |{x ∈ U : f̃(x) = y}| . On the other hand by [18,
Theorem 9.2], the area formula holds for weakly differentiable mappings satisfying
the Lusin condition. Hence

∫

U

Jf̃ =

∫

Rn

N(y, f̃ , U) ≤ |V |µ
(
f̃(x0), f̃ , U

)
< ∞.

Thus Jf̃ is locally integrable. The proof is complete.
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