QUOTIENT DECOMPOSITION OF $Q_p^{\#}$ FUNCTIONS

Hasi Wulan

Shantou University, Department of Mathematics Shantou, Guangdong 515063, P. R. China; wulan@stu.edu.cn

Abstract. For $0 < p < \infty$, $Q_p^{\#}$ is the class of meromorphic functions f defined in the unit disk Δ satisfying that $\sup_{a \in \Delta} \iint_{\Delta} (f^{#}(z))^2 g^{p}(z, a) dA(z) < \infty$, where $g(z, a)$ is the Green function of Δ . A sufficient and necessary condition for the quotient $f = f_1/f_2$ of two bounded analytic functions f_1 and f_2 to belong to $Q_p^{\#}$ is given. Also, we prove that there exists a class X of meromorphic functions on Δ such that $Q_1^{\#} \subsetneq X \subsetneq N$, where N is the class of normal functions. This observation gives an affirmative answer to a question in the literature.

1. Throughout this paper, Δ , $\partial\Delta$ and $dA(z)$ are the unit disk on the complex plane, the boundary of the unit disk and the Euclidean area element on Δ , respectively. For a meromorphic function f on Δ , the Ahlfors–Shimizu characteristic function is defined as

$$
T(r, f) = \frac{1}{\pi} \int_0^r t^{-1} \iint_{|z| < t} \left(f^\#(z) \right)^2 dA(z) \, dt, \qquad 0 < r < 1.
$$

A function f meromorphic on Δ is said to belong to the Nevanlinna class N if

$$
T(1, f) = \lim_{r \to 1} T(r, f) < \infty.
$$

The well-known R. Nevanlinna quotient theorem (cf. [Ne, p. 188]) says that every function in $\mathscr N$ is the quotient of two functions in

$$
H^{\infty} = \Big\{ f : f \text{ analytic in } \Delta \text{ and } ||f||_{\infty} = \sup_{z \in \Delta} |f(z)| < \infty \Big\}.
$$

If a meromorphic function f belongs to $\mathcal N$, then $f = IO/J$, where I, J are inner functions whose greatest common divisor is 1 and O is an outer function in $\mathcal N$. Conversely, such a function $f = IO/J$ belongs to N. Up to some unimodular constants, the functions I, J, O are uniquely determined in this case. An inner function is a function I analytic on Δ , having the properties $|I(z)| \leq 1$ for all $z \in \Delta$ and $|I(e^{i\theta})| = 1$ a.e. on $\partial \Delta$. An outer function is a function of the form

$$
O_{\psi}(z) = \exp\biggl(\int_{\partial \Delta} \frac{\zeta + z}{\zeta - z} \log \psi(\zeta) \frac{|d\zeta|}{2\pi}\biggr),\,
$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 30D35, 30D45.

where $\psi \geq 0$ a.e. on $\partial \Delta$ and $\log \psi \in L^1(\partial \Delta)$.

In his thesis, Carleson [Ca] considered the classes T_{α} , $0 \leq \alpha < 1$, of meromorphic functions f on Δ satisfying

(1.1)
$$
||f||_{\alpha} = \int_0^1 (1-r)^{-\alpha} \iint_{|z| < r} (f^{\#}(z))^2 dA(z) dr < \infty,
$$

and the class T_1 of meromorphic functions f on Δ with

(1.2)
$$
||f||_1 = \sup_{0 < r < 1} \iint_{|z| < r} \left(f^\#(z)\right)^2 dA(z) < \infty.
$$

Obviously, we have $T_1 \subset T_\alpha \subset T_\beta \subset T_0$ for all $\alpha, \beta \in (0,1)$ with $\alpha > \beta$. The class T_0 coincides with the Nevanlinna class $\mathcal N$.

Carleson [Ca] found a partial quotient theorem for T_{α} and further Aleman [Al] gave a complete result to the quotient decomposition for T_{α} , showing that each function in T_α , $0 < \alpha \leq 1$, is the quotient of two functions in $H^\infty \cap T_\alpha$. Using a result of Cima and Colwell [CC] for the class of normal functions, Yamashita [Ya1] gave criteria for a Blaschke quotient B_1/B_2 to be of UBC, the class of all meromorphic functions of uniformly bounded characteristic on Δ (cf. [Ya2]). Xiao [Xi] considered the subclass BIT_{α} of T_{α} and proved that each function in BIT_{α} , $0 < \alpha < 1$, is the quotient of two functions in $H^{\infty} \cap BIT_{\alpha}$. Recently, we studied [AW] the same problem for $Q_p^{\#}$ classes which have attracted considerable attention and proved that each function in $Q_p^{\#}$, $0 < p < \infty$, is the quotient of two functions in $H^{\infty} \cap Q_p$. We first show in Section 2 that the converse is not true, that is, there exist functions $f_1, f_2 \in H^{\infty} \cap Q_p$ but $f = f_1/f_2 \notin Q_p^{\#}$ for any $p, 0 < p < \infty$. The aim of Section 2 is to give a sufficient and necessary condition for $f = f_1/f_2 \in T_0$ to belong to $Q_p^{\#}$ $(Q_p^{\#})$ $_{p,0}^{\#}$) for all $p \in (0,\infty)$. In Section 3 we prove that there exists a class X of meromorphic functions on Δ such that $Q_1^{\#} \subsetneq X \subsetneq N$, where N is the class of normal functions. Notice that this observation gives an affirmative answer to the question in [Wu]. In Sections 4 and 5 we generalize a result in $[DG]$ for Q_p spaces and give its counterpart for the subharmonic case.

2. The Green function on Δ with pole at $a \in \Delta$ is given by $g(z, a) =$ $\log(1/|\varphi_a(z)|)$, where $\varphi_a(z) = (a-z)/(1-\bar{a}z)$ is a Möbius transformation of Δ . For $0 < r < 1$, let $\Delta(a, r) = \{z \in \Delta : |\varphi_a(z)| < r\}$ be the pseudohyperbolic disk with center a and radius r. For $0 < p < \infty$, we define the classes $Q_p^{\#}$ and $Q_{p}^{\#}$ $_{p,0}$ of meromorphic functions f on Δ , respectively, for which

(2.1)
$$
\sup_{a \in \Delta} \iint_{\Delta} (f^{\#}(z))^2 (g(z, a))^p dA(z) < \infty
$$

and

(2.2)
$$
\lim_{|a| \to 1} \iint_{\Delta} (f^{\#}(z))^2 (g(z, a))^p dA(z) = 0,
$$

where $f^{\#}(z) = |f'(z)|/(1+|f(z)|^2)$ is the spherical derivative of f. We have that $Q_1^{\#} = \text{UBC}$ and for each $p \in (1, \infty)$ the class $Q_p^{\#}$ is the class of normal meromorphic functions N (cf. [AL]) for which

$$
||f||_N = \sup_{z \in \Delta} (1 - |z|^2) f^{\#}(z) < \infty.
$$

Replacing $f^{\#}(z)$ by $|f'(z)|$ in the above expressions (2.1) and (2.2) for analytic functions f on Δ , we obtain the spaces Q_p and $Q_{p,0}$ (cf. [AL] and [AXZ]).

Let us define for an outer function \overline{O} two cut-off outer functions (cf. [Al] and $|Xi|$:

$$
O_{+}(z) = \exp\left[\int_{\partial\Delta} \frac{\zeta + z}{\zeta - z} \log\left(\max\{|O(\zeta)|, 1\}\right) \frac{|d\zeta|}{2\pi}\right]
$$

and

$$
O_{-}(z) = \exp \left[\int_{\partial \Delta} \frac{\zeta + z}{\zeta - z} \log \left(\min \{|O(\zeta)|, 1\} \right) \frac{|d\zeta|}{2\pi} \right].
$$

Then it is easy to see that both O_{-} and $1/O_{+}$ belong to H^{∞} and $O = O_{-}O_{+}$.

Recently, we proved the following quotient decompositions of the $Q_p^{\#}$ and $Q_n^{\#}$ $_{p,0}^{\#}$ functions.

Theorem A ([AW]). Let $f = IO/J \in T_0$, where I, J are inner functions whose greatest common divisor is 1 and O is outer having two cut-off outer functions O_+ and O_- . Let $f_1 = IO_-$ and $f_2 = J/O_+$. For $0 < p < 1$, if $f = f_1/f_2$ belongs to $Q_p^{\#}$, respectively $Q_{p,1}^{\#}$ $_{p,0}^{\#}$, then both f_1 and f_2 lie in $H^{\infty} \cap Q_p$, respectively $H^{\infty} \cap Q_{p,0}$.

We should mention that the converse of Theorem A is not true.

Theorem 1. There are two functions $f_1, f_2 \in H^\infty \cap Q_p$ but $f = f_1/f_2 \notin Q_p^{\#}$ for $0 < p < \infty$.

Proof. Let $0 < \beta < \frac{1}{2}$ $\frac{1}{2}$ and take the sequences $\{z_n^{(1)}\} = \{1 - \beta^n\}$ and ${z_n^{(2)}} = {1 - \beta^n - \beta^{2n}}$. Note that

$$
(1 - |z_{n+1}^{(i)}|^2) \le 2\beta (1 - |z_n^{(i)}|^2), \qquad n \ge 1, \ i = 1, 2.
$$

Consequently, the sequences $\{z_n^{(i)}\}$ $(i = 1, 2)$ are uniformly separated. Consider the Blaschke products B_i associated with the sequences $\{z_n^{(i)}\}$:

$$
B_i(z) = \prod_{n=1}^{\infty} \frac{z_n^{(i)} - z}{1 - z_n^{(i)} z}, \qquad i = 1, 2.
$$

Clearly, $B_i \in H^\infty \cap Q_p$ $(i = 1, 2)$ if $1 \leq p < \infty$. Take now $p \in (0,1)$. By a simple computation, we see that

$$
\sum_{j=k+1}^{\infty} (1-|z_j^{(i)}|^2)^p \le \frac{2^p \beta^p}{1-(2\beta)^p} (1-|z_k^{(i)}|^2)^p, \qquad k=1,2,\ldots, \ i=1,2.
$$

Then using the results of [RT], we deduce that $d\mu_i(z) = \sum_{n=1}^{\infty} (1 - |z_n^{(i)}|^2)^p \delta_{z_n^{(i)}}$ is a bounded p-Carleson measure and then, by [EX], $B_i \in Q_p \cap H^\infty$, $i = 1, 2$.

Finally, $B_1/B_2 \notin Q_p^{\#}$ for any $p > 0$ because B_1/B_2 is not a normal function. Indeed, we have

$$
\left|\frac{z_j^{(2)} - z_j^{(1)}}{1 - z_j^{(1)} z_j^{(2)}}\right| \le \frac{\beta^j}{2 - \beta^{2j}} \to 0, \quad \text{as } j \to \infty,
$$

and then it follows that $\{z_n^{(1)}\}\cup \{z_n^{(2)}\}$ is not interpolating which, using Theorem 2 of [CC], implies B_1/B_2 is not a normal function as announced.

Now we turn to the main result in this paper.

Theorem 2. Let $p \in (0, \infty)$. Let $f = IO/J \in T_0$, where I, J are inner functions whose greatest common divisor is 1 and O is outer having the two cut-off outer functions O_+ and O_- . Let $f_1 = IO_-$ and $f_2 = J/O_+$. Then $f = f_1/f_2 \in Q_p^{\#}$ if and only if both f_1 and f_2 lie in $H^{\infty} \cap Q_p$ and

$$
\inf_{z \in \Delta} (|f_1(z)|^2 + |f_2(z)|^2) > 0.
$$

Proof. Our first observation is the following identity:

(2.3)
$$
T(1, f_1/f_2) = \frac{1}{4\pi} \int_0^{2\pi} \log(|f_1(e^{i\theta})|^2 + |f_2(e^{i\theta})|^2) d\theta - \frac{1}{2} \log(|f_1(0)|^2 + |f_2(0)|^2).
$$

In fact, let $J = B_J S_J$, where B_J is a Blaschke product and S_J is a singular inner function. By Lemma 4.2 in [Ya2] we have

$$
T(1, f_1/f_2) = \lim_{r \to 1} \frac{1}{4\pi} \int_0^{2\pi} \log(1 + |(IO/J)(re^{i\theta})|^2) d\theta
$$

- $\frac{1}{2} \log(|B_J(0)|^2 + |IO(0)/S_J(0)|^2)$
= $\lim_{r \to 1} \frac{1}{4\pi} \int_0^{2\pi} \log(|(J/O_+)(re^{i\theta})|^2 + |(IO_-)(re^{i\theta})|^2) d\theta$
- $\lim_{r \to 1} \frac{1}{4\pi} \int_0^{2\pi} \log|(B_J S_J/O_+)(re^{i\theta})|^2 d\theta$
- $\frac{1}{2} \log(|B_J(0)|^2 + |IO(0)/S_J(0)|^2).$

Note that every function $f \in T_0$ with $f \neq 0$ has a non-tangential limit at $e^{i\theta}$ a.e. on $\partial \Delta$, denoted by $f(e^{i\theta})$, and $\log |f(e^{i\theta})|$ belongs to $L^1[0, 2\pi]$. Bearing in mind that $\log |S_J/O_*|$ is harmonic and that

$$
\lim_{r \to 1} \int_0^{2\pi} \log |B_J(re^{i\theta})| \, d\theta = 0,
$$

we have

$$
T(1, f_1/f_2) = \lim_{r \to 1} \frac{1}{4\pi} \int_0^{2\pi} \log(|(J/O_+)(re^{i\theta})|^2 + |(IO_-)(re^{i\theta})|^2) d\theta
$$

$$
- \frac{1}{2} \log|S_J(0)/O_+(0)|^2 - \frac{1}{2} \log(|B_J(0)|^2 + |IO(0)/S_J(0)|^2)
$$

$$
= \frac{1}{4\pi} \int_0^{2\pi} \log(|f_1(e^{i\theta})|^2 + |f_2(e^{i\theta})|^2) d\theta - \frac{1}{2} \log(|f_1(0)|^2 + |f_2(0)|^2).
$$

Thus (2.3) is proved. Next, putting $f_{\varrho}(z) = f(\varrho z)$ for $0 < \varrho \le 1$ in (2.3) we get

(2.4)
$$
T(\varrho, f_1/f_2) = \frac{1}{4\pi} \int_0^{2\pi} \log(|f_1(\varrho e^{i\theta})|^2 + |f_2(\varrho e^{i\theta})|^2) d\theta
$$

$$
- \frac{1}{2} \log(|f_1(0)|^2 + |f_2(0)|^2).
$$

For $a \in \Delta$, by replacing f in (2.4) by $f \circ \varphi_a$, we obtain

(2.5)
$$
T(\varrho, f_1 \circ \varphi_a/f_2 \circ \varphi_a) = \frac{1}{4\pi} \int_0^{2\pi} \log(|f_1 \circ \varphi_a(\varrho e^{i\theta})|^2 + |f_2 \circ \varphi_a(\varrho e^{i\theta})|^2) d\theta
$$

$$
- \frac{1}{2} \log(|f_1(a)|^2 + |f_2(a)|^2).
$$

Proof of necessity. Suppose $f_1/f_2 \in Q_p^{\#}$.

Case 1. If $0 < p \le 1$, by Theorem A and the fact that $H^{\infty} \subset Q_1$ we know that both f_1 and f_2 belong to $H^{\infty} \cap Q_p$. Since $Q_p^{\#} \subset \text{UBC}$ for $0 < p \leq 1$, $f_1/f_2 \in \overline{UBC}$, which is equivalent to

$$
\sup_{a\in\Delta}T(1,f_1\circ\varphi_a/f_2\circ\varphi_a)<\infty.
$$

Because the first term in the right side of (2.5) is increasing on ρ , we have

$$
0 < \sup_{a \in \Delta} \lim_{\varrho \to 1} \frac{1}{4\pi} \int_0^{2\pi} \log(|f_1 \circ \varphi_a(\varrho e^{i\theta})|^2 + |f_2 \circ \varphi_a(\varrho e^{i\theta})|^2) \, d\theta
$$
\n
$$
\leq \frac{1}{2} \log(\|f_1\|_{\infty}^2 + \|f_2\|_{\infty}^2) < \infty.
$$

Hence

$$
\sup_{a\in\Delta} T(1, f_1\circ\varphi_a/f_2\circ\varphi_a) < \infty \quad \Longleftrightarrow \quad \inf_{a\in\Delta} \left(|f_1(a)|^2 + |f_2(a)|^2 \right) > 0.
$$

Case 2. If $1 < p < \infty$, we have that $f_1/f_2 \in N$ since $Q_p^{\#} = N$ for all $p \in (1,\infty)$. It is clear that both f_1 and f_2 belong to $H^{\infty} \cap Q_p$ since $f_1, f_2 \in H^{\infty}$ which is contained in Q_p for all $p \in (1,\infty)$. To complete the proof of necessity we claim that the following statement is true.

Statement. Let f be a meromorphic function on Δ . Then $f \in N$ if and only if there exists a $\varrho \in (0,1)$ such that $\sup_{a \in \Delta} T(\varrho, f \circ \varphi_a) < \infty$.

Once the statement is proved just as in the case 1 above we have that $f_1/f_2 \in$ N implies that

$$
\inf_{a \in \Delta} (|f_1(a)|^2 + |f_2(a)|^2) > 0.
$$

Now we give the proof of the statement. Assume first that $f \in N$. Then for a fixed $\rho \in (0,1)$ we have

$$
T(\varrho, f \circ \varphi_a) = \frac{1}{\pi} \int_0^{\varrho} \frac{dt}{t} \iint_{|z| < t} (f \circ \varphi_a)^{\#}(z)^2 dA(z)
$$

$$
= \frac{1}{\pi} \int_0^{\varrho} \frac{dt}{t} \iint_{\Delta(a,t)} (f^{\#}(z))^2 dA(z)
$$

$$
\leq \frac{1}{\pi} ||f||_N^2 \int_0^{\varrho} \frac{dt}{t} \iint_{\Delta(a,t)} \frac{dA(z)}{(1 - |z|^2)^2}
$$

$$
= \frac{1}{2} ||f||_N^2 \log \frac{1}{1 - \varrho^2},
$$

which shows that

$$
\sup_{a\in\Delta}T(\varrho,f\circ\varphi_a)<\infty.
$$

Conversely, suppose that $\varrho \in (0,1)$ and $\sup_{a \in \Delta} T(\varrho, f \circ \varphi_a) < \infty$. Choose ϱ_0 with $0 < \varrho_0 < \varrho$ such that

$$
\sup_{a\in\Delta} T(\varrho, f\circ\varphi_a) \bigg(\log\frac{\varrho}{\varrho_0}\bigg)^{-1} < 1.
$$

Now,

$$
T(\varrho, f \circ \varphi_a) \ge \frac{1}{\pi} \int_{\varrho_0}^{\varrho} \frac{dt}{t} \iint_{\Delta(a,t)} (f^{\#}(z))^2 dA(z)
$$

$$
\ge \frac{1}{\pi} \left(\log \frac{\varrho}{\varrho_0} \right) \iint_{\Delta(a,\varrho_0)} (f^{\#}(z))^2 dA(z).
$$

It follows that

$$
\sup_{a\in\Delta}\iint_{\Delta(a,\varrho_0)} \left(f^\#(z)\right)^2 dA(z) \le \sup_{a\in\Delta} T(\varrho, f\circ\varphi_a)\pi \left(\log\frac{\varrho}{\varrho_0}\right)^{-1} < \pi,
$$

which shows that $f \in N$ by Lemma 3.2 in [Ya2].

Proof of sufficiency. Let

$$
\delta := \inf_{z \in \Delta} (|f_1(z)|^2 + |f_2(z)|^2) > 0,
$$

and let $f_1, f_2 \in H^\infty \cap Q_p$ with $0 < p < \infty$. We obtain $\sup \int \left((f_1/f_2)^{\#}(z) \right)^2 (g(z,a))^p dA(z)$

$$
\lim_{a \in \Delta} \iint_{\Delta} \frac{|f_1'(z)f_2(z) - f_1(z)f_2'(z)|^2}{(|f_1(z)|^2 + |f_2(z)|^2)} (g(z, a))^p dA(z)
$$
\n
$$
\leq \frac{2}{\delta^2} (\|f_1\|_{\infty}^2 + \|f_2\|_{\infty}^2) \sup_{a \in \Delta} \iint_{\Delta} (|f_1'(z)|^2 + |f_2'(z)|^2) (g(z, a))^p dA(z)
$$
\n
$$
< \infty,
$$

which shows that $f_1/f_2 \in Q_p^{\#}$. The proof of Theorem 2 is complete.

We have the following result, similar to Theorem 2.

Theorem 3. Let $f = IO/J \in T_0$, where I, J are inner functions whose greatest common divisor is 1 and O is outer having the two cut-off outer functions O_+ and O_- . Let $f_1 = IO_-$ and $f_2 = J/O_+$. Then, for $0 < p < 1$, the following are equivalent.

- (a) $f = f_1/f_2 \in Q_{p}^{\#}$ $_{p,0}^{\#}.$
- (b) $\inf_{z \in \Delta} (|f_1(z)|^2 + |f_2(z)|^2) > 0$ and both f_1 and f_2 lie in $H^{\infty} \cap Q_{p,0}$.

Bearing in mind that $Q_{p,0} \subset VMOA$ if $0 < p \le 1$ and that the only Blaschke products in VMOA are the finite Blaschke products [Se] and using Theorem 3, we obtain the following result.

Corollary 1. If $0 < p \leq 1$, B_1 and B_2 are two Blaschke products without common zeros, then $B_1/B_2 \in Q_{p}^{\#}$ $_{p,0}^{\#}$ if and only if $B_i \in Q_{p,0}$, $i = 1,2$.

3. Note that $Q_p^{\#} = N$ for all $p \in (1, \infty)$ and $Q_1^{\#} = \text{UBC} \subsetneq N$. It is natural to ask whether there exists a class X of meromorphic functions on Δ such that $UBC \subsetneq X \subsetneq N$. We describe such a class X which in fact also gives an affirmative answer to the question in [Wu] (see Remark 3.1).

For $0 < p < \infty$, let X_p be the family of meromorphic functions f on Δ such that $\ddot{}$

(3.1)
$$
\sup_{a \in \Delta} \iint_{\Delta} (f^{\#}(z))^p (1-|z|^2)^{p-2} g(z,a) dA(z) < \infty.
$$

Obviously, $X_p = Q^{\#}(p, 1)$ (cf. [Wu]).

Theorem 4. We have UBC $\subsetneq X_p \subsetneq N$ for $2 < p < \infty$.

Proof. By Theorem 3.2.1(ii) in [Wu] we need only show that there exists a normal function f such that $f \notin X_p$. By [LX] there are two functions f_1 and f_2 in N such that

$$
M_0 := \inf_{z \in \Delta} (1 - |z|^2) \big(f_1^{\#}(z) + f_2^{\#}(z) \big) > 0.
$$

Therefore,

$$
\sup_{a \in \Delta} \iint_{\Delta} \left\{ (f_1^{\#}(z))^p + (f_2^{\#}(z))^p \right\} (1 - |z|^2)^{p-2} g(z, a) dA(z)
$$

\n
$$
\geq \sup_{a \in \Delta} 2^{-p} \iint_{\Delta} (f_1^{\#}(z) + f_2^{\#}(z))^p (1 - |z|^2)^{p-2} g(z, a) dA(z)
$$

\n
$$
\geq \sup_{a \in \Delta} \frac{M_0^p}{2^p} \iint_{\Delta} (1 - |z|^2)^{-2} g(z, a) dA(z)
$$

\n
$$
= \sup_{a \in \Delta} \frac{M_0^p}{2^p} \iint_{\Delta} (1 - |w|^2)^{-2} \log \frac{1}{|w|} dA(w) = \infty.
$$

Hence, $f_1 \notin X_p$ or $f_2 \notin X_p$. Thus, $f_1 \in N \setminus X_p$ or $f_2 \in N \setminus X_p$.

4. Dyakonov and Girela [DG] gave a new characterization of Q_p functions as follows.

Theorem B ([DG]). Let $0 < p < 1$. An analytic function f belongs to Q_p if and only if

(4.1)
$$
\sup_{a\in\Delta}\iint_{\Delta}|f'(z)|^2\frac{\left(1-|\varphi_a(z)|^2\right)^p}{|\varphi_a(z)|^{2p}}\,dA(z)<\infty.
$$

In fact, Theorem B can be generalized.

Theorem 5. Let $0 < p < \infty$ and $0 \le s < 1$. An analytic function f belongs to Q_p if and only if

(4.2)
$$
\sup_{a \in \Delta} \iint_{\Delta} |f'(z)|^2 \frac{\left(1 - |\varphi_a(z)|^2\right)^p}{|\varphi_a(z)|^{2s}} dA(z) < \infty.
$$

Note that if $s = 0$ it has been proved in [ASX] and if $0 < p = s < 1$ it is just Theorem B. The following is the counterpart of Theorem 5 for the meromorphic case and we omit the proof of Theorem 5 here since it is similar to that of Theorem 6 below.

Theorem 6. Let $0 < p < \infty$ and $0 < s < 1$. Then a meromorphic function f belongs to $Q_p^{\#}$ if and only if

(4.3)
$$
\sup_{a\in\Delta}\iint_{\Delta} (f^{\#}(z))^2 \frac{\left(1-|\varphi_a(z)|^2\right)^p}{|\varphi_a(z)|^{2s}} dA(z) < \infty.
$$

Proof. We suppose that $f \in Q_p^{\#}$. By Theorem 2.2.2 in [Wu] we know that $f \in N \cap M_p^{\#}$, where

$$
M_p^{\#} = \left\{ f : f \text{ meromorphic on } \Delta, \sup_{a \in \Delta} \iint_{\Delta} \left(f^{\#}(z) \right)^2 \left(1 - |\varphi_a(z)|^2 \right)^p dA(z) < \infty \right\}.
$$

Thus for a fixed $r, 0 < r < 1$ and $0 < s < 1$, we have

$$
\iint_{\Delta} (f^{\#}(z))^2 \frac{(1 - |\varphi_a(z)|^2)^p}{|\varphi_a(z)|^{2s}} dA(z) = \iint_{\Delta(a,r)} (f^{\#}(z))^2 \frac{(1 - |\varphi_a(z)|^2)^p}{|\varphi_a(z)|^{2s}} dA(z)
$$

+
$$
\iint_{\Delta \setminus \Delta(a,r)} (f^{\#}(z))^2 \frac{(1 - |\varphi_a(z)|^2)^p}{|\varphi_a(z)|^{2s}} dA(z)
$$

(4.4)
$$
\leq \iint_{\Delta(a,r)} (f^{\#}(z))^2 \frac{(1 - |\varphi_a(z)|^2)^p}{|\varphi_a(z)|^{2s}} dA(z)
$$

+
$$
\frac{1}{r^{2s}} \iint_{\Delta \setminus \Delta(a,r)} (f^{\#}(z))^2 (1 - |\varphi_a(z)|^2)^p dA(z).
$$

Since $f \in M_p^{\#}$, the supremum over all $a \in \Delta$ of the second term in the right-hand side of (4.4) is finite. The change of variables $w = \varphi_a(z)$ in the first term of (4.4) yields

$$
\sup_{a \in \Delta} \iint_{\Delta(a,r)} \left(f^{\#}(z) \right)^2 \frac{\left(1 - |\varphi_a(z)|^2 \right)^p}{|\varphi_a(z)|^{2s}} dA(z)
$$
\n
$$
\leq \|f\|_N^2 \iint_{\Delta(a,r)} (1 - |z|^2)^{-2} \frac{\left(1 - |\varphi_a(z)|^2 \right)^p}{|\varphi_a(z)|^{2s}} dA(z)
$$
\n
$$
= \|f\|_N^2 \iint_{|w| < r} (1 - |w|^2)^{p-2} |w|^{-2s} dA(w)
$$
\n
$$
= 2\pi \|f\|_N^2 \int_0^r (1 - t^2)^{p-2} t^{1-2s} dt < \infty.
$$

Hence, (4.3) follows.

Conversely, suppose that the supremum in (4.3) is K with $0 < K < \infty$. It is easy to see that this implies that $f \in M_p^{\#}$ since $|\varphi_a(z)| < 1$. Fix an $r \in (0,1)$ such that $r^{2s} K/(1 - r^2)^p < \frac{1}{2}$ $\frac{1}{2}\pi$. Thus we obtain

$$
\iint_{\Delta(a,r)} \left(f^\#(z) \right)^2 dA(z) \le \frac{r^{2s}}{(1-r^2)^p} \iint_{\Delta(a,r)} \left(f^\#(z) \right)^2 \frac{\left(1 - |\varphi_a(z)|^2\right)^p}{|\varphi_a(z)|^{2s}} dA(z)
$$

$$
\le \frac{r^{2s} K}{(1-r^2)^p} < \frac{\pi}{2}.
$$

By Lemma 3.2 in [Ya2] we obtain that $f \in N$, and thus $f \in N \cap M_p^{\#}$. By Theorem 2.2.2 in [Wu] again we conclude that $f \in Q_p^{\#}$. The proof is now complete.

5. An example in [AWZ] shows that for $s = 0$ Theorem 6 is not true. That is, unlike the analytic case, for a meromorphic function $f, (f^{\#}(z))^2$ may not be subharmonic in general and the Green function $g(z, a)$ in the definition of $Q_p^{\#}$, sometimes, can not be replaced by the expression $1 - |\varphi_a(z)|^2$. Moreover, we have

Theorem 7. Let $u \geq 0$ be subharmonic on Δ , $0 < p < \infty$ and $0 \leq s < 1$. Then the following are equivalent.

(i)
$$
\sup_{a \in \Delta} \iint_{\Delta} u(z) (g(z, a))^p dA(z) < \infty.
$$

(ii)
$$
\sup_{a \in \Delta} \iint_{\Delta} u(z) \frac{\left(1 - |\varphi_a(z)|^2\right)^p}{|\varphi_a(z)|^{2s}} dA(z) < \infty.
$$

Corollary 2. Let $u \geq 0$ be subharmonic in Δ and $p > 1$. Then

$$
\sup_{z \in \Delta} u(z)(1-|z|^2)^2 < \infty
$$

if and only if

$$
\sup_{a\in\Delta}\iint_{\Delta}u(z)\big(g(z,a)\big)^p\,dA(z)<\infty.
$$

Remark. Theorem 7 and Corollary 2 generalize some results in [AL] and [ASX] since $|f'(z)|^2$ is subharmonic in Δ for an analytic function f.

Acknowledgements. This research is supported in part by a grant from the National Natural Science Foundation of China (No. 10371069) and a grant from the NSFG (No. 010446) of China. I would like to thank the referee for helpful comments.

References

- [Al] Aleman, A.: A conjecture of L. Carleson and applications. Michigan Math J. 39, 1992, 537–549.
- [AL] Aulaskari, R., and P. Lappan: Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal. - In: Complex Analysis and its Applications, Pitman Res. Notes Math. Ser. 305, Longman Scientific & Technical, Harlow, 1994, pp. 136–146.
- [ASX] Aulaskari, R., D. Stegenga, and J. Xiao: Some subclasses of BMOA and their characterization in terms of Carleson measures. - Rocky Mountain J. Math. 26, 1996, 485–506.
- [AW] AULASKARI, R., and H. WULAN: Outer functions in $Q_p^{\#}$, $Q_{p,0}^{\#}$. J. Funct. Spaces Appl. 2, 2004, 17–24.
- [AXZ] Aulaskari, R., J. Xiao, and R. Zhao: On subspaces and subsets of BMOA and UBC. - Analysis 15, 1995, 101–121.
- [Ca] Carleson, L.: On a class of meromorphic functions and its associated exceptional sets. - Thesis, University of Uppsala, 1950.
- [CC] Cima, J. A., and P. Colwell: Blaschke quotients and normality. Proc. Amer. Math. Soc. 19, 1968, 796–798.
- [DG] DYAKONOV, K. M., and D. GIRELA: On Q_p spaces and pseudoanalytic extension. Ann. Acad. Sci. Fenn. Math. 25, 2000, 477–486.
- [EX] Essén, M., and J. XIAO: Some results on Q_p -spaces, $0 < p < 1$. J. Reine Angew. Math. 485, 1997, 173–195.
- [LX] LAPPAN, P., and J. XIAO: $Q_{\alpha}^{\#}$ -bounded composition maps on normal classes. Note Mat. 20, 2000/01, 65–72.
- [Ne] Nevanlinna, R.: Analytic Functions. Springer-Verlag, Berlin–Heidelberg–New York, 1970.
- [RT] RESÉNDIZ, O., and L. M. TOVAR: Carleson measures, Blaschke products and Q_p spaces. In: Complex Analysis and Differential Equations (Uppsala, 1997), pp. 296–305, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist. 64, Uppsala Univ., Uppsala, 1999.
- [Se] STEGENGA, D.: Bounded Toeplitz operators on $H¹$ and applications of the duality between $H¹$ and the functions of bounded mean osillation. - Amer. J. Math. 98, 1976, 573–589.
- [Wu] Wulan, H.: On some classes of meromorphic functions. Ann. Acad. Sci. Fenn. Math. Diss. 116, 1998, 1–57.
- [Xi] Xiao, J.: Biholomorphically invariant families amongst Carleson class . Indag. Math. (N.S.) 12, 2001, 597–607.
- [Ya1] Yamashita, S.: Criteria for a Blaschke quotient to be of uniformly bounded characteristic. - Proc. Amer. Math. Soc. 93, 1985, 618–620.
- [Ya2] Yamashita, S.: Functions of uniformly bounded characteristic . Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 1982, 349–367.