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Abstract. In this paper we prove that the concept of Lebesgue points generalizes naturally
to the setting of variable exponent Lebesgue and Sobolev spaces. We assume that the variable
exponent is log -Hölder continuous, which, although restrictive, is a common assumption in variable
exponent spaces.

1. Introduction

In recent years there has been a great upswing of interest and research in
variable exponent Lebesgue and Sobolev spaces. Due to these efforts many classical
questions are now understood quite well also in the variable exponent case, for
instance potential and maximal operators and Sobolev and Poincaré inequalities
cf. [7], [8], [9], [10], [13], [14], [15], [19], [26]. In parallel with the study of the spaces
there has also been increasing interest in studying related differential equations
under generalized regularity conditions cf. [1], [2], [3], [11]. Both of these issues
are also related to the modeling of electro-rheological fluids, cf. [24].

Despite impressive advances, some classical questions have remained com-
pletely unstudied in variable exponent spaces, escaping without even a mention.
The topic of this paper, Lebesgue points, belongs to this category. Lebesgue points
are important since they allow us to move beyond average estimates to pointwise
estimates of Lebesgue and Sobolev functions.

Lebesgue points in Lebesgue spaces, the topic of Section 3, are quite sim-
ple to handle and require no in-depth knowledge of variable exponent spaces.
We show that if the exponent is bounded then almost every point is a Lebesgue
point. In Section 4 we study Lebesgue points in Sobolev spaces. In order to say
anything useful about these we need some sort of capacity. A suitable variable ex-
ponent Sobolev type capacity was introduced only recently by Harjulehto, Hästö,
Koskenoja and Varonen [15]. This is one of the reasons that Lebesgue points
have not been previously studied in variable exponent spaces. Another important
reason is the lack of tools for approaching this question in a local manner. In
this paper we will adapt methods from a likewise very recent paper by Kinnunen
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and Latvala, [18]. We prove in Theorems 4.6 and 4.12 that Sobolev functions be-
have pointwise as we would expect from classical theory, provided the exponent is
log-Hölder continuous, i.e. we show that

lim
r→0

∫

−
B(x.r)

|u(y) − u∗(x)|p
∗(y) dy = 0

quasieverywhere, where u∗ is the quasicontinuous representative of u ∈ W 1,p( · )(Rn)
and p∗ is the pointwise Sobolev conjugate exponent of p . We start by giving the
necessary definitions in Section 2.

2. Notation and definitions

We denote by Rn the Euclidean space of dimension n > 2. For x ∈ Rn

and r > 0 we denote by B(x, r) the open ball with center x and radius r . For
u ∈ L1(Rn) and E ⊂ Rn of positive measure we denote

uE =

∫

−
E

|u(x)| dx =
1

|E|

∫

E

|u(x)| dx.

We will next introduce variable exponent Lebesgue and Sobolev spaces in Rn ;
note that we nevertheless use the standard definitions of the spaces Lp(Ω) and
W 1,p(Ω) for fixed exponent p > 1 and open Ω ⊂ Rn .

Let p: Rn → [1,∞) be a measurable function (called the variable exponent

on Rn ). Throughout this paper the function p always denotes a variable exponent;
also, we define p+ = ess supx∈Rn p(x) and p− = ess infx∈Rn p(x). We define the
variable exponent Lebesgue space Lp( · )(Rn) to consist of all measurable functions
u: Rn → R such that %p( · )(λu) =

∫

Rn |λu(x)|p(x) dx < ∞ for some λ > 0. The

function %p( · ): Lp( · )(Rn) → [0,∞) is called the modular of the space Lp( · )(Rn).
We define a norm, the so-called Luxemburg norm, on this space by the formula

‖u‖p( · ) = inf
{

λ > 0 : %p( · )(u/λ) 6 1
}

.

The variable exponent Sobolev space W 1,p( · )(Rn) is the subspace of functions
u ∈ Lp( · )(Rn) whose distributional gradient exists almost everywhere and satisfies
|∇u| ∈ Lp( · )(Rn). The function %1,p( · ): W 1,p( · )(Rn) → [0,∞) is defined by
%1,p( · )(u) = %p( · )(u) + %p( · )(|∇u|). The norm ‖u‖1,p( · ) = ‖u‖p( · ) + ‖∇u‖p( · )

makes W 1,p( · )(Rn) a Banach space. For more details on the variable exponent
spaces see [20].

In [15] Harjulehto, Hästö, Koskenoja and Varonen introduced a Sobolev ca-
pacity in the variable exponent Sobolev space, which is defined as follows. Suppose
that E is an arbitrary subset of Rn . We denote

Sp( · )(E) =
{

u ∈ W 1,p( · )(Rn) : u > 1 in an open set containing E
}

.
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The Sobolev p( · )-capacity of E is defined by

Cp( · )(E) = inf
u∈Sp( · )(E)

∫

Rn

(

|u(x)|p(x) + |∇u(x)|p(x)
)

dx.

In case Sp( · )(E) = ∅ , we set Cp( · )(E) = ∞ . If 1 < p− ≤ p+ < ∞ , then the
Sobolev p( · )-capacity is an outer measure and Choquet capacity [15, Corollar-
ies 3.3 and 3.4]. As in the fixed exponent case the capacity is a finer measure than
the n -dimensional Lebesgue measure, cf. [15, Section 4]. We say that a claim holds
quasieverywhere if it holds except in a set of capacity zero. A function u: Ω → R

is said to be quasicontinuous if for every ε > 0 there exists an open set U ⊂ Ω
with Cp( · )(U) < ε such that u is continuous in Ω \ U .

3. Lebesgue spaces

Although functions in Lp are not in general continuous, they do possess the
following mean-continuity property: for u ∈ Lp

loc(R
n) we have

lim
r→0

∫

−
B(x,r)

|u(y) − u(x)|p dy = 0

for almost every x . The points x at which this property holds are called Lebesgue

points.
The next theorem generalizes the concept of Lebesgue points to the variable

exponent Lebesgue spaces. Our proof is standard and is based on the following
fact: in L1 almost every point is a Lebesgue point.

3.1. Theorem. Let p+ < ∞ . If u ∈ Lp( · )(Rn) , then

lim
r→0

∫

−
B(x,r)

|u(y)− u(x)|p(y) dy = 0

for almost every x ∈ Rn .

Proof. Let {ri}
∞

i=1 be a countable dense subset of R . Since p+ < ∞ , we
conclude that |u( · ) − ri|

p( · ) ∈ L1
loc(R

n). Thus for every i there exists Ei ⊂ Rn

of measure zero such that

(3.2) lim
r→0

∫

−
B(x,r)

|u(y) − ri|
p(y) dy = |u(x) − ri|

p(x)

for every x ∈ Rn \ Ei . Denote E =
⋃

∞

i=1 Ei and note that |E| = 0. Then (3.2)
holds for every x ∈ Rn \ E and every i .
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Let 0 < ε < 1 and x ∈ Rn \ E . We choose ri so that |u(x) − ri| < ε/2p++1

and obtain

lim sup
r→0

∫

−
B(x,r)

|u(y)− u(x)|p(y) dy

≤ 2p+

(

lim sup
r→0

∫

−
B(x,r)

|u(y) − ri|
p(y) dy +

∫

−
B(x,r)

|ri − u(x)|p(y) dy

)

≤ 2p+(

|u(x) − ri|
p(x) + |u(x) − ri|

)

≤ 2p++1|u(x) − ri| < ε,

and so x is a Lebesgue point.

3.3. Remark. Since being a Lebesgue point is a local property, it suffices

to assume that u ∈ L
p( · )
loc and that ess supx∈K p(x) < ∞ for compact K ⊂ Rn in

the previous theorem.

4. Sobolev spaces

In this section we consider Lebesgue points of functions in Sobolev spaces. We
proceed as follows: First we note, using a result of Kinnunen [17], that the Hardy–
Littlewood maximal function of a Sobolev function is a Sobolev function. This
yields a capacity weak type estimate of the Hardy–Littlewood maximal function.
Using these results we prove that

lim
r→0

∫

−
B(x.r)

u(y) dy = u∗(x)

exists quasieverywhere and u∗ is the quasicontinuous representative of u . Finally
we show that

lim
r→0

∫

−
B(x.r)

|u(y) − u∗(x)|p
∗(y) dy = 0

quasieverywhere in {x ∈ Rn : p(x) < n} . Here p∗ is the pointwise Sobolev
conjugate exponent. To use these methods we need to make some assumptions on
the exponent and therefore we start by defining some conditions.

4.1. Definition. We say that the variable exponent p is log -Hölder contin-

uous if there exists a constant C > 0 such that

|p(x) − p(y)| ≤
C

− log |x − y|

for every x, y ∈ Rn , |x − y| ≤ 1
2 .

Note that log-Hölder continuous functions are sometimes called weak Lip-
schitz or Dini–Lipschitz continuous functions. However, this terminology obscures
the clear relationship to Hölder continuity and will not be used in this paper.
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4.2. Definition. We say that p satisfies condition M if 1 < p− ≤ p+ < ∞ ,
p is log-Hölder continuous and there exists a constant C > 0 such that

|p(x) − p(y)| ≤
C

log(e + |x|)

for every x, y ∈ Rn , |y| ≥ |x| .

Condition M and log-Hölder continuity have appeared in several places in the
study of variable exponent spaces. Cruz-Uribe, Fiorenze and Neugebauer showed,
following the work of Diening [6] and Nekvinda [21], that the condition M is suffi-
cient for the Hardy–Littlewood maximal operator to be bounded from Lp( · )(Rn)
to itself [4, Theorem 1.5] (see also [5]). log-Hölder continuity is somehow crucial
for the boundedness of the Hardy–Littlewood maximal operator, as was shown
by Pick and Růžička [23], whereas Nekvinda gave an example showing that the
decay condition is not necessary [22]. Samko [25, Theorem 3] and Fan and Zhao
[11, Theorem 3.2] proved, independently, that C∞

0 (Rn) is dense in W 1,p( · )(Rn)
provided p is log-Hölder continuous.

For G ⊂ Rn we define p−

G = ess infx∈G p(x) and p+

G = ess supx∈G p(x). Using
these quantities, Diening gave the following geometric interpretation of log-Hölder
continuity:

4.3. Lemma ([6, Lemma 3.2]). Let p:Rn → [1,∞) . The following conditions

are equivalent:

(1) p is log -Hölder continuous.

(2) There exists a constant c such that |B|p
−

B
−p+

B ≤ c for all open balls B .

The following proposition is an adaptation to the variable exponent case of
results of J. Kinnunen from [17]. The proof follows easily from the fixed exponent
case.

4.4. Proposition. Suppose p satisfies condition M . If u ∈ W 1,p( · )(Rn) ,
then Mu ∈ W 1,p( · )(Rn) and |∇Mu(x)| ≤ M |∇u(x)| for almost every x ∈ Rn .

Proof. Since u ∈ W 1,1
loc (Rn), it follows from [17] that |∇Mu(x)| ≤ M |∇u(x)|

for almost every x ∈ Rn . Since |∇u| ∈ Lp( · )(Rn), it follows by [4, Theorem 1.5]
that M |∇u| ∈ Lp(x)(Rn). Since |∇Mu| ≤ M |∇u| pointwise a.e., this implies
that |∇Mu| ∈ Lp(x)(Rn), as well. It follows from [4, Theorem 1.5] that Mu ∈
Lp(x)(Rn) and thus Mu ∈ W 1,p(x)(Rn).

In the remaining part of this article we will adapt the proof of [18, Theo-
rem 4.5] by J. Kinnunen and V. Latvala to variable exponent spaces. For simplic-
ity of exposition, we split their result into two parts, Theorems 4.6 and 4.12. The
proof of the first of these is nearly the same as in the fixed exponent case.
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4.5. Proposition. Suppose p satisfies condition M . Then for every λ > 0
and every u ∈ W 1,p( · )(Rn) we have

Cp( · )

(

{x ∈ Rn : Mu(x) > λ}
)

≤ c max

{
∥

∥

∥

∥

u

λ

∥

∥

∥

∥

1,p( · )

,

∥

∥

∥

∥

u

λ

∥

∥

∥

∥

p+

1,p( · )

}

.

Proof. Since Mu is lower semi-continuous, the set {x ∈ Rn : Mu(x) > λ}
is open for every λ > 0. By Proposition 4.4 we can use Mu/λ = Mu/λ as a test
function for the capacity. This yields, by [12, Theorem 1.3],

Cp( · )

(

{x ∈ Rn : Mu(x) > λ}
)

≤ %1,p( · )

(

M
u

λ

)

≤ max

{
∥

∥

∥

∥

M
u

λ

∥

∥

∥

∥

1,p( · )

,

∥

∥

∥

∥

M
u

λ

∥

∥

∥

∥

p+

1,p( · )

}

.

Now the claim follows by Proposition 4.4 and [4, Theorem 1.5].

4.6. Theorem. Suppose p satisfies condition M and let u ∈ W 1,p( · )(Rn) .
Then there exists a set E ⊂ Rn of zero p( · ) -capacity such that

u∗(x) = lim
r→0

∫

−
B(x,r)

u(y) dy

exists for every x ∈ Rn \ E . The function u∗ is the p( · ) -quasicontinuous repre-

sentative of u .

Proof. Since smooth functions are dense in W 1,p( · )(Rn) [25, Theorem 3], we
can choose a sequence {ui} of continuous functions in W 1,p( · )(Rn) with ‖u −
ui‖p( · ) ≤ 2−2i . For i = 1, 2, . . . denote

Ai =
{

x ∈ Rn : M (u − ui)(x) > 2−i
}

, Bi =
∞
⋃

j=i
Aj and E =

∞
⋂

j=1
Bj.

Proposition 4.5 implies that Cp( · )(Ai) ≤ c2−i , the subadditivity of Cp( · ) implies
that Cp( · )(Bi) ≤ c21−i and [15, Theorem 3.2(vi)] implies that Cp( · )(E) = 0.

We next consider the relationship between u and ui outside these sets. We
have

|ui(x) − uB(x,r)| ≤

∫

−
B(x,r)

|ui(x) − ui(y)| dy +

∫

−
B(x,r)

|ui(y) − u(y)| dy.

Since ui is continuous, the first term in the upper bound goes to zero with r and
so we get

lim sup
r→0

|ui(x) − uB(x,r)| ≤ M (ui − u)(x).
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Thus we have lim supr→0 |ui(x) − uB(x,r)| ≤ 2−i for x ∈ Rn \ Ai . It follows that
{ui} converges uniformly on Rn \ Bj for every j > 0. Denote the limit function,
which is continuous in every Bj , by u∗ . Then

lim sup
r→0

|u∗(x) − uB(x,r)| ≤ |u∗(x) − ui(x)| + lim sup
r→0

|ui(x) − uB(x,r)|.

As i → ∞ the right-hand side of the previous equation tends to 0 for x ∈ Rn\Bk .
Since the left-hand side does not depend on i , this means that it equals 0, so that
u∗(x) = limr→0 uB(x,r) for all x ∈ Rn \ Bk . Since this holds in the complement
of every Bk , it holds in the complement of E as well. Since E has capacity zero,
we are done with the existence part. Since u∗ is continuous in every Rn \Bk , the
claim regarding quasicontinuity is clear.

To prove the other part of Theorem 4.5 from [18] we need some auxiliary
lemmata. The idea of these lemmata is that the log-Hölder continuity implies
that we can treat p as a constant locally, and this incurs a penalty of only a
multiplicative constant.

4.7. Lemma. Suppose that p is log -Hölder continuous. For r ≤ 1 we have

Cp( · )

(

B(x, r)
)

≤ c

∫

B(x,r/5)

r−p(y) dy,

where c depends on p and n .

Proof. Let u be a function which equals 1 on B(x, r), 2 − |y − x|/r on
B(x, 2r) \ B(x, r) and 0 otherwise. Then u is a suitable test function for the
capacity of B(x, r). Using Lemma 4.3 for the last inequality, we find that

Cp( · )

(

B(x, r)
)

≤ %1,p( · )(u) ≤ |B(x, 2r)|+

∫

B(x,2r)

r−p(y) dy

≤ 2

∫

B(x,2r)

r
−p+

B(x,2r) dy = 2r
−p+

B(x,2r) |B(x, 2r)|

≤ 2 · 10nr
p−

B(x,2r)
−p+

B(x,2r)

∫

B(x,r/5)

r
−p−

B(x,2r) dy

≤ C(p)10n

∫

B(x,r/5)

r−p(y) dy.

4.8. Lemma. Suppose that p is log -Hölder continuous. Then there exists a

constant c ≥ 1 such that

1

c
≤ lim inf

r→0
rp(x)

∫

−
B(x,r)

r−p(y) dy ≤ lim sup
r→0

rp(x)

∫

−
B(x,r)

r−p(y) dy ≤ c

for every x ∈ Rn .
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Proof. We have

lim sup
r→0

rp(x)

∫

−
B(x,r)

r−p(y) dy ≤ lim sup
r→0

sup
y∈B(x,r)

rp(x)−p(y) ≤ c,

where the second inequality follows from Lemma 4.3. The lower bound is derived
similarly.

The following lemma corresponds to Lemma 4.3 of [18]. The proof is also
quite similar, although some extra work is needed to take care of the variability
of the exponent.

4.9. Lemma. Suppose that p is log -Hölder continuous and let u ∈ W 1,p( · )(Rn) .
Then

Cp( · )

({

x ∈ Rn : lim sup
r→0

rp(x)

∫

−
B(x,r)

|∇u(y)|p(y) dy > 0

})

= 0.

Proof. Let δ ∈ (0, 1), ε > 0 and

Eε =

{

x ∈ Rn : lim sup
r→0

rp(x)

∫

−
B(x,r)

|∇u(y)|p(y) dy > ε

}

.

For every x ∈ Eε there exists an arbitrarily small rx ∈ (0, δ) such that

rp(x)
x

∫

−
B(x,rx)

|∇u(y)|p(y) dy > ε.

By choosing smaller rx if necessary, we may, on account of Lemma 4.8 and the
previous inequality, assume that

(4.10)

∫

B(x,rx)

|∇u(y)|p(y) dy >
ε

c

∫

B(x,rx)

r−p(y) dy,

where c does not depend on x or rx .
By the Vitali covering theorem there exists a countable subfamily of pair-wise

disjoint balls B(xi, rxi
) such that

Eε ⊂
∞
⋃

i=1

B(xi, 5rxi
).

Denote ri = rxi
and Bi = B(xi, ri). By subadditivity and Lemma 4.7 we conclude

that

Cp( · )(Eε) ≤
∞
∑

i=1

Cp( · )

(

B(xi, 5ri)
)

≤ c

∞
∑

i=1

∫

Bi

r
−p(y)
i dy.
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It follows from this and (4.10) that

(4.11) Cp( · )(Eε) ≤
c

ε

∞
∑

i=1

∫

Bi

|∇u(y)|p(y) dy =
c

ε

∫

⋃

∞

i=1
Bi

|∇u(y)|p(y) dy.

As in [18] we then find, by the disjointness of the balls Bi , that

∣

∣

∣

∞
⋃

i=1
Bi

∣

∣

∣
=

∞
∑

i=1

|Bi| <

∞
∑

i=1

r
p(xi)
i

ε

∫

Bi

|∇u(y)|p(y) dy ≤
δp−

ε

∫

Rn

|∇u(y)|p(y) dy.

Hence
∣

∣

⋃

∞

i=1 Bi

∣

∣ → 0 as δ → 0, which by (4.11) implies that Cp( · )(Eε) =
0 for every ε > 0. Therefore it follows by subadditivity that Cp( · )(E0) =

Cp( · )

(
⋃

i∈N
E1/i

)

= 0, which was to be shown.

In the next theorem we denote by p∗ the pointwise Sobolev conjugate of p ,
i.e. p∗(x) = np(x)/

(

n − p(x)
)

, for p(x) < n .

4.12. Theorem. Suppose p satisfies condition M and let u ∈ W 1,p( · )(Rn) .
Then there exists a set E ⊂ Rn , Cp( · )(E) = 0 , such that

lim
r→0

∫

−
B(x,r)

|u(y) − u∗(x)|p
∗(y) dy = 0

for every x ∈
{

x ∈ Rn : p(x) < n
}

\ E .

Proof. Define

E =

{

x ∈ Rn: lim sup
r→0

rp(x)

∫

−
B(x,r)

|∇u(y)|p(y) dy > 0

}

.

Then Cp( · )(E) = 0 by Lemma 4.9. We show that

lim sup
r→0

rp(x)

∫

−
B(x,r)

|∇u(y)|p(y) dy = 0

⇒

lim sup
r→0

∫

−
B(x,r)

|u(y) − uB(x,r)|
p∗(y) dy = 0

when p(x) < n , from which the claim clearly follows by Theorem 4.6.
Diening [7, Theorem 5.2] has shown that condition M implies the Sobolev

inequality. Harjulehto and Hästö [14, Corollary 2.10] showed that condition M
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implies the Poincaré inequality. Combining these we get the Sobolev–Poincaré
inequality

‖u − uB‖Lp∗( · )(B) ≤ c‖u − uB‖W 1,p( · )(B) ≤ c‖∇u‖Lp( · )(B),

where we denoted B = B(x, r). From this and [12, Theorem 1.3] we conclude that

%p∗( · )(u − uB)1/p∗−

B ≤ c%p( · )(∇u)1/p+
B

(where the modulars are taken in B only). Hence
∫

−
B

|u(y) − uB |p
∗(y) dy = cr−n%p∗( · )(u − uB)

≤ cr−n%p( · )(∇u)p∗−

B
/p+

B

= cr(n−p(x))p∗−

B
/p+

B
−n

(

rp(x)

∫

−
B

|∇u(y)|p(y) dy

)p∗−

B
/p+

B

.

We see that it suffices to show that r(n−p(x))p∗−

B
/p+

B
−n ≤ c as r → 0. Since

p∗−B = (p−

B)∗ we see that this is equivalent to

n

(

n − p(x)

n − p−

B

p−

B

p+

B

− 1

)

log r ≤ c

at the same limit. We have
n − p(x)

n − p−

B

p−

B

p+

B

− 1 ≥
n − p+

B

n − p−

B

p−

B

p+

B

− 1 =
n

p+

B(n − p−

B)
(p−

B − p+

B).

Thus

lim sup
r→0

n

(

n − p(x)

n − p−

B

p−

B

p+

B

− 1

)

log r ≤
n2

p(x)
(

n − p(x)
) lim sup

r→0
(p−

B − p+

B) log r ≤ c,

where the last inequality is just Diening’s condition from Lemma 4.3.

4.13. Remark. It again suffices to assume that u ∈ W
1,p( · )
loc (Rn). It seems

likely that we can also replace the assumptions on p by corresponding local ones,
using the techniques of [16], but we will not get into that here.

4.14. Remark. If p(x) > n then there exists rx > 0 such that

W 1,p( · )
(

B(x, rx)
)

↪→ W 1,n+(p(x)−n)/2
(

B(x, rx)
)

and hence u is continuous in a neighborhood of x , so that

ess sup
y∈B(x,r)

|u(y) − u∗(x)| → 0

as r → 0. For p(x) = n the theorem gives

lim
r→0

∫

−
B(x,r)

|u(y) − u∗(x)|q dy = 0

outside the set E for any finite q . In this case we do not have zero supremum
norm even in the fixed exponent case.
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