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Abstract. The uniformization problem is to find equations for the algebraic curve associated
to a given hyperbolic surface. If one can describe corresponding group actions both on the spaces
of algebraic curves and hyperbolic surfaces, the whole orbits can be uniformized at the same time.
We study here the action of a group generated by half-twists on the space of hyperbolic surfaces
of genus 2 with a non-trivial involution and describe the corresponding action on the equations for
the corresponding algebraic curves.

1. Introduction

The uniformization theorem of Poincaré and Koebe allows to assert that any
compact connected Riemann surface of genus g > 1 is conformally equivalent to a
quotient of the upper half-plane H by a Fuchsian group, i.e. a discrete subgroup of
PSL2(R). On the other hand, a Riemann surface is also an algebraic curve defined
by an equation. The classical uniformization problem is to relate explicitly the two
descriptions.

In this context, a new approach to tackle this question was initiated in [6],
and developed in [2], [8] and [1].

It consists first in working inside families of surfaces with the idea that surfaces
tiled with the same pattern by the same type of polygon must have equations of
the same form. Then, in defining groups actions on those families. The two groups,
one acting on the hyperbolic surfaces and the other on the algebraic curves, are
not necessarily the same but there exists a correspondence between their actions.
With this approach, whole orbits can be uniformized at the same time.

In this article, we generalize the D5 -action on the space of real genus 2 M -

curves with a real involution M
(2,3,0)
R

(Z/2 × Z/2) described by Buser and Silhol
in [6] to the complex family F2 of those Riemann surfaces having a non-trivial
involution.

There are, nevertheless, two major differences in the way we tackle the prob-
lem in this paper. The first difference is in the method: we use a quotient, namely
the Riemann sphere ramified over 5 points, while the authors considered coverings
to define the D5 -action in [6]. Secondly, the complex situation is less rigid than the
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real one, in particular in [6] the hyperbolic description was guided by the natural
choice of a pants decomposition and Fenchel–Nielsen coordinates given by the real
structures. Here, we have to work with marked Riemann surfaces in the Teich-
müller space for the hyperbolic description of our group action while the algebraic
one is made with unmarked Riemann surfaces in the moduli space. In particular,
the two groups are different. The first one, GQ , is a group of transformations of a
special type of hyperbolic quadrilateral and can be identified with the Teichmüller
modular group of the sphere with 5 points removed. The second is the symmetric
group S5 , giving the 5 points on the quotient a symmetric role, and naturally
appears as a quotient of GQ . These two actions correspond and we give here this
correspondence in terms of equations and of generators for the Fuchsian groups
(see Theorem 4.6 and Table 3).

The fact that the two groups are different means that GQ intersects the
Teichmüller modular group of genus two surfaces and thus allows to interpret this
difference in terms of Dehn twists.

But more interestingly and surprisingly, the action of the whole group GQ

can be interpreted in terms of half-twists (see Theorem 5.1). Thus, by merging
Theorems 4.6 and 5.1, we obtain the main result of this paper which can be
expressed as the following.

Theorem. Let S be a genus 2 Riemann surface having a non-trivial involu-

tion ϕ .

Then, on the one hand, the Fuchsian group has a set of generators of the form

(e1e3)
2, e3e2e1, e1e3e2, e3e4e1, e1e3e4,

where ei,∈ PSL2(R) , i = 1, . . . , 4, with tr(ei) = 0 , and tr
(∏4

i=1 ei

)
= 0, and on

the other hand the underlying algebraic curve has a normalized equation of the

form

y2 = (x2 − 1)(x2 − a)(x2 − b).

For such a surface S , the half-twists along certain geodesics lead to surfaces

having a non-trivial involution. Sets of generators for the Fuchsian groups and

normalized equations for these surfaces can be explicitly deduced from those of S .

We have, in particular, the correspondence between half-twists and changes

of equation given in Table 1.

The action of GQ = 〈η1, . . . , η4〉 for ηi , i = 1, . . . , 4 as in Table 1, induces an

action of S5 on the underlying algebraic curves.
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word representing

the (oriented) geodesic ordered ei ’s parameters

under which the for the Fuchsian for equations

half-twist is made group

none (e1, e2, e3, e4) (a, b)

η1 (e3e2)
2 (e1, e3, e3e2e3, e4) (1 − a, b(1 − a)/(b − a))

η2 (e4e3)
2 (e1, e2, e4, e4e3e4) (a(1 − b)/(a − b), (1 − b))

η3 (e1e4)
2 (e1e4e1, e2, e3, e1) ((b − a)/(b − 1), b/(b − 1))

η4 (e2e3e4)
2 (e2e3e4e1, e2, e3, e4) (1 − a, 1 − b)

Table 1.

2. Notation and preliminaries

We recall briefly some classical definitions and notation.

Definition 2.1. Let S be a Riemann surface of genus 2, and τ be the
hyperelliptic involution on S .

An automorphism ϕ ∈ Aut(S), with ϕ 6= τ is said to be non-trivial.
For any hyperelliptic Riemann surface S , the hyperelliptic involution τ is in
the center of Aut(S). The reduced automorphism group of S is then

Autr(S) = Aut(S)/τ.

The classification of Riemann surfaces of genus two in terms of their reduced
automorphism group is due to Bolza ([4]). It is summarized Table 2 as well as the
inclusions between families.

Except for F5 , every Riemann surface of genus two having a non-trivial au-
tomorphism has at least one non-trivial involution, and then belongs to F2 .

Let S be a Riemann surface, τ the hyperelliptic involution and ϕ a non-
trivial involution on S . The involutions ϕ and ϕτ have two fixed points, say p1

and p2 for ϕ and q1 and q2 for ϕτ , that satisfy

ϕ(q1) = q2, τ(p1) = p2.

Lemma 2.2. Let S , τ , ϕ as before. The covering pϕ: S −→ S/〈ϕ, τ〉 '
P1(C) is ramified over 5 points among which 3 are the images of the Weierstrass

points and the last two are p = pϕ(p1) = pϕ(p2) and q = pϕ(q1) = pϕ(q2) . Those

five points and the triple of them that lift to the set of Weierstrass points determine

S completely.

Proof. This follows directly from the fact that the surfaces of genus 2, are, as
all the hyperelliptic algebraic curves, determined by their Weierstrass points.
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Family Autr Classical form for the equation

F2 Z/2Z y2 = (x2 − 1)(x2 − a)(x2 − b)

F4 D2 y2 = (x2 − 1)(x2 − a)(x2 − 1/a)

F6 D3 y2 = x6 − 2 a x3 + 1

F12 D6 y2 = x6 + 1

F24 S4 y2 = x(x4 − 1)

F5 Z/5Z y2 = x5 − 1

F4 � r

$$HH
HH

HH

F12

,
�

::uuuuuu

� r

$$II
II

II
F24

?�

OO

� _

��

F2

F5 F6

,
�

::vvvvvv

Table 2.

Corollary 2.3. Let r1, . . . , r5 be five distinct points on P1(C) . There exist

at most 10 different surfaces Sj , τj , ϕj , j = 1, . . . , 10 , in the family F2 such

that the coverings pϕj
are ramified over the ri ’s.

Proof. Each Sj correspond to the choice of a triple {rk, rl, rm} of points
among the ri ’s that lift to the Weierstrass points of Sj .

3. Marked quadrilaterals

Let S , τ , ϕ as before. The hyperbolic structure on S induces, via pϕ , a
structure of hyperbolic sphere with five cone points of angle π on the quotient
S/〈τ, ϕ〉 .

Such a surface can always be obtained by pasting the sides of a hyperbolic
quadrilateral with interior angles adding up to π , as on Figure 1.

α1 + α2 + α3 + α4 = π

α1

α2

α3

α4

e1

e3

e2

e4

l

l1

l2

l3

l4

Figure 1.

This observation induces a particular presentation for the Fuchsian group of
such a surface and motivates the following definitions.
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Definition 3.1. An ordered system Q = (e1, e2, e3, e4), ei ∈ PSL2(R), is a
marked quadrilateral if it satisfies the following conditions:

(i) tr(ei) = 0, i = 1, . . . , 4.

(ii) tr
(∏4

i=1 ei

)
= 0.

(iii) The ei ’s are positioned clockwise around the quadrilateral of vertices are the
fixed points of e1e2e3e4 , e2e3e4e1 , e3e4e1e2 and e4e1e2e3 (see Figure 2).

Remark 3.2. Using trace relations, one can easily show that the quadri-
lateral of (iii) above is a convex domain, delimited by the axes of the hyperbolic
transformations e1e2e3 , e2e3e4 , e3e4e1 , e4e1e2 . As it is uniquely determined we
will also denote it by Q .

Definition 3.3. We will denote by Q be the set of all marked quadrilaterals
modulo the relation

(e1, e2, e3, e4) ∼ (e′1, e
′
2, e

′
3, e

′
4) ⇐⇒ ∃ γ ∈ PSL2(R), e′i = γeiγ

−1, i = 1, . . .4.

Definition 3.4. Given a surface S0 of signature (0; 2, 2, 2, 2, 2), a quadrilat-

eral fundamental domain for S0 is a marked quadrilateral Q = (e1, e2, e3, e4) such
that Γ0(Q) = 〈e1, e2, e3, e4〉 is a Fuchsian group for S0 .

We will denote by QS0
the set of all quadrilateral fundamental domains for

S0 under the relation ∼ .
Conversely, given Q ∈ Q, will denote by S0(Q) the surface H/Γ0(Q) =

H/〈e1, e2, e3, e4〉 .
Remarks 3.5. 1. As the ei ’s are elliptic transformations of order 2, they

completely determine their fixed points. So we may also denote by ei the fixed
point of ei (notably on figures).

2. As a marked quadrilateral is defined up to direct isometry and separates
into two triangles, it is also characterized by the following set of five lengths:

– the lengths li of the i -th sides given by:

cosh
(

1
2
li
)

= 1
2
| tr(ei+1ei+2ei+3)|,

– the length l of the first diagonal given by

cosh
(

1
2
l
)

= 1
2
| tr(e1e2e3e4e3e4e1e2)| = 1

2
|(tr(e1e2))

2 + (tr(e3e4))
2 − 2|.
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3.1. Transformations of a marked quadrilateral

Definition 3.6. (1) We define the following transformations on Q:
(i) the circular permutation:

σ0: (e1, e2, e3, e4) −→ (e2, e3, e4, e1),

(ii) σ1 (see Figure 2):

σ1(e1, e2, e3, e4) −→ (e3, e2, e3e4e1e2, e3e4e3).

(2) We denote by GQ , the group

GQ = 〈σ0, σ1〉

e1

e2

e3

e4

e1e2e3e4

e2e3e4e1 e3e4e1e2

e4e1e2e3

−→

e
′

2
= e2

e
′

1
= e3

e
′

3 = e3e4e1e2

e
′

4 = e3e4e3

Figure 2. The transformation σ1 .

Remarks 3.7. Let S0 be a hyperbolic surface of genus 0 with five cone
points of angle π . Then σ0 and σ1 preserve QS0

.
The transformations σ0 and σ1 are of different nature. While σ0 only oper-

ates on the marking of Q but leaves the unmarked quadrilateral unchanged, σ1

is mainly devoted to changing the choice of the point among the five cone points
on the sphere S0 which correspond to the vertices of Q .

For further use, we introduce the following transformations in GQ :
Note that σ2 and σ3 are of infinite order and that they do not have fixed

points in GQ .

Proposition 3.8. Let S0 be a hyperbolic surface of signature (0; 2, 2, 2, 2, 2) .
GQ acts transitively on QS0

.
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σ2 = σ
2

0(σ2

1σ
3

0)3σ2

0

σ2(e1, e2, e3, e4) = (e2, e2e1e2, e3, e4)

e1

e2

e2e1e2

e3

e4

σ3 = (σ0σ1)
3

σ3(e1, e2, e3, e4) = (e1, e2, e3e4e3, e3)e1

e2 e3e4e3

e3

e4

Proof. Let Q and Q′ be two quadrilaterals of QS0
. We build a sequence of

quadrilaterals of QS0
using elements of GQ .

Let a1, . . . , a4 be the four geodesic arcs in S0 corresponding to the sides of Q .
The ai ’s are oriented such that they all have the same source.

Start, if necessary, with a transformation of the form σ1σ
k
0 leading to a quadri-

lateral Q1 , such that the vertices of Q and Q1 correspond to the same point of S0 .

For each ai , consider the number ki,Q1
of connected components of ai ∩

◦
Q1 .

Let a1,1, . . . , a1, k1,Q1
be the corresponding connected component.

We cut S0 along the sides of Q1 .
We treat the ai ’s in the order given by the marking.
For a1 :
If k1,Q1

= 0, then a1 corresponds to one of the sides of Q1 , and we go to a2 .
If k1,Q1

6= 0, we give the arcs a1,1, . . . , a1,k1,Q1
the a1 ’s orientation.

Using a transformation of the form σk
0 , we get a quadrilateral Q2 such that

the source of a1,1 in Q2 is at the intersection of the first and the fourth sides.
Its end point is then necessarily on the second or the third side of Q2 . Using
σ2 in the first case and σ3 in the second one, we build a quadrilateral Q3 such

that the number k1,Q3
of connected components of a1∩

◦
Q3 is strictly smaller than

k1,Q2
= k1,Q1

. Assume that one of the a1,k ’s, say a1,k0
penetrates into the triangle

of sides a , b , c , where a is a part of a1,1 , b is a part of the side of Q3 which is
not a side of Q3 , and c is a part of the side of Q2 which is not a side of Q3 . Then,
the arc a1,k0

must leave this triangle through b or c , the a1,k ’s being disjoint.
Thus, the arc is at the same time cut and pasted once. Therefore the number of
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connected components does not increase. As this situation is possible only in the
case k0 > 1, we have k1,Q3

< k1,Q2
.

We treat similarly the path a2, a3, a4 , each construction respecting the pre-
ceding ones.

Lemma 3.9. Given a generic surface S0 of signature (0; 2, 2, 2, 2, 2) , GQ

operates without fixed points on QS0
.

Proof. Let Q ∈ QS0
and σ ∈ GQ such that σ · Q = Q . Then σ induces an

isometry on S0 .

3.2. Identification of GQ with the modular group Γ0,5. The group GQ

acts on sets of four generators of Fuchsian groups of a sphere with five punctures.
It is then naturally linked with the modular group of a sphere with five points
removed, Γ0,5 . More precisely, given a transformation σ ∈ GQ , one can asso-
ciate the isotopy class of hσ to σ , where hσ is a homeomorphism of the sphere
preserving the set of five points and corresponding to the deformation from any
quadrilateral Q to σ(Q) (the quadrilateral being simply connected) mapping the
interior onto the interior and the i -th side onto the i -th side.

Define the following transformations of GQ :

η1: (e1, e2, e3, e4) −→ (e1, e3, e3e2e3, e4),

η2: (e1, e2, e3, e4) −→ (e1, e2, e4, e4e3e4),

η3: (e1, e2, e3, e4) −→ (e1e4e1, e2, e3, e1),

η4: (e1, e2, e3, e4) −→ (e2e3e4e1, e2, e3, e4).

Then, with the topological interpretation below, if r1, . . . , r4 are the points of
S0(Q) corresponding to the middle of the sides and r5 is the point corresponding
to the vertices, each ηi corresponds to an homeomorphism ϕi where ϕi is the
identity outside a disk Di enclosing ri+1 and ri+2 (subscript modulo 5) and
ϕi exchanges ri+1 and ri+2 . According to J. S. Birman (see [3, Theorem 4.5,
p. 164 and Remark, p. 165]), this means that the set of geometric transformations
{η1, η2, η3, η4} is a set of generators for Γ0,5 with the following full list of relations:

ηiηj = ηjηi, |i − j| > 2,

ηiηi+1ηi = ηi+1ηiηi+1,

η1η2η3η
2
4η3η2η1 = 1,

(η1η2η3η4)
5 = 1.

We remark without expanding the computations that the following correspon-
dence between the σi ’s and the ηi ’s allows one to find a full list of relations for
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Γ0,5 with the minimal set of generators {σ0, σ1} :

η1 = σ0(σ
2
1σ

3
0)

3σ3
0,

η2 = (σ2
1σ

3
0)

3,

η3 = σ3
0(σ2

1σ
3
0)3σ0,

η4 = σ2
0σ3σ2σ

3
0σ1.

σ0 = η2
4η3η2η1,

σ1 = η−1
2 η−1

3 η−2
4 η−1

2 η4,

4. The genus two coverings

4.1. The surface SQ . Given Q ∈ Q, we construct a genus 2 cover
SQ of the sphere S0(Q) as shown in Figure 3. In other words, we construct
a set of generators for a Fuchsian group ΓQ of signature (2, 0), namely ΓQ =
〈(e1e3)

2, e3e2e1, e1e3e2, e3e4e1, e1e3e4〉 , from the generators (e1, e2, e3, e4) of the
Fuchsian group Γ0(Q) of S0(Q). Note that the Weierstrass points of the sur-
face SQ correspond to the conjugacy classes in ΓQ of the centers of the elliptic
transformations

e2, e1e4e1, e4, e1e2e1, e1e2e3e4, e2e3e4e1

(and to the middles of the sides labelled 2, 3, 4, 5, 7, 8, 9, 10 and the vertices of
the polygon on Figure 3).

e1 e3

e2

4

e3e4e3

5

e1e4e1

3

e1e2e1

9

e4

e1e3e1

e3e2e3

1

62

7

8

10

1—6, 2—4, 3—5, 7—9, 8—10

Figure 3.

Note also that SQ has two non-trivial involutions, the fixed points of the
first being the conjugacy classes of e1 , and e3e1e3 , those of the second being e3

and e1e3e1 .
By analogy with Lemma 2.2, we have:
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Proposition 4.1. Let S be a surface of F2 with a non-trivial involution ϕ
and S0 = S/〈ϕ, τ〉 . Choose Q ∈ QS0

such that the images p and q of the fixed

points of ϕ and ϕτ via pϕ are on the first and the third side of Q .

Then S is isometric to SQ .

Proposition 4.2. The map Q 3 Q 7−→ SQ is an injection of Q into the

Teichmüller space of Riemann surfaces of genus 2 , T2 .

Proof. We choose Q0 = (e0
1, e

0
2, e

0
3, e

0
4) ∈ Q as a quadrilateral of reference. As

a quadrilateral is simply connected, for any Q ∈ Q, there exists, up to isotopy, a
unique homeomorphism ηQ: Q0 −→ Q such that ηQ ◦ e0

i = ei .
This condition ensures that ηQ is extendable to a homeomorphism η̂Q such

that

Q0� _

��

ηQ // Q0� _

��
SQ0

η̂Q // SQ

is commutative.
The couple (SQ, η̂Q) is then a marked Riemann surface.
The injectivity follows from the construction of η̂Q .

We will denote

F2(Q) = {SQ, Q ∈ Q} ⊂ T2.

Corollary 4.3. The induced action of GQ on F2(Q) is generically fixed point

free.

Remark 4.4. While F2 is a subspace of the space of isometry classes of
Riemann surfaces of genus 2, M2 , F2(Q) is a subspace of the Teichmüller space
of genus 2, T2 . It is well known that the moduli space M2 is a quotient of T2 by
the modular group, generated by Dehn twists. We will be concerned by this point
of view in Section 5.

4.2. Equations for surfaces in F2(Q)—induced action on F2 . The
classical normalization of the equations for the surfaces of F2 under the form
y2 = P (x) is the one given in Table 2. More precisely, given a surface S ∈ F2 , we
choose the involutions ϕ and ϕτ so that they lift x 7−→ −x . We also impose that
one of the Weierstrass points has coordinates (1, 0).

This choice is equivalent to the choice of a (global) coordinate x on the
quotient S/〈ϕ, τ〉 such that

(1) the images of the fixed points of ϕ and ϕτ via pϕ are mapped onto 0 and ∞ ,

(2) the image of a pair of the Weierstrass points exchanged by ϕ and ϕτ is mapped
via pϕ onto 1.
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Given such an x , the remaining two points of S/〈ϕ, τ〉 are mapped upon a
and b and

(4.4) y2 = (x2 − a)(x2 − 1)(x2 − b)

is an equation of S .
Note that conditions (1) and (2) do not determine precisely the choice of the

coordinate x , since x/a , x/b , 1/x , a/x , and b/x would also fufill them.
As we want to describe the action of GQ on F2(Q) in terms of equations, we

will, given a surface SQ , make the choice of x precise by taking into account the
geometry of Q as follows.

Let Q ∈ Q and let S0 = S0(Q) the genus 0 surface obtained by gluing the
sides of Q . We then choose a coordinate xQ depending on the position of the cone
points of S0 on Q . We denote by r1,Q, . . . , r5,Q these points in the order given
by the marking of Q (in other words, if Q = (e1, e2, e3, e4), then ri,Q , 1 6 i 6 4
is the conjugacy class of ei in Γ0(Q) = 〈e1, e2, e3, e4〉 , and r5,Q is the conjugacy
class of e1e2e3e4 ).

e1 e3

e2

e4

e1e2e3e4

r1

r2
r4

r3

r5

Figure 4.

More precisely, we choose xQ such that:

(4.5) xQ(r1,Q) = 0, xQ(r3,Q) = ∞, xQ(r5,Q) = 1.

We then call the couple

(a, b) =
(
xQ(r2,Q), (xQ(r4,Q)

)

normalized equation parameters for SQ .

Let now Q ∈ Q, and σ ∈ GQ . As S0(Q) and S0

(
σ(Q)

)
are isometric, we

have
{r1,Q, . . . , r5,Q} = {r1,σ(Q), . . . , r5,σ(Q)}.



318 Aline Aigon-Dupuy

This means that σ acts as a permutation on the set of the cone points of S0 .
More precisely, we associate to σ the permutation σ̄ ∈ S5 defined for all Q ∈ Q
and i ∈ {1, . . . , 5} by

ri,σ(Q) = rσ̄−1(i),Q.

The map σ 7−→ σ̄ is a group homeomorphism as we have for all Q ∈ Q and
i ∈ {1, . . . , 5}

ri,σ′σ(Q) = rσ̄′−1(i),σ(Q) = rσ̄−1σ̄′−1(i),σ(Q) = r
(σ′σ)

−1

(i),σ(Q)
.

The image is the subgroup of S5 generated by the images of the generators σ0

and σ1 , for which we have

σ0.(r1,Q, r2,Q, r3,Q, r4,Q, r5,Q) = (r2,Q, r3,Q, r4,Q, r1,Q, r5,Q); thus σ̄0 = (4, 3, 2, 1),

σ1.(r1,Q, r2,Q, r3,Q, r4,Q, r5,Q) = (r3,Q, r2,Q, r5,Q, r4,Q, r1,Q); thus σ̄1 = (1, 5, 3).

The map is surjective, since (4, 3, 2, 1) and (1, 5, 3) together generate S5 . Its
kernel is the subgroup HQ of those transformations such that for all Q ∈ Q and
i ∈ {1, . . . , 5}

ri,Q = ri,σ(Q).

The normalized equation parameters for SQ depend only on the position
of the cone points on Q . Then, for σ ∈ GQ , it is σ̄ ∈ S5 rather than σ
that acts on them. This action is as follows: the coordinates xQ and xσ(Q)

on S0(Q) = S0(σ(Q)) are exchanged by the unique transformation Aσ̄,Q of P1

mapping xQ(r1,σ(Q)) onto 0, xQ

(
r3,σ(Q)

)
onto ∞ and xQ

(
r1,σ(Q)

)
onto 1, i.e.,

Aσ̄,Q is defined by:

Aσ̄,Q(z) =

(
z − xQ(r1,σ(Q))

z − xQ(r3,σ(Q))

)(
xQ(r5,σ(Q)) − xQ(r3,σ(Q))

xQ(r5,σ(Q)) − xQ(r1,σ(Q))

)

=

(
z − xQ(rσ̄−1(1),Q)

z − xQ(rσ̄−1(3),Q)

)(
xQ(rσ̄−1(5),Q) − xQ(rσ̄−1(3),Q)

xQ(rσ̄−1(5),Q) − xQ(rσ̄−1(1),Q)

)

and we have

σ̄.
(
xQ(r2, Q), xQ(r4, Q)

)
=

(
xσ(Q)

(
r2, σ(Q)

)
, xσ(Q)

(
r4, σ(Q)

))

=
(
Aσ̄,Q

(
xQ(r2,σ(Q))

)
, Aσ̄,Q

(
xQ(r4,σ(Q))

))

=
(
Aσ̄,Q

(
xQ(rσ̄−1(2),Q)

)
, Aσ̄,Q

(
xQ(rσ̄−1(4),Q)

))
.

For the generators σ0 and σ1 of GQ , and a couple (a, b) of normalized equa-
tion parameters, we have

σ̄0 = (4, 3, 2, 1),

Aσ̄0
(z) =

z − a

z − b

1 − b

1 − a
,

σ̄0.(a, b) =

(
1 − b

1 − a
,
a (1 − b)

b (1 − a)

)
,

σ̄1 = (1, 5, 3),

Aσ̄1
(z) =

1

1 − z
,

σ̄1.(a, b) =

(
1

1 − a
,

1

1 − b

)
.

We have thus proved:
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Theorem 4.6. The action of GQ on F2(Q) (⊂ T2) induces an action of

the symmetric group S5 on F2 given in terms of parameters of equations by the

generators

σ̄0: (a, b) 7−→
(

1 − b

1 − a
,
a (1 − b)

b (1 − a)

)
, σ̄1 : (a, b) 7−→

(
1

1 − a
,

1

1 − b

)
.

According to Corollary 2.3, given a generic surface of F2 , its quotient under
its automorphism group has ten different genus two covers in F2 . A representative
of each of these isomorphy classes is given in Table 3.

σ σ̄ σ̄.(a, b)

Id Id (a, b)

σ0 (4, 3, 2, 1) ((1 − b)/(1 − a), a(1 − b)/b(1 − a))

σ1 (1, 5, 3) (1/(1− a), 1/(1− b))

σ2
1 (1, 3, 5) ((−1 + a)/a, (−1 + b)/b))

σ1σ0 (1, 4)(2, 5, 3) ((−1 + a)/(−b + a), (b(−1 + a)/(−b + a))

(σ1σ0)
2 (2, 3, 5) (1/(1− a),−b/(−b + a))

(σ1σ0)
3 (1, 4) ((b − a)/(b − 1), b/(b − 1))

σ2
1σ0 (2, 3)(1, 4, 5) ((b − a)/(b − 1), (a − b)/(a(b − 1))

σ2 = σ2
0(σ2

1σ3
0)3σ2

0 (1, 2) (a/(a − 1), (a − b)/(a − 1))

σ3 = (σ0σ1)
3 (3, 4) (a(1 − b)/(a − b), 1 − b)

Table 3.

Remarks 4.7. (1) While the action of GQ on F2(Q) is generically fixed
point free, the induced action of S5 on F2 is such that there exists a subgroup of
S5 , namely S{1,3} × S{2,4,5} , that preserves isometry classes.

(2) Call KQ the group of transformations σ such that σ̄ ∈ S{1,3} × S{2,4,5} .
It is neither normal in GQ nor contains a normal subgroup of GQ . Then S5 is the
smallest group whose action on the set of genus two Riemann surfaces ramified
over 5 points of P1 is transitive.

Table 4 gives a representative in KQ for each element of S1,3 × S2,4,5 .

σ σ̄ σ̄.(a, b) σ σ̄ σ̄.(a, b)

Id Id (a, b) σ0σ1σ0 (1, 3)(2, 5) (a, a/b)

σ2σ0σ2σ
−1
0 σ2 (2, 4) (b, a) σ0σ

2
1σ0 (1, 3)(4, 5) (b/a, b)

σ2
0 (1, 3)(2, 4) (1/b, 1/a) σ2σ0σ2σ

−1
0 σ2σ

−1
0 σ1σ0 (2, 5) (a/b, 1/b)

σ2
0σ2σ0σ2σ

−1
0 σ2 (1, 3) (1/a, 1/b) σ2σ0σ2σ

−1
0 σ2σ

−1
0 σ2

1σ0 (4, 5) (1/a, b/a)

σ−1
0 σ1σ0 (2, 5, 4) (1/b, a/b) σ2σ0σ2σ

−1
0 σ2σ0σ1σ0 (1, 3)(2, 4, 5) (a/b, a)

σ−1
0 σ2

1σ0 (2, 4, 5) (b/a, 1/a) σ2σ0σ2σ
−1
0 σ2σ0σ

2
1σ0 (1, 3)(2, 5, 4) (b, b/a)

Table 4.
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Remark 4.8. In [6] the authors identify the space P2 of pairs of pants hav-

ing the lengths of two boundary geodesics equal, with the space M
(2,3,0)
R

(Z/2Z×
Z/2Z) of the real genus 2 curves with 3 real components and whose real automor-
phisms group contains Z/2Z×Z/2Z . More precisely, given a pair of pants P of
P2 , they consider on the one hand the surface SP obtained by gluing 2 copies
of P with twist 0 on each component, and on the other hand the real algebraic
curve whose real components correspond to the boundary components of P . The
surface SP clearly belong to F2 as the isometry exchanging the two boundary
components of same lengths on P can be extended to an isometry ϕ of SP . The
involution ϕ can be normalized in (x, y) 7−→ (−x, y) and the algebraic curve has
equation y2 = (x2 − a)(x2 − 1)(x2 − b), 0 < a < 1 < b < 1.

The authors then define (see [6, 5.17]) a D5 -action on P2 both in terms of
the lengths (l1, l2) (where a pair of pants has one boundary component of length
2l1 , and two of lengths 2l2 ) and of the parameters (a, b) of real equation above.
We will show that our Theorem 4.6 is in fact a generalization of this result.

Let P be the pair of pants given by length (l1, l2). We denote, as in [6], by

l̂1 the length of the common perpendicular to the two boundary components of
length 2 l2 , and by l̂2 that of the common perpendicular arcs to the boundary of
length 2 l1 and each of those of length 2 l2 . Those arcs cut P into two copies of a
right-angled hyperbolic hexagon given by the lengths (l1, l̂2, l2, l̂1, l2, l̂2) in cyclic
order. Each copy of this hexagon can be cut into two isometric mirror pentagons
along the common perpendicular to the sides of length l1 and l̂1 (see Figure 5).

The hyperbolic surface SP is isometric to the surface SQP
where QP is the

quadrilateral obtained from P as on Figure 5.

e1
e2

e3 e4

h1

l̂1

2

l2

l̂2
l1

2

2 l1

2 l2 2 l2

Figure 5.

It is easily shown, using, for example, trigonometric formulas in triangles and
trace relations (given in [5]), that QP is given by the following trace relations:
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(4.8)

2 | tr(e2e3)| = | tr(e1e3)| | tr(e1e2)| = 4 cosh(h1) cosh
(

1
2 l̂1

)
,

2 | tr(e2e3)| = | tr(e1e3)| | tr(e1e2)| = 4 cosh(h1) cosh
(

1
2
l̂1

)
,

2 | tr(e2e3e4)| = | tr(e1e2)| | tr(e3e4e1)| = 4 cosh
(

1
2
l̂1

)
cosh(l2),

2 | tr(e4e1e2e1)| = | tr(e3e4e1)| | tr(e3e1e2)| = 4 cosh(l2) cosh(l̂2),

2 | tr(e4e1e2) | = | tr(e3e4)| | tr(e3e1e2)| = 4 cosh(l̂2) cosh
(

1
2 l1

)
,

2 | tr(e1e4)| = | tr(e3e4)| | tr(e1e3)| = 4 cosh
(

1
2 l1

)
cosh(h1).

Conversely if a marked quadrilateral Q = (e1, e2, e2, e4) verifies relations
(4.8), one can build from Q the right-angled hexagon as in Figure 5 and thus
the pair of pants P . This pair of pants P is then given by the lengths

(l1, l2) =
(
arccosh

(
1
2 | tr(e3e4)|2 − 1

)
, arccosh

(
| tr(e3e4e1)|

))
.

From the algebraic point of view, the fact that the boundary components of
P correspond to the real components of the algebraic curve

y2 = (x2 − 1)(x2 − a)(x2 − b), 0 < a < 1 < b

ensures that the coordinate induced on the quotient SP /〈ϕ, τ〉 via (x, y) 7−→ x2 is
in fact the coordinate xQP

defined by (4.5). In particular (a, b) are the normalized
equation parameters for SQP

.
Let us now consider the transformations of GQ :

%1 : (e1, e2, e3, e4) 7−→ (e2e3e4e1, e2, e1, e1e3e1),

%2 = σ2
0 : (e1, e2, e3, e4) 7−→ (e3, e4, e1, e2).

Straightforward computations show that %1 and %2 preserve relations (4.8),
that %1 is of order 5, and that the subgroup 〈%1, %2〉 of GQ is isomorphic to the
dihedral group D5 .

Using the above correspondence between this description and that given in [6],
and the expression of %̄1 and %̄2 in terms of normalized equation parameters, we
get

%1.(l1, l2) = (2 h1, l̂2),

%2.(l1, l2) = (l̂1, l̂2),

%̄1.(a, b) =

(
b (1 − a)

b − a
,

b

b − a

)
,

%̄1.(a, b) =

(
1

b
,
1

a

)
.

These are exactly the generators for D5 as given in [6].
Finally, we note that in [6], each orbit under D5 consisted of five a priori

different isometry classes (i.e., complex isomorphy classes) while the actions of
GQ and S5 involve 10 different surfaces. The remaining five surfaces were in
fact obtained by transporting the D5 -action from P2 onto a space of Riemann
surfaces with a half-twist. The next section is devoted to showing that the action
of GQ can in fact be completely interpreted in term of half-twists.
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Examples 4.9. We give here some exact examples. The first two surfaces are
isometric, and thus complex isomorphic as algebraic curves, to surfaces that can
be found in [6]. However, for both examples the reduced automorphism groups
contain at least two different involutions. For each of them, the involutions consid-
ered here and in [6] are such that the genus 0 quotient are not isometric. This in
particular implies that the genus two curves described here are not real isomorphic
to those in [6] and that the transformed surfaces are not isometric to those under
the D5 -action in [6].

I have never found Example 3 in the literature.

1. Let Q0 be the totally regular quadrilateral, i.e., such that σ0(Q0) = Q0 ,
defined in terms of length of its sides and first diagonal by:

cosh(li) = 3 + 2
√

2 , cosh(l) = 4
√

2 + 5.

Then the pair (a, b) of normalized equation parameters for SQ0
must satisfy

σ0.(a, b) = (a, b), i.e., a = −i and b = i or a = i and b = −i,

and thus y2 = (x2 − 1)(x4 + 1) is an equation for SQ0
. As an algebraic curve,

SQ0
is complex (but not real) isomorphic to that of equation

y2 = (x2 − 1)
(
x2 −

(
3 + 2

√
2
))(

x2 −
(
3 − 2

√
2

))
.

2. Let Q1 be the quadrilateral such that Q1 = σ1(Q1), then the surface SQ1

must satisfy

σ1.(a, b) = (a, b) i.e., {a, b} =
{

1
2
(1 + i

√
3
)
, 1

2

(
1 − i

√
3
)}

.

3. Let Q2 be the quadrilateral given by (in terms of hyperbolic cosine of
length of the sides and of the first diagonal)

(
3 + 2

√
3 , 3 + 2

√
3 , 3 + 2

√
3 , 3 + 2

√
3 , 3 + 2

√
3

)
.

Note that Q2 is obtained by gluing two copies of a triangle with interior angles(
1
6π, 1

6π, 1
6π

)
we obtain Q2 . This implies that D4 ⊂ Aut(SQ2

) (and thus belongs
to the family F4 of Table 2) and that the surface SQ2

/D4 has an automorphism
of order 3. We then have

b =
1

a
,

a +
1

a
2

= ±i
√

3 .
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From easy but technical considerations (see [1] for more details) on real structures
and on the position of the unit circle on the quotient, one can also deduce that in
fact 1

2(a + 1/a) = i
√

3 , and that the normalized equation parameters are:

(a, b) =

(
a,

1

a

)
=

(
i
(√

3 − 2
)
, i

(√
3 + 2

))
.

As the surface belongs to F4 , one can find only six a priori non-isometric
transformed surfaces under the actions of GQ and S5 . We give them in terms of
length of the quadrilaterals and in normalized equation parameters in Table 5.

Note that the two last surfaces have the real structure induced by x 7−→ 1/x̄ .
Note also the two first ones have the real structures induced by x −→ i (x̄−i)/(x̄+i)
(I wish to thank R. Silhol for this last remark). They are thus isomorphic as they
are conjugated.

One can easily verify that the third and the fourth have no real structures.
Exact examples without real structure are very rare in the literature.

σ cosh(l1) cosh(l2) cosh(l3) cosh(l4) cosh(l)

Id 3 + 2
√

3 3 + 2
√

3 3 + 2
√

3 3 + 2
√

3 3 + 2
√

3

σ0 3 + 2
√

3 3 + 2
√

3 3 + 2
√

3 3 + 2
√

3 11 + 6
√

3

σ1 7 + 4
√

3 1 +
√

3 3 + 2
√

3 5 + 3
√

3 9 + 5
√

3

σ2
1σ0 3 + 2

√
3 1 +

√
3 7 + 4

√
3 5 + 3

√
3 5 + 3

√
3

σ2 11 + 6
√

3 3 + 2
√

3 3 + 2
√

3 3 + 2
√

3 3 + 2
√

3

(σ1σ0)
3 51 + 30

√
3 3 + 2

√
3 3 + 2

√
3 3 + 2

√
3 21 + 12

√
3

σ a b

Id i(
√

3 − 2) i(
√

3 + 2)

σ0 −i(
√

3 + 2) −i(
√

3− 2)

σ1 1 − i(
√

3 + 2) 1 − i(
√

3 − 2)

σ2
1σ0 1 + i(

√
3 − 2) 1 + i(

√
3 + 2)

σ2 1 − i(
√

3 + 2) (1 + i(
√

3 + 2))−1

(σ1σ0)
3 1 + i(

√
3 − 2) (1 − i(

√
3 − 2))−1

Table 5.

5. Twist and half-twists

Recall that KQ is the subgroup of transformations σ in GQ such that σ̄ as
in Section 4.2 belongs to S1,3×S2,4,5 . As for any quadrilateral Q the surfaces SQ

and Sσ(Q) are isometric but correspond to a priori different points in Teichmüller
space T2 , they are linked by an element of the modular group.

On the other hand, KQ ( GQ , and the main result of this section is that GQ is
in fact generated by half-twists in the following sense . Let Q = (e1, e2, e3, e4) ∈ Q.
An oriented geodesic of the surface SQ is represented by a word m(e1, e2, e3, e4) in
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the letters e1, e2, e3 , and e4 up to conjugacy in ΓQ . The word m then represents
a free homotopy class for surfaces in {SQ, Q ∈ Q} .

Let σ ∈ GQ . We will say that σ corresponds to a half-twist (or a Dehn
twist) along a geodesic m if given any Q = (e1, e2, e3, e4), one can go from SQ

to Sσ(Q) by a half-twist (or a Dehn twist) along the geodesic m(e1, e2, e3, e4) of
SQ . Of course, as on the one hand the elements of GQ preserve F2(Q) and on
the other hand only the twists along the geodesics stable under aut(S) preserve
F2(Q), m(ei) has to be conjugated in the Fuchsian group ΓQ to e1m(ei)e1 or
e1m(ei)

−1e1 . We will also consider simultaneous Dehn twists along m(ei) and
e1m(ei)e1 , in the case where the two corresponding geodesics are disjoint.

5.1. Half-twists. We show that the generators for GQ given in Section 3.2
act on F (Q) as half-twists.

Theorem 5.1. The transformation η1: (e1, e2, e3, e4)−→(e1, e3, e3e2e3, e4) is

a half-twist along the geodesic represented by the word (e3e2)
2 = w1(e1, e2, e3, e4) .

The transformation η2: (e1, e2, e3, e4) −→ (e1, e2, e4, e4e3e4) is a half-twist

along the geodesic represented by the word (e4e3)
2 = w2(e1, e2, e3, e4) .

The transformation η3: (e1, e2, e3, e4) −→ (e1e4e1, e2, e3, e1) is a half-twist

along the geodesic represented by the word (e1e4)
2 = w3(e1, e2, e3, e4) .

The transformation η4: (e1, e2, e3, e4) −→ (e2e3e4e1, e2, e3, e4) is a half-twist

along the geodesic represented by the word (e2e3e4)
2 = w4(e1, e2, e3, e4) .

The group GQ = 〈η1, η2, η3, η4〉 is thus generated by half-twists.

Proof. We treat the four cases with the same argument. Namely, for any Q ,
we exhibit pants decompositions Di and D ′

i on SQ and Sηi(Q) , respectively, such
that:

(1) The four pairs of pants obtained by cutting SQ along Di and Sηi(Q) along
D ′

i are isometric.

(2) The three geodesics of Di on SQ and that of D ′
i on Sηi(Q) correspond to

the same decomposition according to the marking: if Q = (e1, e2, e3, e4) and
ηi(Q) = (ei

1, e
i
2, e

i
3, e

i
4), there exist three words in four letters wi = wi

1, w
i
2

and wi
3 such that

Di =
(
wi

1(ej), w
i
2(ej), w

i
3(ej)

)
, D

′
i =

(
wi

1(e
i
j), w

i
2(e

i
j), w

i
3(e

i
j)

)
.

Conditions (1) imply in particular that the length parts of the Fenchel–Nielsen
coordinates of SQ and Sηi(Q) associated to the pants decompositions Di and D ′

i ,
respectively, are the same. With condition (2), this means that the transformation
ηi corresponds to a change of these Fenchel–Nielsen parameters that affects only
their twist part. In other words, ηi corresponds to a product of twist deformations
(not necessarily Dehn twists) along the geodesics of the decomposition Di of the
marked Riemann surface SQ .
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It remains to show that the values of the twist parameters are 0 for wi
2 and

wi
3 and 1

2
for wi

1 .

The first part is achieved by considering geodesics crossing wi
2 and wi

3 and
observing that their word expression is unchanged by ηi .

To show that the twist is 1
2 on wi

1 , we use the underlying algebraic curves
observing that η2

i belongs to KQ while ηi does not.

We take:
for η1 : w1

1(ei) = (e3e2)
2 , w1

2(ei) = e1e2e3 , w1
3(ei) = e2e3e1 ,

for η2 : w2
1(ei) = (e4e3)

2 , w2
2(ei) = e3e4e1 , w2

3(ei) = e1e3e4 ,
for η3 : w3

1(ei) = (e1e4)
2 , w2

2(ei) = e3e1e4 , w2
3(ei) = e1e4e3 ,

for η4 : w4
1(ei) = (e2e3e4)

2 , w4
2(ei) = e2e3e4e3 , w4

3(ei) = e3e2e3e4 .

Now consider the geodesic represented by the word (e2e3e4)
2 . It crosses the

geodesics represented by w1
2(ei) and w1

3(ei) (or w2
2(ei) and w2

3(ei)) but not the
one represented by w1

1(ei) (or w2
1(ei)) and its word expression is invariant by

occurrences of η1 (or η2 ). In particular, its length is unchanged. According to
A. Douady in [7, Exposé 7], this means that the twist parameter along the geodesic
represented by w1

2(ei) and w1
3(ei) when applying η1 (or w2

2(ei) and w2
3(ei) when

applying η2 ) is zero.

The same arguments for the geodesics represented by (e2e1e4)
2 for η3 and

(e2e2)
2 for η4 shows the nullity of the twist parameter on w3

2(ei) and w3
3(ei) when

applying η3 and on w4
2(ei) and w4

3(ei) when applying η4 .

Remark 5.2. Theorems 4.6 and 5.1 together allow to see some half-twists
and Dehn twists on the equation of the associated algebraic curve.

Remark 5.3. As working on groups with representation by generators and
relations is not an easy thing, we do not have a precise idea of what is possible in
terms of twists with elements of GQ .

Note for example that simultaneous half-twists along disjoint geodesics ex-
changed by the non-trivial involutions of surfaces SQ do not correspond to el-
ements of GQ in general. We give an example that illustrates this fact. Let
P ∈ P2 , and SP the genus two surface constructed from P as in (4.8). Accord-
ing to [6], for a generic P , the transforms of SP under GQ either have a real
structure with 2 components or a real structure with 3 components. Now consider
the surface S̃P obtained from SP by making simultaneous half-twists along the
two real components exchanged by the involution of SP . Then, one can show that
for a generic P , SP has no real structure with more than one component, and
thus does not belong to the transforms of SP . See [1] for more details.

5.2. Dehn twists along the sides of the quadrilateral. There are
several motivations to not consider only Dehn twists as double half-twists in our
situation. First, as mentionned in Remark 5.3, simultaneous half-twists are not
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allowed in general while we will see below an example of a correspondence between
an element of GQ and simultaneous Dehn twists.

Another motivation to deal with Dehn twists separately is their difference in
nature with half-twists: the Dehn twists are defined on the topological surface T2

of genus two, while half-twists only make sense on the (marked) Riemann surfaces.
In particular, the composition of different transformations corresponding to half-
twists can only be considered as successive operations on successively different
Riemann surfaces. On the other hand, it makes sense to compose Dehn twists
even along geodesics which are not disjoint on the topological surface T2 .

We will show that in a way the group law in the mapping class group and in
the subgroup KQ and GQ are reversed.

Let Q = (e1, e2, e3, e4) ∈ Q, we choose SQ as a model for T2 . As SQ is a
hyperbolic surface, each homotopy class of a closed path c on T2 is represented by a
unique geodesic of SQ , i.e., the conjugacy class of a word w in the letters e1, e2, e3

and e4 . We will denote by τw(ei
) the change of the marking corresponding to the

twist along c on T2 .
We have then

Proposition 5.4. Let τ = τw1(ei)◦· · ·◦τwk1
(ei) and τ ′ = τm′

1
(ei)◦· · ·◦τm′

k2
(ei)

be two products of Dehn twists along geodesics of SQ , for any Q = (e1, e2, e3, e4)
∈ Q .

Assume that there exist transformations σ and σ′ in KQ such that for any

Q = (e1, e2, e3, e4) ∈ Q ,

Sσ(Q) = τ(SQ) and Sσ′(Q) = τ ′(SQ).

Then

(i) τ ◦ τ ′(SQ) = Sσ′◦σ(Q) .

(ii) For σ̃ ∈ KQ , and τ σ̃ = τw1(σ̃(ei)) ◦ · · · ◦ τwk1
(σ̃(ei)) , we have

τσ̃(SQ) = Sσ̃−1σσ̃(Q).

Proof. It is well known that if α is an homeomorphism of a surface T2 , and
c is a homotopy class of a simple closed path on T2 , then τα(c) = ατcα

−1 (see for
example [3]).

Point (i) is a direct consequence of this fact. We have

τ ◦ τ ′(SQ) = τ ◦
(
τw1(ei) ◦ · · · ◦ τwk′(ei)

)
(SQ)

= τ ◦
((

τ−1 ττ(m′

1
(ei)) τ

)
◦ · · · ◦

(
τ−1 ττ(m′

k′
(ei)) τ

))
(SQ)

=
(
ττ(m′

1
(ei)) ◦ · · · ◦ ττ(m′

k′
(ei))

)
◦ τ (SQ)

=
(
ττ(m′

1
(ei)) ◦ · · · ◦ ττ(m′

k′
(ei))

)
(Sσ(Q))

=
(
τm′

1
(σ(ei)) ◦ · · · ◦ τm′

k′
(σ(ei))

)
(Sσ(Q)) = τ ′

σ(Sσ(Q)) = Sσ′◦σ(Q).
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(ii) As σ̃ belongs to KQ , there exists τ̃ ∈ Γ2 such that τ̃(SQ) = Sσ̃(Q) and
τ̃(wk(ei)) = τ̃(wk(σ̃(ei))), and the result follows from (i).

e1 e3

e2

e4

c1
c2 c

′

2

c3

c4 c
′

4

c1(ei) = (e2e3e4)
2

c2(ei) = (e3e4e1) c
′

2(ei) = e1e3e4

c3(ei) = (e4e1e2)
2

c4(ei) = (e1e2e3) c
′

4
(ei) = (e2e3e1)

Figure 6.

We end by showing in an example how, given a Dehn twist or a prod-
uct of Dehn twists along geodesics exchanged by the involutions of SQ , Q =
(e1, e2, e3, e4), one can recover “by hand” the corresponding transformation of GQ .

Consider the topological model on the right-hand side of Figure 6 for SQ .
Let τ2 = τ(e3e4e1) ◦ τ(e1e3e4) = τ(e1e3e4) ◦ τ(e3e4e1) . We obtain the correspon-

dence between τ2 and the transformation σ = σ0σ2σ3σ
3
0σ1σ0 using the techniques

developed in Section 3 as follows. We first determine the homotopy classes of the
images under τ2 of the geodesics of SQ corresponding to the sides of the dif-
ferent copies of Q . The corresponding geodesics are mapped, in the quotient
S0(Q) = S0

(
σ(Q)

)
, onto the sides of the quadrilateral fundamental domain σ(Q).

Then, if one cuts the quotient along the sides of Q , the sides of σ(Q) appear
as geodesic arcs on Q (see Figure 7).

Figure 7.
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The transformation σ is then built using the technique indicated in the proof
of Proposition 3.8.

Using Theorem 5.1, the twist τ1 along (e2e3e4)
2 corresponds to η2

4 and
Lemma 5.4(ii) we get the following correspondences for the Dehn twists along
geodesics corresponding to the sides of the different copies of Q in SQ :

τ1 = τ(e2e3e4)2 corresponds to
η2
4 : (e1, e2, e3, e4) 7−→ ((e2e3e4)

2, e2, e3, e4),

τ2 = τ(e3e4e1) ◦ τ(e1e3e4) = τ(e1e3e4) ◦ τ(e3e4e1)

corresponds to σ: (e1, e2, e3, e4) 7→ (e1, e3e4e1e2, e3, e4),

τ3 = τ(e4e1e2)2τ
σ2

0
(ei)

1 corresponds to
σ2

0η2
4σ

2
0: (e1, e2, e3, e4) 7−→ (e1, e2, (e4e1e2)

2e3, e4),

τ4 = τ(e1e2e3) ◦ τ(e3e1e2) = τ(e3e1e2) ◦ τ(e1e2e3) = τ
σ2

0
(ei)

2 corresponds to
σ2

0σσ2
0: (e1, e2, e3, e4) 7−→ (e1, e2, e3, e1e2e3e4).
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