
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 29, 2004, 345–356

ON FACTORIZATIONS OF ENTIRE FUNCTIONS

OF BOUNDED TYPE

Liang-Wen Liao and Chung-Chun Yang

Nanjing University, Department of Mathematics

Nanjing, China; maliao@nju.edu.cn

The Hong Kong University of Science & Technology

Department of Mathematics Kowloon, Hong Kong; mayang@ust.hk

Abstract. We prove that if f is a transcendental entire function and the set of all finite
singularities of its inverse function f−1 is bounded, then f(z)+P (z) is prime for any nonconstant
polynomial P (z) , unless f(z) and P (z) has a nonlinear common right factor. Particularly, it is
shown that f(z) + az is prime for any constant a 6= 0.

1. Introduction

A transcendental meromorphic function F is said to be prime (pseudo-prime)
if, and only if, whenever F = f(g) for some meromorphic functions f and g , either
f or g must be bilinear (rational); F is called left-prime (right-prime) if every
factorization of F implies that f is bilinear whenever g is transcendental (g is
linear if f is transcendental). It is easily seen F is prime if and only if F is left-
prime as well as right-prime. We refer the readers to [3] or [4] for an introduction
to the factorization theory of entire and meromorphic functions.

A point a is called a singularity of f−1 (the inverse function of f ), if a is
either a critical value or asymptotic value of f . We denote by sing(f−1) the set
of all finite singularities of f−1 , i.e.

sing(f−1) = {z ∈ C : z is a singularity of f−1}.

We denote by B the class of all entire functions f such that sing(f−1) is bounded
and by S the class of all entire functions f such that sing(f−1) is finite. If f ∈ B
(f ∈ S ), we say f is of bounded (finite) type.

In 1981, Noda [8] proved the following result.

Theorem A. Let f(z) be a transcendental entire function. Then the set

NP (f) = {a | a ∈ C, f(z) + az is not prime}

is at most countable
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As a further study on the cardinality of NP (f), which is denoted by |NP (f)| ,
Ozawa and Sawada [9] posed the following interesting question:

Question. Is there any f for which the exceptional set NP (f) in Theorem A

is really infinitely countable? Or what is the maximal cardinal number of the

exceptional set NP (f)?

Theorem B (Ozawa and Sawada [9]). Let G(w) be an entire function satis-

fying

M
(

R, G(w)
)

≤ exp(KR)

for R ≥ R0 > 0 and for some constant K > 0 . Then either G(ez) + az or

G(ez) + bz is prime if ab(a − b) 6= 0 .

This shows that the cardinality of NP (G(ez)) is at most 2 if M(R, G(w)) ≤
exp(KR) for R ≥ R0 > 0 and for some constant K > 0. As a study of the above
question, Liao–Yang [6] proved the following result.

Theorem C. Let f be a transcendental entire function of finite order in S .

Then for any constant a 6= 0 , f(z) + az is prime, i.e. |NP (f)| ≤ 1 .

Recently, Wang–Yang [13] proved the following theorem.

Theorem D. Let P , Q be nonconstant polynomials, α ∈ B , h a periodic

entire function of order one and mean type, G(z) = P ◦ h ◦ α(z) . If F (z) =
Gn(z) + Q(z) has a factorization F (z) = f

(

g(z)
)

, then g(z) must be a common

right factor of α(z) and Q(z) .

Remark 1. The original statement of Theorem D only requires that h is of
order one. Here we would like to point out that h should be at most order one of
mean type, as it is needed in the proof of Theorem D, Lemma 5 in [13]. However,
f in Lemma 5 should be an entire function of exponential type, i.e. f has order
less than one or order one and mean type; see p. 27 in [4].

Remark 2. Let G be defined in Theorem D. Then Gn(z) + az is prime for
any constant a 6= 0.

As a continuation of the study of our previous work [6], we are able to extend
Theorem C to a large class of functions, namely, functions of bounded type. The
following is our main result.

Theorem. Let f be a transcendental entire function in B , then for any

nonconstant polynomial P (z) , f(z) + P (z) is prime unless f(z) and P (z) has a

nonlinear common right factor.
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2. Some lemmas

Lemma 1 (Rippon and Stallard [11]). Let f be a meromorphic function with

a bounded set of all finite critical and asymptotic values. Then there exists K > 0
such that if |z| > K and |f(z)| > K , then

|f ′(z)| ≥
|f(z)| log |f(z)|

16π|z|
.

Lemma 2 ([5]). Let f be a transcendental entire function, and 0 < δ < 1
4 .

Suppose that at the point z with |z| = r the inequality

(1) |f(z)| > M(r, f)ν(r, f)
−(1/4)+δ

holds. Then there exists a set F in R+ and of finite logarithmic measure, i.e.,

∫

F

dt

t
< +∞

such that

(2) f (m)(z) =

(

ν(r, f)

z

)m
(

1 + o(1)
)

f(z)

holds whenever m is a fixed nonnegative integer and r /∈ F .

Lemma 3 (Baker and Singh [1], also see [2]). Let f and g be two entire

functions. Then

sing
(

(f ◦ g)−1
)

⊂ sing(f−1) ∪ f
(

sing(g−1)
)

.

Lemma 4 (Polya [10]). Let f and g be two transcendental entire functions.

Then

lim
r→∞

M(r, f ◦ g)

M(r, g)
= ∞.

Lemma 5. Let f be a transcendental entire function. Then

M(r, f ′) ≤ M(r, f)2

for a sufficiently large r .

Remark 3. This follows easily from a result of Valiron ([12]):

lim
r→∞

log M(r, f ′)

log M(r, f)
= 1.
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3. Proof of the theorem

Let F (z) = f(z) + P (z), P (z) is a nonconstant polynomial. We first prove
that F is pseudo-prime. Assume that

F (z) = g
(

h(z)
)

,

where g is a transcendental meromorphic function with at most one pole and h
is a transcendental entire function. Thus

(3) f(z) = g
(

h(z)
)

− P (z), f ′(z) = g′
(

h(z)
)

h′(z) − P ′(z).

First we consider the case that g is a transcendental entire function, and then we
discuss two situations.

Case 1: g′ has at least two zeros. Then there exists a zero c of g′ such that
h(z) = c has infinitely many roots {zk}

∞
k=1 . Thus we have

f(zk) = −P (zk) + g(c), f ′(zk) = −P ′(zk).

By Lemma 1, we would have

|P ′(zk)| ≥
|P (zk) − g(c)| log |P (zk) − g(c)|

16π|zk|
,

which leads to a contradiction.

Case 2: g′ has at most one zero. Thus

g′(w) = (w − w0)
neα(w), f ′(z) =

(

h(z) − w0

)n
eα(h(z))h′(z) − P ′(z),

where n is a non-negative integer. Let K(z) = e−α(h(z))/(n+3) , and assume that
Γ is a simple curve tending to infinity such that if z ∈ Γ and |z| = r , then
|K(z)| = M(r, K). By Lemmas 4 and 5, we have, if z ∈ Γ and |z| = r is
sufficiently large,

(4)

∣

∣g′
(

h(z)
)

h′(z)
∣

∣ =
∣

∣

(

h(z) − w0

)n
eα(h(z))h′(z)

∣

∣

=

∣

∣

(

h(z) − w0

)n
h′(z)

∣

∣

M(r, K)n+3
≤

1

M(r, K)
→ 0.

Let L(z) = −α(h(z))/(n + 3) and A(r, L) = max|z|=r Re L(z). Thus if z ∈ Γ,

|K(z)| = M(r, K) = eA(r,L) , Re L(z) = A(r, L). By Hadamard’s three-circle
theorem, we have, for r1 < r2 < r3 ,

(5) A(r2, L) ≤
log r2 − log r1

log r3 − log r1
A(r3, L) +

log r3 − log r2

log r3 − log r1
A(r1, L).
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For z0 ∈ Γ, we have

(6) |L′(z0)| = lim
z→z0,z∈Γ

|L(z) − L(z0)|

|z − z0|
≥ lim

z→z0,z∈Γ

|Re L(z) − Re L(z0)|

|z − z0|
.

Let |z0| = r0 and |z| = r0 + h , h > 0, then as z → z0 , h → 0. Thus, by (5) and
(6), we have, for sufficiently large r0 ,

(7)

|L′(z0)| ≥ lim
z→z0,z∈Γ

A(r0 + h, L) − A(r0, L)

|z − z0|

= lim
z→z0,z∈Γ

h

|z − z0|

A(r0 + h, L) − A(r0, L)

h

= lim
h→0

A(r0 + h, L) − A(r0, L)

h

≥ lim
h→0

log(1 + h/r0)

log r0

(

A(r0, L) − A(1, L)
)

h

=
A(r0, L) − A(1, L)

r0 log ro
> 1.

Let w = G(z) = eα(h(z))/(n+3) = e−L(z) . Thus 0 is an asymptotic value of
G and Γ is the corresponding asymptotic curve, γ = G(Γ) is a simple curve
connecting G(0) and 0. Let B be the length of γ , which is a finite number. And
dw = e−L(z)L′(z)dz . By this, (4) and (7), if z ∈ Γ, we have

∣

∣g
(

h(z)
)
∣

∣ =

∣

∣

∣

∣

∫ z

z0 along Γ

g′
(

h(z)
)

h′(z) dz + g
(

h(z0)
)

∣

∣

∣

∣

≤

∫ z

z0 along Γ

∣

∣g′
(

h(z)
)

h′(z)
∣

∣ |dz| +
∣

∣g
(

h(z0)
)
∣

∣

≤

∫ w

w0 along γ

1

|L′(z)|
|dw| +

∣

∣g
(

h(z0)
)
∣

∣

≤

∫ w

w0 along γ

|dw| +
∣

∣g
(

h(z0)
)
∣

∣

≤ B +
∣

∣g
(

h(z0)
)
∣

∣.

Thus we can find a sequence of {zk}
∞
k=1 such that zk → ∞ as k → ∞ , and

f(zk) ∼ −P (zk), f ′(zk) ∼ −P ′(zk).

A contradiction follows from this and Lemma 1.
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If g′ has just one pole w1 , so does g , then h(z) does not assume w1 , i.e.,
h(z) = eβ(z) +w1 . Moreover, if g′ has a zero c , then h(z) = c has infinitely many
roots. One can derive a contradiction by arguing similarly as in Case 1. Hence g ′

has no zeros, i.e.,

g′(w) =
1

(w − w1)n
eα(w),

and
g′

(

h(z)
)

h′(z) = β′(z) exp
(

α
(

eβ(z)+w1
)

+ (1 − n)β(z)
)

.

By the same argument as that in Case 2 above, we can get a contradiction. Thus
F (z) = f(z)+P (z) is pseudo-prime. Now we assume that F (z) has the following
factorization:

F (z) = f(z) + P (z) = Q
(

g(z)
)

,

where Q is rational, g is a transcendental meromorphic function. If Q is a poly-
nomial, then g is entire. If Q has a pole w1 , then g(z) does not assume w1 . Thus
h(z) = 1/(g(z) − w1) is an entire function and F (z) = Q1

(

h(z)
)

, where Q1 is a
rational function. Without loss of generality, we may assume that g(z) is entire,
and Q(w) has at most one pole. Now we discuss the following two sub-cases.

Subcase 1: Q has one pole, say w0 , i.e., Q(w) = Q1(w)/(w − w0)
n , where

Q1(w) is a polynomial with degree m and Q1(w0) 6= 0. Then g(z) = w0 + eh(z) ,
where h(z) is a nonconstant entire function. Thus we have

f(z) = Q1(w0 + eh(z))e−nh(z) − P (z)

= a0e
−nh(z) + a1e

−(n−1)h(z) + · · · + ame(m−n)h(z) − P (z),

where a0, a1, . . . , am are constants and am 6= 0, a0 = Q1(w0) 6= 0. Thus

f ′(z) = (−na0e
−nh(z) − (n − 1)a1e

−(n−1)h(z) + · · ·

+ (m − n)ame(m−n)h(z))h′(z) − P ′(z)

=
[

−na0 − (n − 1)a1e
h(z) + · · ·

+ (m − n)amemh(z)
]

e−nh(z)h′(z) − P ′(z)

= P1(e
h(z))e−nh(z)h′(z) − P ′(z),

where P1(w) is a polynomial and P1(0) = −na0 6= 0. If P1(w) is a nonconstant
polynomial, then P1(w) has a zero c 6= 0 and eh(z) = c has infinitely many roots.
Let {zk}

+∞
k=1 be zeros of eh(z) − c , then f ′(zk) = −P ′(zk) and

f(zk) =
Q1(w0 + c)

cn
− P (zk).
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Again, by Lemma 1, we have a contradiction. If P1(w) is a constant polynomial,
then

f(z) = a0e
−nh(z) + am − P (z), f ′(z) = −na0e

−nh(z)h′(z) − P ′(z).

Let K(z) = enh(z) and |z′| = r , |K(z′)| = M(r, K). Then by Lemma 2, we have,
for r /∈ F ,

| − na0e
−nh(z′)h′(z′)| =

∣

∣

∣

∣

a0
1

K(z′)

K ′(z′)

K(z′)

∣

∣

∣

∣

= |a0|
1

M(r, K)

ν(r, K)

r
(1 + o(1)),

|a0e
−nh(z′)| =

|a0|

M(r, K)
.

Noting limr→∞

(

ν(r, K)/M(r, K)
)

= 0 for a transcendental entire function K , we

can find a sequence of {zk}
+∞
k=1 such that |f(zk)| ∼ |P (zk)| , |f ′(zk)| ∼ |P ′(zk)| .

A contradiction follows from this and Lemma 1.

Subcase 2: Q(w) has no pole, i.e., Q(w) is a polynomial with degree ≥ 2. If
Q′(w) has at least two distinct zeros, then there exists a zero w1 of Q′(w) such
that g(z) = w1 has infinitely many zeros {zn}

+∞
n=1 . Then

f ′(zn) = Q′
(

g(zn)
)

− P ′(zn) = −P ′(zn), f(zn) = Q(w1) + P (zn).

However, by Lemma 1,

|f ′(zn)| ≥
|f(zn)| log |f(zn)|

16π|zn|
,

which will lead to a contradiction. Therefore, we only need to treat the case that
Q′(w) has only one zero w0 . If g(z) − w0 has infinitely many zeros, again a
contradiction follows from Lemma 1. Hence, we have

g(z) = w0 + p1(z)eh(z) and Q′(z) = A(w − w0)
n−1,

where p1(z) is a polynomial, h(z) a nonconstant entire function. Thus

Q(w) =
A

n
(w − w0)

n + B,

f(z) =
A

n
p1(z)nenh(z) + B − P (z),

f ′(z) =
A

n

(

p′1(z) + p1(z)nh′(z)
)

enh(z) − P ′(z).
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Set K(z) = e−nh(z) and let |z′| = r , K(z′) = M(r, K). Then it follows from
Lemma 2, for r /∈ F , that

∣

∣

∣

∣

A

n

(

p′1(z
′) + p1(z

′)nh′(z′)
)

enh(z′)

∣

∣

∣

∣

=

∣

∣

∣

∣

A

n

(

p′1(z
′)

K(z′)
−

p1(z
′)

K(z′)

K ′(z′)

K(z′)

)
∣

∣

∣

∣

≤
crt

M(r, K)
+

drtν(r, K)

M(r, K)
,

where c , d are positive constants, t = deg p1 − 1. Noting

lim
r→∞

rtν(r, K)

M(r, K)
= 0

for a transcendental entire function K , there exists a sequence of {zn}
+∞
n=1 such

that
f(zn) ∼ −P (zn), f ′(zn) ∼ −P (zn).

Again by Lemma 1, we get a contradiction. Thus we have proved that F (z) =
f(z) + P (z) is left-prime. Next we show that F is right-prime. Let

F (z) = g
(

q(z)
)

,

where g is a transcendental entire function and q(z) a polynomial with degree
≥ 2. Thus

f(z) = g
(

q(z)
)

− P (z)

and hence
f ′(z) = g′

(

q(z)
)

q′(z) − P ′(z).

First, we prove that g′(w) has infinitely many zeros. In fact, if g′(w) has only
finitely many zeros, then g′(w) = s(w)eh(w) , where s(w) is a polynomial and h(w)
is a nonconstant entire function. Let K(z) = e−h(z)/3 . There exists a curve Γ
tending to infinity such that if z ∈ Γ, then |K(z)| = M(|z|, K). Noting that K is
a transcendental entire function, we have that M(r, K) ≥ r2m+2 for r ≥ r0 , where
m = deg s . Let w = G(z) = eh(z)/3 and λ = G(Γ). Then dw = 1

3h′(z)eh(z)/3 .
If h(z) is nonconstant polynomial, then there exists a positive constant c such
that |h′(z)| ≥ c for sufficiently large |z| = r . If h(z) is transcendental, then
∣

∣

1
3h′(z)

∣

∣ > 1 for z ∈ Γ and sufficiently large |z| = r , by (7). Hence, we have, for
z ∈ Γ and |z| ≥ r0 ,

|g′(z)| ≤
1

M(r, K)2
,

|g(z)| =

∣

∣

∣

∣

∫ z

z0 alongΓ

g′(z) dz + g(z0)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ w

w0 along λ

|dw|

∣

∣

∣

∣

≤ A,



On factorizations of entire functions of bounded type 353

where w0 = G(z0), w = G(z) and A is a positive constant. Let γ be a component
of q−1(Γ), and denote R = |q(z)| for z ∈ γ . Then for z ∈ γ , we have

∣

∣g
(

q(z)
)
∣

∣ ≤ A, |g′(z)q′(z)| ≤
BRm+1

M(R, K)2
→ 0, as z → ∞,

where A and B are constants. Hence, for z ∈ γ , we have

|f(z)| ∼ |P (z)|, |f ′(z)| ∼ |P ′(z)|.

Again, by Lemma 1, the above estimates will lead to a contradiction as before.
Thus g′ has infinitely many zeros. Now let n = deg q and m = deg P . Next we
will prove that n | m , i.e., there is a positive integer r such that m = nr . Let
{wk}

∞
k=1 denote the zeros of g′(w) and set

q(z) = anzn + an−1z
n−1 + · · · + a1z + a0.

We consider the roots of the equation

q(z) = wk,

which implies

(8) anzn
(

1 + o(1)
)

= wk.

On the other hand, the roots of the above equation can be expressed as

z
(j)
k =

∣

∣

∣

∣

wk

an

∣

∣

∣

∣

1/n

ei(2jπ+φk)/n
(

1 + o(1)
)

,

where
φk = arg

wk

an
, j = 0, 1, 2, . . . , n − 1.

Thus
P (z

(0)
k ) ∼ A|wk|

m/n,

P (z
(1)
k ) ∼ e2mπi/nA|wk|

m/n,

P ′(z
(0)
k ) ∼ B|wk|

(m−1)/n,

P ′(z
(1)
k ) ∼ e2(m−1)πi/nB|wk|

(m−1)/n,

where A , B are constants depending on q(z) and P (z) only. Thus we have

sequences {wk}
∞
k=1 , with wk → ∞ as k → ∞ , {z

(0)
k }∞k=1 and {z

(1)
k }∞k=1 such that
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q(z
(0)
k ) = q(z

(1)
k ) = wk,(9)

P (z
(0)
k ) − P (z

(1)
k ) ∼ (1 − e2mπi/n)A|wk|

m/n,(10)

f ′(z
(0)
k ) = −P ′(z

(0)
k ) ∼ −B|wk|

(m−1)/n,(11)

f ′(z
(1)
k ) = −P ′(z

(1)
k ) ∼ −e2(m−1)πi/nB|wk|

(m−1)/n,(12)

f(z
(0)
k ) = g(wk) − P (z

(0)
k ),(13)

f(z
(1)
k ) = g(wk) − P (z

(1)
k ),(14)

f(z
(1)
k ) − f(z

(0)
k ) = P (z

(0)
k ) − P (z

(1)
k ).(15)

If n - m , then 1 − e2mπi/n 6= 0. Now we discuss two subcases.

Subcase 1: {f(z
(0)
k )}∞k=1 is bounded. We have, by (10)–(15),

(16) |f(z
(1)
k )| ∼ |(1 − e2mπi/n)A| |wk|

m/n.

By this and Lemma 1, we obtain that

|B| |wk|
(m−1)/n ∼ |f ′(z

(1)
k | ≥

|f(z
(1)
k )| log |f(z

(1)
k )|

16π|z
(1)
k |

∼ C|wk|
(m−1)/n log(|(1 − e2mπi/n)A| |wk|

m/n),

where

C =
|(1 − e2mπi/n)A| |an|

1/n

16π
,

which is a contradiction.

Subcase 2: {f(z
(0)
k )}∞k=1 is unbounded. Then there exists a sub-sequence of

{f(z
(0)
k )}∞k=1 tending to infinity, which we may, without confusing, denote by the

original sequence: {f(z
(0)
k )}∞k=1 . Thus by Lemma 1, we have

|B| |wk|
(m−1)/n ∼ |f ′(z

(0)
k | ≥

|f(z
(0)
k )| log |f(z

(0)
k )|

16π|z
(0)
k |

∼
|an|

1/n|f(z
(0)
k )| log |f(z

(0)
k )|

16π|wk|1/n
.

Hence,

|f(z
(0)
k )| = o(|w

(m/n)
k |).
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Thus

|f(z
(1)
k )| ∼ |(1 − e2mπi/n)A| |w

m/n
k |.

By arguing similarly as in Subcase 1, we will arrive at a contradiction. Hence
n | m . Finally, we will prove that q(z) is a common right factor of f(z) and P (z).
If q(z) is not a right factor of P (z), then there exist polynomials Q and P1 with
0 < deg P1 < n = deg q such that

P (z) = Q
(

q(z)
)

+ P1(z).

Thus

G(z) = f(z) + P1(z) = g
(

q(z)
)

− Q
(

q(z)
)

= g1

(

q(z)
)

,

where g1(w) = g(w)−Q(w) is a transcendental entire function. By arguing simi-
larly as in the subcase above, it follows that n | deg P1 , which is a contradiction.
Thus, P (z) = Q

(

q(z)
)

and f(z) = g
(

q(z)
)

− Q
(

q(z)
)

. The conclusion follows.

4. Concluding remarks

Corollary. Let f be a transcendental entire function in B , then for any

constant a 6= 0 , f(z) + az is prime.

Remark 4. This corollary shows that if f(z)− az ∈ B for some constant a ,
then |NP (f)| ≤ 1.

Remark 5. If h is a periodic entire function of order one and mean type,
then h ∈ B . Thus if G(z) is as stated in Theorem D, then Gn ∈ B .

Remark 6. The condition f ∈ B in the above theorem and corollary is not
removable. For example, f(z) = ezeez

+ ez , then f(z) = (wew + w) ◦ ez , and
f(z)+ z = (ew +w) ◦ (ez + z). This example shows the cardinality of NP (f) may
be greater than one if f /∈ B .

Remark 7. If f is an entire function such that sing(f−1) ⊂ R , then, by
Lemma 3, sin

(

f(z)
)

∈ B and cos
(

f(z)
)

∈ B . Thus, for any constant a 6= 0,

sin
(

f(z)
)

+ az and cos
(

f(z)
)

+ az are prime. It was mentioned in [2] that the
Pólya–Laguerre class LP consists of all entire functions f which have a represen-
tation

f(z) = exp(−az2 + bz + c)zn
∏

(

1 −
z

zk

)

exp

(

z

zk

)

,

where a, b, c ∈ R , a ≥ 0, n ∈ N0 , zk ∈ R\{0} for all k ∈ N , and
∑∞

k=1 |zk|
−2 <

∞ . Furthermore, if f1, f2, . . . , fn ∈ LP , and f = f1◦f2◦· · ·◦fn , then sing(f−1) ⊂
R . Thus, for example, sin

(

f(z)
)

+ az is prime for a 6= 0, when f ∈ LP .
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