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Abstract. We prove that if f is a transcendental entire function and the set of all finite
singularities of its inverse function f~! is bounded, then f(z)+ P(z) is prime for any nonconstant
polynomial P(z), unless f(z) and P(z) has a nonlinear common right factor. Particularly, it is
shown that f(z)+ az is prime for any constant a # 0.

1. Introduction

A transcendental meromorphic function F' is said to be prime (pseudo-prime)
if, and only if, whenever F' = f(g) for some meromorphic functions f and g, either
f or g must be bilinear (rational); F' is called left-prime (right-prime) if every
factorization of F' implies that f is bilinear whenever ¢ is transcendental (g is
linear if f is transcendental). It is easily seen F' is prime if and only if F' is left-
prime as well as right-prime. We refer the readers to [3] or [4] for an introduction
to the factorization theory of entire and meromorphic functions.

A point a is called a singularity of f=! (the inverse function of f), if a is
either a critical value or asymptotic value of f. We denote by sing(f ') the set
of all finite singularities of f~!, i.e.

sing(f~1) = {z € C: z is a singularity of f~'}.

We denote by B the class of all entire functions f such that sing(f~!) is bounded
and by S the class of all entire functions f such that sing(f~1!) is finite. If f € B
(f€S), wesay f is of bounded (finite) type.

In 1981, Noda [8] proved the following result.

Theorem A. Let f(z) be a transcendental entire function. Then the set
NP(f)={al|a€C, f(z)+az is not prime}

is at most countable
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As a further study on the cardinality of N P(f), which is denoted by |NP(f)],
Ozawa and Sawada [9] posed the following interesting question:

Question. Is there any f for which the exceptional set N P(f) in Theorem A
is really infinitely countable? Or what is the maximal cardinal number of the
exceptional set NP(f)?

Theorem B (Ozawa and Sawada [9]). Let G(w) be an entire function satis-
fying
M(R,G(w)) < exp(KR)

for R > Ry > 0 and for some constant K > 0. Then either G(e*) + az or
G(€e*) + bz is prime if ab(a —b) # 0.

This shows that the cardinality of NP(G(e?)) is at most 2 if M (R, G(w)) <
exp(KR) for R > Ry > 0 and for some constant K > 0. As a study of the above
question, Liao—Yang [6] proved the following result.

Theorem C. Let f be a transcendental entire function of finite order in S'.
Then for any constant a # 0, f(z)+ az is prime, i.e. [INP(f)| <1.

Recently, Wang—Yang [13] proved the following theorem.

Theorem D. Let P, ) be nonconstant polynomials, « € B, h a periodic
entire function of order one and mean type, G(z) = Pohoa(z). If F(z) =
G™(2) + Q(2) has a factorization F(z) = f(g(z)), then g(z) must be a common
right factor of a(z) and Q(z).

Remark 1. The original statement of Theorem D only requires that h is of
order one. Here we would like to point out that h should be at most order one of
mean type, as it is needed in the proof of Theorem D, Lemma 5 in [13]. However,
f in Lemma 5 should be an entire function of exponential type, i.e. f has order
less than one or order one and mean type; see p. 27 in [4].

Remark 2. Let G be defined in Theorem D. Then G™(z) + az is prime for
any constant a # 0.

As a continuation of the study of our previous work [6], we are able to extend
Theorem C to a large class of functions, namely, functions of bounded type. The
following is our main result.

Theorem. Let f be a transcendental entire function in B, then for any
nonconstant polynomial P(z), f(z)+ P(z) is prime unless f(z) and P(z) has a
nonlinear common right factor.
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2. Some lemmas

Lemma 1 (Rippon and Stallard [11]). Let f be a meromorphic function with
a bounded set of all finite critical and asymptotic values. Then there exists K > 0
such that if |z| > K and |f(z)| > K, then

|/ (2)[log | f(2)|

/) 2 e

Lemma 2 ([5]). Let f be a transcendental entire function, and 0 < § < 1.
Suppose that at the point z with |z| = r the inequality

(1) £ > M, v, £~
holds. Then there exists a set F' in R* and of finite logarithmic measure, i.e.,
/ dt
— < +00
Ft
such that

2) ) = (1) o) s

holds whenever m is a fixed nonnegative integer and r ¢ F'.

Lemma 3 (Baker and Singh [1], also see [2]). Let f and g be two entire
functions. Then

sing((f og)™") Csing(f~") U f(sing(g ™).
Lemma 4 (Polya [10]). Let f and g be two transcendental entire functions.

Then
iy M fog) _
im ———2% = 0.
r—00 M(T, g)

Lemma 5. Let f be a transcendental entire function. Then
M(r, f') < M(r, f)?
for a sufficiently large r.
Remark 3. This follows easily from a result of Valiron ([12]):

/
o log M 1)

= 1.
% Tog M(r, )
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3. Proof of the theorem

Let F(z) = f(2) + P(2), P(z) is a nonconstant polynomial. We first prove
that F' is pseudo-prime. Assume that

where ¢ is a transcendental meromorphic function with at most one pole and h
is a transcendental entire function. Thus

(3) f(z) =g(h(2)) = P(2),  ['(2) =g (h(2))l'(2) = P'(2).

First we consider the case that g is a transcendental entire function, and then we
discuss two situations.

Case 1: ¢’ has at least two zeros. Then there exists a zero ¢ of ¢’ such that
h(z) = ¢ has infinitely many roots {zj}72;. Thus we have

flzw) = =P(zk) + gle),  f'(z) = —P'(2)
By Lemma 1, we would have

| P(zr) — g9(c)|1og | P(zk) — g(c)|
167 |z |

[P (21)] =

b

which leads to a contradiction.

Case 2: ¢’ has at most one zero. Thus
g'(w) = (w—wo)"e* ™, f(2) = (h(z) — wo)"e* "N () — P'(2),

where n is a non-negative integer. Let K(z) = e~®(*(2)/("+3) "and assume that
I' is a simple curve tending to infinity such that if z € I' and |z| = r, then
|K(z)] = M(r,K). By Lemmas 4 and 5, we have, if z € T" and |z| = r is
sufficiently large,

’g/(h ’ _ }(h (2) — wo)” a(h(z) )h/ }
(4) |(h(2) — wo) "W (2)] 1
T MER MR
Let L(z) = —a(h(z))/(n+3) and A(r,L) = max),—, ReL(z). Thusif z € T,

|K(2)] = M(r,K) = A" ReL(z) = A(r,L). By Hadamard’s three-circle
theorem, we have, for r; < ry <rs,

(5) A(rs, L) < MA(?@,,L) 4 MA(ﬁ,L).

log rg — logry logrs — logry
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For zy € I', we have

(6) |L/(20)| _ lim |L<Z) _L(’ZO)| > lim ‘RGL(Z) _ReL(ZO)|.

z—z0,2€l ‘Z — Zo| z—2z0,2€l ‘Z — Z()|

Let |20| =ro and |z| =rg+ h, h >0, then as z — z5, h — 0. Thus, by (5) and
(6), we have, for sufficiently large ¢,

A(TO + h7 L) — A(T()? L)

L > ]
| (ZO)| z—>zlo,zEF |Z — Zo‘
_ lim h A(?“O + h, L) — A(’I“(), L)
z—z0,2€l |Z — 2,’0| h
_ A(TO + h7 L) — A(r07 L)
(7) = 7
log(1+ h/r
—g(lo - I70) ( A(ro, L) — A(1, L))
> lim 870
h—0 h
_ A<T07L) - A(LL) > 1
rolog T, '

Let w = G(z) = e*h2)/(n4+3) — ¢=L(z)  Thus 0 is an asymptotic value of
G and T is the corresponding asymptotic curve, v = G(I') is a simple curve
connecting G(0) and 0. Let B be the length of ~, which is a finite number. And
dw = e "3 [/ (2)dz. By this, (4) and (7), if z € T', we have

lg(h(2))] =

/Z g'(h(z))h'(z) dz + g(h(zo))

0 along I’

< / T e (@)H()] Iz + g (h0))|

0 alongI’

<[ s laul ()]

wo along’y| /< )|

< / T Jdul + g (k)]

Wo along~y

< B+ |g(h(20))].
Thus we can find a sequence of {z;}72, such that z; — oo as k — oo, and

flzr) ~ =P(z),  f'(z) ~ —P'(z).

A contradiction follows from this and Lemma 1.
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If ¢’ has just one pole w;, so does g, then h(z) does not assume wi, i.e.,
h(z) = €?*) fw;. Moreover, if ¢’ has a zero ¢, then h(z) = ¢ has infinitely many
roots. One can derive a contradiction by arguing similarly as in Case 1. Hence ¢’

has no zeros, i.e.,
1

/ w) = 780(11))7
g (w) (w =)
and

g (M=) () = B'(2) exp(a(e”FH1) + (1 = n)B(2)).

By the same argument as that in Case 2 above, we can get a contradiction. Thus
F(z) = f(2) + P(z) is pseudo-prime. Now we assume that F'(z) has the following
factorization:

F(z) = f(2) + P(2) = Q(9(2)),

where () is rational, g is a transcendental meromorphic function. If () is a poly-
nomial, then g is entire. If () has a pole wy, then g(z) does not assume w; . Thus
h(z) = 1/(g(z) — wy) is an entire function and F(z) = Q1(h(z)), where @ is a
rational function. Without loss of generality, we may assume that g(z) is entire,
and Q(w) has at most one pole. Now we discuss the following two sub-cases.

Subcase 1: @ has one pole, say wy, i.e., Q(w) = Q1(w)/(w — wy)™, where
Q1(w) is a polynomial with degree m and Qq(wq) # 0. Then g(z) = wo + "),
where h(z) is a nonconstant entire function. Thus we have

f(2) = Qi(wo + ")) — P(z)

where ag,aq,...,a, are constants and a,, # 0, ag = Q1(wg) # 0. Thus

F(2) = (nage="E) — (n — 1yage--DHE) 1 ...
+ (M = n)ame™ PN (2) — P'(2)
= [~nao — (n — 1)are"® + . ..
+ (m — n)amemh(z)] e—”h(Z)h/(Z) . P/(Z)
= Py (M) E Y (2) — P/(2),

where Pj(w) is a polynomial and P;(0) = —nag # 0. If P;(w) is a nonconstant
polynomial, then P;(w) has a zero ¢ # 0 and e"(*) = ¢ has infinitely many roots.
Let {21} be zeros of e"*) — ¢, then f'(z) = —P'(z) and

Q1(wo + ¢)

flan) = ——— = Plaw).
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Again, by Lemma 1, we have a contradiction. If P;(w) is a constant polynomial,
then

f(2) = age™™) +a,, — P(2),  f'(z) = —nage "N (2) — P'(2).

Let K(z) = e and || =7, |K(2)

= M (r,K). Then by Lemma 2, we have,

for r ¢ F,
Cnh(s 1 K'(2) 1 v(r, K)
| — nage h( )h’(z’)| — aOK(Z’) K = |aO‘M(r ) (1+0(1)),
—nh(z')| _ ‘a0|
lape | M K)

Noting lim, .o (v(r, K)/M(r, K)) = 0 for a transcendental entire function K , we
can find a sequence of {24} such that |f(zx)| ~ |P(2k)|, |f'(zk)] ~ |P'(2x)].
A contradiction follows from this and Lemma 1.

Subcase 2: Q(w) has no pole, i.e., Q(w) is a polynomial with degree > 2. If
Q'(w) has at least two distinct zeros, then there exists a zero w; of @Q'(w) such

that g(z) = w; has infinitely many zeros {z,}>]. Then

f/(zn) = Q/(g(zn>) - P/(Zn) = _Pl(zn)7 f(zn) = Q(w1) + P(2n).
However, by Lemma 1,

|f (zn)[log | f (2n)]

167 |2y ’

' (zn)] =

which will lead to a contradiction. Therefore, we only need to treat the case that
Q' (w) has only one zero wy. If g(z) — wo has infinitely many zeros, again a
contradiction follows from Lemma 1. Hence, we have

g(z) = wo +p1(2)e"®and  Q'(2) = A(w —wo)"

where p1(z) is a polynomial, h(z) a nonconstant entire function. Thus

Q(w) = %(w —wo)" + B,
f(2) = Spi ()™ + B - P(2),

£2) = 2 (0h(2) + (k! (2)) e — ).
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Set K(z) = e ™3 and let |2/| = r, K(2') = M(r,K). Then it follows from
Lemma 2, for r ¢ F', that

A

n

(PL(2') + pi(2 )b/ (2)) e =)

where ¢, d are positive constants, ¢t = degp; — 1. Noting

rtv(r, K)

lim ———> =0
r—oo M(r, K)
for a transcendental entire function K, there exists a sequence of {z, ;5;01 such

that
f(zn) ~ =P(z),  f'(2n) ~ —P(zn).

Again by Lemma 1, we get a contradiction. Thus we have proved that F(z) =
f(2) + P(z) is left-prime. Next we show that F' is right-prime. Let

where ¢ is a transcendental entire function and ¢(z) a polynomial with degree
> 2. Thus

and hence
f'(2) = g'(a(2))d' (2) = P'(2).

First, we prove that ¢’(w) has infinitely many zeros. In fact, if ¢’(w) has only
finitely many zeros, then ¢’(w) = s(w)e™®) | where s(w) is a polynomial and h(w)
is a nonconstant entire function. Let K(z) = e "*)/3  There exists a curve T
tending to infinity such that if z € T', then |K(z)| = M (|z|, K). Noting that K is
a transcendental entire function, we have that M (r, K) > r?™*2 for r > r(y, where
m = degs. Let w = G(z) = e"*)/3 and A = G(T'). Then dw = %h'(z)eh(z)/g’.
If h(z) is nonconstant polynomial, then there exists a positive constant ¢ such
that |h'(z)| > c for sufficiently large |z| = r. If h(z) is transcendental, then
|31/(z)| > 1 for z € T and sufficiently large |z| = r, by (7). Hence, we have, for
zel and |z| > rg,

1
M(r,K)?’

/% g'(2) dz + g(z0)

0 alongI’

9'(2)| <

l9(2)] = <

w
/ quSA,
wo along A
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where wy = G(20), w = G(z) and A is a positive constant. Let v be a component
of ¢7}(T"), and denote R = |q(z)| for z € 7y. Then for z € ~, we have

BRm+1
5 — 0, as z — 0o,

se@) <4 19O < g

where A and B are constants. Hence, for z € v, we have

f~ PR, ()]~ [P'(2)].
Again, by Lemma 1, the above estimates will lead to a contradiction as before.
Thus ¢’ has infinitely many zeros. Now let n = degq and m = deg P. Next we
will prove that n | m, i.e., there is a positive integer r such that m = nr. Let
{wy}22, denote the zeros of ¢'(w) and set
q(2) = an2™ + ap_12"" + - 4+ a1z + ao.
We consider the roots of the equation
Q(Z) = Wk,
which implies

(8) anz™ (14 0(1)) = w.

On the other hand, the roots of the above equation can be expressed as

1/n
A = | B giCimten/n (] 4 o(1)),
Gn
where w
qﬁk:arg—k, 7=0,1,2,....,n—1.
Gn
Thus

P ~ AJwy, ™,
P(z,
P'(z

)
1)) ~ 62m7ri/’l’LA|wk|m/TL7
k)
Pl(zkl)) ~ 62(m—1)7ri/nB‘wk‘(m—1)/n,

(
0)y B|wk|(m—1)/n,
(

where A, B are constants depending on ¢(z) and P(z) only. Thus we have
sequences {wy }72,, with w, — 00 as k — oo, {z,go)}}?’:l and {z,gl)}z‘;l such that
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) a(z") = a(z(") = wi,

(1) P(") = P(5) ~ (1= ) Ay,

(11) F(29) = —P'(29) ~ — By |mD/n,

(12) F W) = P2V~ —e2m=Umi/n gy, (m=1)/n
(13) £ = glwy) — P(z"),

(14) F(=0) = glwi) — P(z(V),

15  fE) = £ = PED) - PAY)

If ntm, then 1 —e?™™/™ £ (. Now we discuss two subcases.
Subcase 1: {f(z,(co))}gozl is bounded. We have, by (10)-(15),
1 mmi/n m/n
(16) G~ 11 = e2mmm) A g

By this and Lemma 1, we obtain that

1£(z0) 1og | £(2))]
167r|z,(€1)|
~ Clug |0/ log(|(1 — 2™/ ™) A] fwy,|™/™),

|B| Juwg| D/ | (20 >

where _
|(1 _ 62m7”/n)A| |an|1/n

167 ’

C =

which is a contradiction.

Subcase 2: {f (Z,SO)>}EO:1 is unbounded. Then there exists a sub-sequence of
{f (z,(co))}z":1 tending to infinity, which we may, without confusing, denote by the
(0)
k)

original sequence: {f(z,’)}?2,. Thus by Lemma 1, we have

0 0
£z 1og | ()]
1672\ |

n 0 0
a1 £z Tog | £ (2]
167|wy| /™ '

|B| [wy| D/~ | (2] >

Hence,

F ()] = o(|wi™™)).
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Thus
FED 1= Al

By arguing similarly as in Subcase 1, we will arrive at a contradiction. Hence
n | m. Finally, we will prove that ¢(z) is a common right factor of f(z) and P(z).
If g(z) is not a right factor of P(z), then there exist polynomials @ and P; with
0 < deg P, < n = degq such that

P(z) = Q(a(2)) + Pr(2).

Thus
G(2) = f(2) + Pi(z) = g(4(2)) — Q(q(2)) = 91(q(2)),

where g1(w) = g(w) — Q(w) is a transcendental entire function. By arguing simi-
larly as in the subcase above, it follows that n | deg P;, which is a contradiction.
Thus, P(z) = Q(q(2)) and f(z) = g(q(2)) — Q(q(z)). The conclusion follows.

4. Concluding remarks

Corollary. Let f be a transcendental entire function in B, then for any
constant a # 0, f(z)+ az is prime.

Remark 4. This corollary shows that if f(z) —az € B for some constant a,
then |[NP(f)| <1.

Remark 5. If h is a periodic entire function of order one and mean type,
then h € B. Thus if G(z) is as stated in Theorem D, then G" € B.

Remark 6. The condition f € B in the above theorem and corollary is not
removable. For example, f(z) = e*e® + e, then f(z) = (we® + w) o €, and
f(z)+2z=(e”4+w)o (e +z). This example shows the cardinality of NP(f) may
be greater than one if f ¢ B.

Remark 7. If f is an entire function such that sing(f~!) C R, then, by
Lemma 3, sin(f(z)) € B and cos(f(z)) € B. Thus, for any constant a # 0,
sin(f(z)) + az and cos(f(z)) + az are prime. It was mentioned in [2] that the
Polya—Laguerre class LP consists of all entire functions f which have a represen-

tation
f(2) = exp(—az® + bz +c)2" H(l - Z_i) exp(i),

where a,b,c € R, a >0, n € Ny, z; € R\{0} forall k € N, and > ;7 |22 <
oo. Furthermore, if f1, fo,..., fn € LP,and f = fiofs0---0f,, then sing(f~1) C
R.. Thus, for example, sin(f(z)) + az is prime for a # 0, when f € LP.
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