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Abstract. We give an example of two rational functions with non-equal Julia sets that
generate a rational semigroup whose completely invariant Julia set is a closed line segment. We
also give an example of polynomials with unequal Julia sets that generate a non nearly Abelian
polynomial semigroup with the property that the Julia set of one generator is equal to the Julia set
of the semigroup. These examples show that certain conjectures in the field of dynamics of rational
semigroups do not hold as stated and therefore require the allowance of certain exceptional cases.

1. Introduction

In [3], Hinkkanen and Martin develop a theory of dynamics of rational semi-
groups as a generalization of the classical theory of the dynamics of the iteration
of a rational function defined on the Riemann sphere C . In that paper and in sub-
sequent communications, they put forth several conjectures, some of which will be
addressed here. In particular, we provide counterexamples to Conjectures 1.1, 1.2
and 1.4. In light of these examples the conjectures are then suitably modified and
as such remain open questions. We begin by developing the necessary background
to state these questions.

In what follows all notions of convergence will be with respect to the spher-
ical metric on C . A rational semigroup G is a semigroup of rational functions

of degree at least two defined on C with the semigroup operation being func-
tional composition. (One may wish to allow some or all of the maps in G to
be Möbius, for example, when one is considering Kleinian groups as in [8], but
since the examples constructed here all contain maps of degree two or more, we
will use our simplified definition to avoid any technical complications which are
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not pertinent to this paper.) When a semigroup G is generated by the functions
{f1, f2, . . . , fn, . . .} , we write this as

G = 〈f1, f2, . . . , fn, . . .〉.

On p. 360 of [3], the definitions of the set of normality, often called the Fatou
set, and the Julia set of a rational semigroup are as follows:

Definition 1.1. For a rational semigroup G we define the set of normality
of G , N(G), by

N(G)=
{
z ∈ C : there exists a neighborhood of z on which G is a normal family

}

and define the Julia set of G , J(G), by

J(G) = C \N(G).

Clearly from these definitions we see that N(G) is an open set and therefore
its complement J(G) is a compact set. These definitions generalize the case of
iteration of a single rational function and we write N(〈h〉) = Nh and J(〈h〉) = Jh .
Note that J(G) contains the Julia set of each element of G . For research on
(semi-)hyperbolicity and Hausdorff dimension of Julia sets of rational semigroups,
see [9], [10], [11] and [12].

Definition 1.2. If h is a map of a set Y into itself, a subset X of Y is:

(i) forward invariant under h if h(X) ⊂ X ;
(ii) backward invariant under h if h−1(X) ⊂ X ;
(iii) completely invariant under h if h(X) ⊂ X and h−1(X) ⊂ X .

It is well known that for a rational function h , the set of normality of h and
the Julia set of h are completely invariant under h (see [2, p. 54]), i.e.,

(1.1) h(Nh) = Nh = h−1(Nh) and h(Jh) = Jh = h−1(Jh).

In fact, the following property holds.

Property 1.1. For a rational map h of degree at least two the set Jh is the

smallest closed completely invariant (under h) set which contains three or more

points (see [2, p. 67).

From Definition 1.1, it follows that N(G) is forward invariant under each
element of G and, thus, J(G) is backward invariant under each element of G
(see [3, p. 360]). The sets N(G) and J(G) are, however, not necessarily completely
invariant under the elements of G . This is in contrast to the case of single function
dynamics as noted in (1.1). However, one could generalize the classical notion of
the Julia set of a single function in such a way as to force the Julia set of a rational
semigroup to be completely invariant under each element of the semigroup. Thus,
we give the following definition.
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Definition 1.3. For a rational semigroup G we define the completely invari-

ant Julia set of G

E(G) =
⋂{

S : S is closed, completely invariant under each g ∈ G, #(S) ≥ 3
}

where #(S) denotes the cardinality of S .

We note that E(G) exists, is closed, is completely invariant under each ele-
ment of G and contains the Julia set of each element of G by Property 1.1.

Definition 1.4. For a rational semigroup G we define the completely invari-

ant set of normality of G , W (G), to be the complement of E(G), i.e.,

W (G) = C \E(G).

Note that W (G) is open and it is also completely invariant under each element
of G .

We state the following conjectures which are due to A. Hinkkanen and G. Mar-
tin (see [7]).

Conjecture 1.1. If G is a rational semigroup which contains two maps f
and g such that Jf 6= Jg and E(G) 6= C , then W (G) has exactly two components,

each of which is simply connected, and E(G) is equal to the boundary of each of

these components.

Conjecture 1.2. If G is a rational semigroup which contains two maps f
and g such that Jf 6= Jg and E(G) 6= C , then E(G) is a simple closed curve

in C .

In Section 2 we give a method for constructing functions (as well as providing
concrete functions) whose Julia sets are unequal, but which generate a semigroup
whose completely invariant Julia set is a line segment. Hence the above conjec-
tures do not hold. But since the only completely invariant Julia sets of rational
semigroups which are known at this time (when the semigroup contains two maps
with unequal Julia sets) are C (see [6] and [7]) or sets which are Möbius equivalent
to a line segment or circle, the authors put forth the following conjecture, which
is currently unresolved.

Conjecture 1.3. If G is a rational semigroup which contains two maps f
and g such that Jf 6= Jg and E(G) is not the whole Riemann sphere, then E(G)
is Möbius equivalent to a line segment or a circle.

Remark 1.1. We briefly explain some evidence that compels us to pose Con-
jecture 1.3 in this way. Our example of a rational semigroup G with E(G) being
a line segment is rigid since G contains a Tchebycheff polynomial, which is known
to be postcritically finite (and hence, rigid). On the other hand, an example of a
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rational semigroup G with E(G) being a (unit) circle generated by rational func-
tions f1, . . . , fn with non-equal Julia sets is easily constructed by choosing finite
Blaschke products as the fj ’s. However, it seems difficult to quasiconformally
deform f1, . . . , fn simultaneously so that the completely invariant Julia set of the
resulting rational semigroup is not a circle.

In Section 3 we provide a counterexample to the following conjecture also due
to Hinkkanen and Martin [4].

Conjecture 1.4. Let G be a polynomial semigroup such that Jh = J(G)
for some h ∈ G . Then Jf = Jg for all f, g ∈ G (and hence G is nearly Abelian

by Theorem 3.2).

In our counterexample J(G) is a closed line segment. Since no other types of
counterexamples are known, we modify this conjecture as follows and note that it
remains unresolved.

Conjecture 1.5. Let G be a polynomial semigroup such that Jh = J(G)
for some h ∈ G where J(G) is not a line segment. Then Jf = Jg for all f, g ∈ G
(and hence G is nearly Abelian by Corollary 3.2).

2. Counterexamples to Conjectures 1.1 and 1.2

We begin this section with some notation and lemmas. Let

φ(z) =
z2 − 1

z2 + 1

and denote the upper half plane as U = {z : Im z > 0} . Then φ maps U one-to-
one onto Ω = C \ [−1, 1] and φ maps R two-to-one onto I = [−1, 1]. We call a
map f odd if f(−z) = −f(z) and we call a map f even if f(−z) = f(z).

Lemma 2.1. A function f is an odd rational map such that f(U) = U if

and only if it has the form

(2.1) f(z) = az − b

z
−

N∑

j=1

Bjz

z2 −Aj

where a, b, Aj, Bj ≥ 0 .

Proof. Let f be an odd rational map such that f(U) = U . Then any preimage
of infinity must be real (else there would exist a preimage of infinity in U ) and
simple (else there would be points in U that map outside of U ). Again, since
f(U) = U , it follows that f must be of the form

az − b

z
−

k∑

j=1

cj
z − aj

, where a, b, cj ≥ 0 and aj ∈ R.
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Since f(R) = R and f(−z) = −f(z) we conclude that the poles other than the
one which might possibly exist at the origin must come in pairs of real numbers
symmetric about the origin. Hence

f(z) = az − b

z
−

N∑

j=1

bj
z − aj

−
N∑

j=1

bj
z + aj

,

where bj > 0, which can be algebraically reduced to (2.1).
Let f be a map of the form (2.1). Hence f is odd, rational, maps U into U

(since each term in the sum does), and maps R into R (since the coefficients are
all real). From this it easily follows that f(U) = U .

Lemma 2.2. Let f be a rational map. Then [f(z)]2 is even if and only if f
is even or odd.

Proof. Suppose [f(z)]2 = [f(−z)]2 . Then an analytic square root of [f(−z)]2
(defined locally away from the zeroes and poles of f ) is either f(z) or −f(z). The
identity theorem can then be used to show that f(−z) is either f(z) or −f(z)
globally, i.e., f is either even or odd.

The reverse implication is immediate.

Lemma 2.3. Let f be a rational map. Then φ ◦ f is even if and only if

[f(z)]2 is even.

Proof. Since φ(z) = ψ(z2) for ψ(z) = (z − 1)/(z + 1) we see that [f(z)]2 =
ψ−1 ◦ φ

(
f(z)

)
and ψ−1 ◦ φ

(
f(−z)

)
= [f(−z)]2 . The lemma easily follows.

Lemma 2.4. If g is an even rational function, then g(z) = h(z2) for some

rational map h .

Proof. For z 6= 0 or ∞ we define h(z) = g
(
±√

z
)

and note that h is well
defined (regardless of the branch of the square root taken) since g is even. Since
h is analytic on C \ {0} and can be extended in the obvious way to be continuous
on C , h is rational and satisfies h(z2) = g(z).

Lemma 2.5. Let f be a rational map such that f(U) = U . Then there

exists a rational map f̃ such that φ ◦ f = f̃ ◦ φ if and only if f is odd (and

therefore of the form in Lemma 2.1).

Proof. Let f be odd. Since f(z) = −f(−z) we see that [f(z)]2 is an even
rational function and therefore by Lemma 2.4 [f(z)]2 = h(z2) for some rational
map h . Define

f̃(z) =

h

(
1 + z

1 − z

)
− 1

h

(
1 + z

1 − z

)
+ 1
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(hence f̃ is a rational map as it is a composition of rational maps). Let w =
φ(z) = (z2 − 1)/(z2 + 1) and note that z2 = (1 + w)/(1 − w). Hence

(f̃ ◦ φ)(z) = f̃(w) =

h

(
1 + w

1 − w

)
− 1

h

(
1 + w

1 − w

)
+ 1

=
[f(z)]2 − 1

[f(z)]2 + 1
= (φ ◦ f)(z).

Suppose there exists a rational map f̃ such that φ ◦ f = f̃ ◦ φ . Then f̃ ◦ φ
is even since φ is even. The semi-conjugacy implies φ ◦ f is also even, which by
Lemmas 2.3 and 2.2 gives that f is either even or odd. If f were even, then
f(C \ U) = f(U) = U and the preimage of the lower half plane would be empty.

This contradicts the fact that the image of C under a rational map is always C .
Hence we conclude that f must be odd.

Lemma 2.6. If f̃ is a rational map such that Ω = f̃−1(Ω) , then there exists

an odd rational map f such that U = f−1(U) and φ ◦ f = f̃ ◦ φ .

Proof. Let h denote the branch of the inverse of φ which maps Ω onto U .
Then f = h ◦ f̃ ◦ φ maps U onto U properly and is therefore a rational map
(Blaschke product of the upper half plane). Clearly, φ ◦ f = f̃ ◦ φ on U and so
by the identity theorem this semi-conjugacy holds on all of C . By Lemma 2.5 f
is odd.

Remark 2.1. Lemmas 2.5 and 2.6 classify those rational functions that can
be semi-conjugated by φ .

Lemma 2.7. For rational semigroups G = 〈gj : j ∈ I 〉 and H =
〈hj : j ∈ I 〉 where there exists a rational function k satisfying the semi-conjugacy

relation k ◦ hj = gj ◦ k for each j ∈ I , we have J(G) = k
(
J(H)

)
and

N(G) = k
(
N(H)

)
.

Proof. We first note that the semi-conjugacy relation on the generators trans-
lates to a semi-conjugacy relation between corresponding elements of the semi-
groups. More precisely, if h = hj1 ◦ · · · ◦ hjn

∈ H , then for g = gj1 ◦ · · · ◦ gjn

we have k ◦ h = g ◦ k since k ◦ hj1 ◦ · · · ◦ hjn
= gj1 ◦ k ◦ hj2 ◦ · · · ◦ hjn

=
gj1 ◦ gj2 ◦ k ◦ hj3 ◦ · · · ◦ hjn

= · · · = gj1 ◦ gj2 ◦ · · · ◦ gjn
◦ k .

Let z0 be a point in N(H) and let ∆ be a small open set in N(H) containing
z0 such that h(∆) has spherical diameter less than ε for all h ∈ H . Denoting
the Lipschitz constant (with respect to the spherical metric) of k by C (see [2,
p. 32]), we see that for any g = gj1 ◦ · · · ◦ gjn

∈ G the diameter of g
(
k(∆)

)
=

k
(
hj1 ◦ · · · ◦ hjn

(∆)
)

= k
(
h(∆)

)
is less than Cε . Hence k(z0) ∈ N(G) and so we

conclude that k
(
N(H)

)
⊂ N(G).

Let z0 be a repelling fixed point for some h = hj1 ◦· · ·◦hjn
∈ H , but which is

not a critical point of k . Then for g = gj1 ◦· · ·◦gjn
we have g◦k = k◦h and hence
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g has a fixed point at k(z0) with the same multiplier as that of h at z0 (using
the chain rule and the fact that g = k ◦h ◦ k−1 for the branch of k−1 which maps
k(z0) to z0 ). Hence we have shown that the repelling fixed points of the maps in
H , which are not any of the finite number of critical points of k , map under k to
repelling fixed points of maps in G . Since the Julia set of a rational semigroup
is a perfect set equal to the the closure of the set of repelling fixed points of the
elements of the semigroup (see [3, Theorem 3.1 and Corollary 3.1]), it then follows
that k

(
J(H)

)
⊂ J(G).

Since J(H) = C \N(H) and J(G) = C \N(G) the lemma now follows from

the fact that k(C) = C .

One might expect that a result similar to Lemma 2.7 would hold for completely
invariant Julia sets, however, we require an additional hypothesis as noted in the
following lemmas.

Lemma 2.8. Suppose rational functions g , h , k satisfy the semi-conjugacy

relation k ◦ h = g ◦ k . If S̃ is completely invariant under g , then k−1(S̃) is

completely invariant under h . Also, if S is completely invariant under h and

k−1
(
k(S)

)
= S , then k(S) is completely invariant under g .

The proof of Lemma 2.8 follows readily from the semi-conjugacy and will
therefore be omitted.

Lemma 2.9. For rational semigroups G = 〈gj : j ∈ I 〉 and H =
〈hj : j ∈ I 〉 where there exists a rational function k satisfying the semi-conjugacy

relation k ◦ hj = gj ◦ k for each j ∈ I , we have k
(
E(H)

)
⊂ E(G) (and

thus W (G) ⊂ k
(
W (H)

)
). If we also have that k−1

(
k
(
E(H)

))
= E(H) , then

k
(
E(H)

)
= E(G) and W (G) = k

(
W (H)

)
.

Remark 2.2. The hypothesis k−1
(
k
(
E(H)

))
= E(H) stated above would

automatically follow from the other assumptions if, in addition, k is a (branched)
Galois covering. We, however, do not require that form of the statement because
one can easily check that this hypothesis holds in the situations we consider below.

Proof. Let h = hj1 ◦· · ·◦hjn
∈ H and consider the corresponding g = gj1◦· · ·◦

gjn
∈ G . Since E(G) is completely invariant under g and k◦h = g◦k , Lemma 2.8

shows that the closed set k−1
(
E(G)

)
is completely invariant under h . Since h ∈ H

was arbitrary, we conclude that E(H) ⊂ k−1
(
E(G)

)
. Thus k

(
E(H)

)
⊂ E(G).

Similarly one can use Lemma 2.8 to show that k−1
(
k
(
E(H)

))
= E(H) implies

E(G) ⊂ k
(
E(H)

)
and so E(G) = k

(
E(H)

)
. When k−1

(
k
(
E(H)

))
= E(H), k

maps E(H) in a deg(k)-to-one fashion onto k
(
E(H)

)
= E(G). Since k is a

rational map of global degree deg(k), it must then map W (H) = C \E(H) onto

W (G) = C \E(G) (also in a deg(k)-to-one fashion).
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Example 2.1 (Counterexamples to Conjectures 1.1 and 1.2). Let f be an
odd rational map such that f(U) = U . Then by Lemma 2.5 there exists a rational
function f̃ satisfying the semi-conjugacy relation φ ◦ f = f̃ ◦ φ . Similarly we let
g be an odd rational map with g(U) = U and so there exists a rational map g̃
with φ ◦ g = g̃ ◦φ . By choosing f and g such that Jf 6= R and Jg = R , we have

that Jf̃ 6= I and Jg̃ = I by Lemma 2.7. Since R is completely invariant under

both f and g we have E(G) ⊂ R where G = 〈f, g〉 . Since E(G) ⊃ Jg = R ,

we conclude that E(G) = R . For G̃ = 〈f̃ , g̃〉 we see that since φ−1
(
φ
(
E(G)

))
=

φ−1
(
φ(R)

)
= R = E(G), we must have E(G̃) = φ(R) = I . Since Jf̃ 6= Jg̃ , G̃ is

a counterexample to Conjectures 1.1 and 1.2.
Specifically we may select f(z) = 2z − 1/z and g(z) = (z2 − 1)/(2z). Hence

Jf is a Cantor subset of I (see [2, p. 21]). Since g is the conjugate of z 7→ z2 under
z 7→ i(1 + z)/(1 − z) we see that Jg = R . In this case one can calculate (via the

proof of Lemma 2.5) that f̃(z) = (3z + 5z2)/(1 + 3z + 4z2) and g̃(z) = 2z2 − 1.

In the next example, we construct a semigroup G that provides a counterex-
ample to Conjectures 1.1 and 1.2 with the additional property that J(G) ( E(G).

Example 2.2. Consider f(z) = 2z− 1/z as in Example 2.1. Let ϕ(z) = 2z ,
and set g(z) = (ϕ ◦ f ◦ϕ−1)(z) = 2z− 4/z . Note that Jg = ϕ(Jf ) = 2Jf and that
R is completely invariant under g . Hence for G = 〈f, g〉 , we have E(G) ⊂ R .

Suppose that E(G) 6= R . Since R is completely invariant under both f
and g , it follows from Lemma 3.2.5 in [5] that if E(G) contains a non-degenerate
interval in the real line, then E(G) = R . Hence we may select an open interval
L = (x, y) in R \ E(G) with both x , y large. Since the length of the intervals
fn(L) tends to +∞ , we may assume that y − x is large. By expanding the
interval we may also assume that x, y ∈ E(G) (note that we used here that ∞ is
a non-isolated point in E(G) which follows since 2 ∈ Jg ⊂ E(G) and fn(2) → ∞).

Since x is large, we can use the fact that f(x) is slightly greater than g(x)
to see that g−1

(
{f(x)}

)
contains a point slightly larger than x (and hence less

than y ). But by the complete invariance of the set E(G) under f and g , we get
g−1

(
{f(x)}

)
⊂ E(G). This is a contradiction since the interval (x, y) does not

meet E(G). We conclude that E(G) = R .
Since ∞ is an attracting fixed point under both f and g , we see that small

neighborhoods of ∞ map inside themselves under each map in G . Hence ∞ ∈
N(G) and so J(G) 6= R .

As in Example 2.1 we may semi-conjugate the odd rational maps f and g by
φ to get maps

f̃(z) =
3z + 5z2

1 + 3z + 4z2
and g̃(z) =

5z2 + 40z − 29

3z2 + 40z − 27
.

Hence for G̃ = 〈f̃ , g̃〉 we have J(G̃) = φ
(
J(G)

)
( φ(R) = I and E(G̃) =



Some counterexamples in dynamics of rational semigroups 365

φ
(
E(G)

)
= φ(R) = I . Since Jf̃ 6= Jg̃ (otherwise one would have E(G̃) = J(G̃) =

Jf̃ = Jg̃), we see that G̃ is a counterexample to Conjectures 1.1 and 1.2.

3. Counterexamples to Conjecture 1.4

In [3, p. 366] Hinkkanen and Martin give the following definition.

Definition 3.1. A rational semigroup G is nearly Abelian if there is a com-
pact family of Möbius transformations Φ = {φ} with the following properties:

(i) φ
(
N(G)

)
= N(G) for all φ ∈ Φ, and

(ii) for all f, g ∈ G there is a φ ∈ Φ such that f ◦ g = φ ◦ g ◦ f .

Theorem 3.1 ([3, Theorem 4.1]). Let G be a nearly Abelian semigroup.

Then for each g ∈ G we have Jg = J(G) .

A natural question is to what extent does the converse to Theorem 3.1 hold.
Using a result of A. Beardon (see [1, Theorem 1]) Hinkkanen and Martin have
proved the following result for polynomial semigroups.

Theorem 3.2 ([3, Corollary 4.1]). Let F be a family of polynomials of

degree at least 2 , and suppose that there is a set J such that Jg = J for all

g ∈ F . Then G = 〈F 〉 is a nearly Abelian semigroup.

Note that under the hypotheses of Theorem 3.2 we have Jh = J(G) for each
generator h ∈ F . So we see that Conjecture 1.4 is suggesting that if Jh = J(G)
for just one h ∈ G , then G is still nearly Abelian. However, this is not the case
as we see by the following counterexample.

Example 3.1 (Counterexample to Conjecture 1.4). Let f(z) = z2−2, g(z) =
4z2 − 2 and G = 〈f, g〉 . It is well known that f is a conjugate of 2z2 − 1 by
z 7→ 2z and so Jf = [−2, 2] (see [2, p. 9]). It can easily be seen that g maps [−1, 1]
onto [−2, 2] in a two-to-one fashion. Since g−1([−1, 1]) ⊂ g−1([−2, 2]) = [−1, 1] it
follows that Jg ⊂ [−1, 1]. In particular Jg ( Jf . We also note that C \ [−2, 2] is
forward invariant under both f and g and as such must lie in N(G) by Montel’s
theorem. It follows that J(G) = [−2, 2] = Jf , yet Jf 6= Jg .

We remark that any map g that maps a proper sub-interval of [−2, 2] onto
[−2, 2] in a deg(g)-to-one fashion would suffice in the above example and such
functions can easily be obtained by constructing real polynomials with appropriate
graphs. Also, f may be replaced by any Tchebycheff polynomial (see Section 1.4
of [2]), normalized so that Jf = [−2, 2].

Acknowledgements. The authors would like to thank Aimo Hinkkanen for his
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366 Rich Stankewitz, Toshiyuki Sugawa, and Hiroki Sumi

References

[1] Beardon, A.F.: Symmetries of Julia sets. - Bull. London Math. Soc. 22, 1990, 576–582.

[2] Beardon, A.F.: Iterations of Rational Functions. - Springer-Verlag, New York, 1991.

[3] Hinkkanen, A., and G.J. Martin: The dynamics of semigroups of rational functions I.
- Proc. London Math. Soc. 3, 1996, 358–384.

[4] Hinkkanen, A., and G.J. Martin: Personal communication, 1997.

[5] Stankewitz, R.: Completely invariant Julia sets of rational semigroups. - Ph.D. Thesis,
University of Illinois, 1998.

[6] Stankewitz, R.: Completely invariant Julia sets of polynomial semigroups. - Proc. Amer.
Math. Soc. 127(10), 1999, 2889–2898.

[7] Stankewitz, R.: Completely invariant sets of normality for rational semigroups. - Com-
plex Variables Theory Appl. 40(3), 2000, 199–210.

[8] Stankewitz, R.: Uniformly perfect sets, rational semigroups, Kleinian groups and IFS’s.
- Proc. Amer. Math. Soc. 128(9), 2000, 2569–2575.

[9] Sumi, H.: On Hausdorff dimension of Julia sets of hyperbolic rational semigroups. - Kodai
Math. J. 21(1), 1998, 10–28.

[10] Sumi, H.: Skew product maps related to finitely generated rational semigroups. - Nonlin-
earity 13, 2000, 995–1019.

[11] Sumi, H.: Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew
products. - Ergodic Theory Dynam. Systems 21, 2001, 563–603.

[12] Sumi, H.: Semi-hyperbolic fibered rational maps and rational semigroups. - Preprint.

Received 6 November 2003


