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Abstract. In this paper a definition for arbitrary complex powers of the Dirac operator
on the m -dimensional hyperbolic unit ball is given and with the aid of Riesz’s distributions a
fundamental solution for these operators is determined. This fundamental solution is expressed in
terms of the Gegenbauer function of the second kind.

1. Introduction

In this paper, Clifford analysis techniques are used to introduce the notion
of an arbitrary complex power of the Dirac operator on the hyperbolic unit ball.
Clifford analysis offers a nice and elegant way to generalize the Cauchy–Riemann
system in the complex plane to higher dimensions, the Dirac operator being the
higher-dimensional analogue of the Cauchy–Riemann operator, and an extension of
multivariable calculus. In Clifford analysis one studies vector differential operators
and functional analysis.

Standard reference books on Clifford analysis on the flat Euclidean space Rm

are [2], [9] and [15] and a nice overview of the most essential results is given in [8].
For the more general case of Dirac operators on manifolds we refer e.g. to [5]
and [15]. In this paper we consider the Dirac operator on the hyperbolic unit
ball, which is a canonical example of a so-called Riemannian manifold of constant
negative curvature. This has already been studied, e.g. in references [13] and [19].
However, as was already noticed in reference [3], the Dirac operator as it was
defined in [13] acts on Spin(1)-fields, whereas we define a Dirac operator acting on
Spin

(
1
2

)
-fields, hereby following the approach of reference [4]. This Dirac operator

is invariant under the group of Spin(1, m) transformations, the automorphism
group of the hyperbolic unit ball, whereas the Dirac operator considered in [19]
is the conformal invariant hyperbolic Dirac operator, invariant under the larger
conformal group. Following the present approach we thus find a larger class of
solutions, including the conformal case as a special case.

In Section 2 we introduce a model for the m -dimensional hyperbolic unit ball
and in Section 3 we give a short introduction to Clifford algebras. In Section 4
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we define two distributions by means of a divergent integral, the distribution xλ
+

on the real line and the so-called Riesz distribution Zλ on the real orthogonal
space R1,m , the latter being essential for what follows. In Section 5 we define
the Gegenbauer and Legendre functions in the complex plane and in Sections 6,
7 and 8 we define arbitrary powers of the Dirac operator on the hyperbolic unit
ball, using a similar technique as in reference [1], and we calculate a fundamental
solution for this operator.

2. Hyperbolic spaces

In this section a model for the m -dimensional hyperbolic unit ball will be in-
troduced. For that purpose, consider the real orthogonal space R1,m of signature
(1, m) with an orthonormal basis (ε, e1, . . . , em). Space-time vectors will be de-

noted by X = εT + ~X , making a clear distinction between the spatial coordinates
(X1, . . . , Xm) and the time coordinate T . The quadratic form associated with the
real orthogonal space R1,m is given by

Q(X) = T 2 − | ~X|2 for all X ∈ R1,m.

The null cone NC is then defined as the set of all space-time vectors X satisfying
Q(X) = 0, and this NC separates the time-like region (space-time vectors X
for which Q(X) > 0) from the space-like region (space-time vectors X for which
Q(X) < 0). The time-like region is the union of the future cone FC = {X :
Q(X) > 0, T > 0} and the past cone PC = {X : Q(X) > 0, T < 0} .

For those space-time vectors X belonging to the time-like region we define
the norm |X| as Q(X)1/2 = (T 2 − | ~X|2)1/2 and an associated unit space-time
vector ξ , as

ξ =
X

|X| =
εT + ~X

(T 2 − | ~X|2)1/2
.

A projective model for the m -dimensional hyperbolic unit ball is obtained by
identifying the rays inside FC with points on the hyperbolic unit ball. Other
models for the m -dimensional hyperbolic unit ball are then readily obtained by
intersecting the manifold of rays inside FC with any surface Σ inside FC , such
that each ray intersects Σ in a unique point.

3. The Clifford setting

The universal Clifford algebra R1,m is defined as the real linear associative,
but non-commutative, algebra generated by the orthonormal basis (ε, e1, . . . , em)
of R1,m and the following multiplication rules:

eiej + ejei = −2δij , i, j = 1, . . . , m,

εei + eiε = 0, i = 1, . . . , m,

ε2 = 1.
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Elements of R1,m are called Clifford numbers and have the form

a =
∑

A⊂M

aAeA, aA ∈ R,

with A = {i1, . . . , ik} ⊂ M = {0, . . . , m} , where i1 < · · · < ik and eA = ei1 · · · eik

(here e0 is to be replaced by ε). For A = ∅ we put e∅ = 1. If A has k elements,

eA is a so-called k -vector and the subspace of k -vectors is denoted as R
(k)
1,m .

Denoting the projection of a Clifford number a onto its k -vector part as [a]k , we
have

a =

1+m∑

k=0

[a]k.

The subspace R
(+)
1,m =

∑
k even ⊕R

(k)
1,m is a subalgebra of R1,m , called the even

subalgebra and it is generated by the elements εj = ejε , j = 1, . . . , m . These gene-
rators satisfy ε2

j = 1 and εiεj +εjεi = 0, i 6= j , whence the set {εj : j = 1, . . . , m}
may be regarded as an orthonormal basis for Rm,0 . This means that the even

subalgebra R
(+)
1,m is isomorphic to the Clifford algebra Rm,0 . Notice that space-

time vectors X in R1,m may be identified with 1-vectors in R1,m , but we keep
the notation X .

For two space-time vectors X and Y in R
(1)
1,m , we have

XY = X · Y + X ∧ Y

where the inner product is defined as

X · Y =
XY + Y X

2

and the outer product as

X ∧ Y =
XY − Y X

2
.

On R1,m , the following involutory (anti-)automorphisms are of importance (in
the following formulae e0 is again to be replaced by ε and a, b ∈ R1,m , λ ∈ R):

(1) the main involution a 7→ ã

ẽi = −ei, (a + λb)˜ = ã + λb̃, (ab)˜ = ãb̃;

(2) the reversion a 7→ a∗

e∗i = ei, (a + λb)∗ = a∗ + λb∗, (ab)∗ = b∗a∗;
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(3) the conjugation (also known as bar-map) a 7→ ā

ēi = −ei, (a + λb) = ā + λb̄, (ab) = b̄ā.

Also, the following subgroups of the real Clifford algebra R1,m are of interest: the
Clifford group Γ(1, m), the Pin group Pin(1, m) and the Spin group Spin(1, m).
Γ(1, m) is defined as the set of all invertible elements g ∈ R1,m such that for all

X ∈ R
(1)
1,m we have gXg̃−1 ∈ R

(1)
1,m . The Pin group Pin(1, m) is the quotient

group Γ(1, m)/R+ and the Spin group Spin(1, m) = Pin(1, m) ∩ R
(+)
1,m .

For each element s ∈ Pin(1, m) the map χ(s): R1,m 7→ R1,m: X 7→ sXs̄
induces a map from R1,m into itself. In this way, Pin(1, m) defines a double
covering of the orthogonal group O(1, m) whereas Spin(1, m) defines a double
covering of the orthogonal group SO(1, m). For more information we refer the
reader to [9] and [17].

4. Distributions defined by divergent integrals

In this section we introduce two distributions that will be used in this paper.
Let us start with the distribution xλ

+
on the real line, where λ is an arbitrary

complex number (see references [7] and [13]).
Since the function xλ

+
= xλH(x), where H(x) stands for the Heaviside step-

function on the real line, defined by

xλ
+

=

{
xλ, x > 0,
0, x < 0,

is locally integrable for Re(λ) > −1, it defines a regular distribution

〈xλ
+
, ϕ〉 =

∫ ∞

0

xλϕ(x) dx, ϕ ∈ D(R),

for Re(λ) > −1. However, xλ
+

can analytically be continued to the strip −n−1 <
Re(λ) < −n as follows:

〈xλ
+
, ϕ〉 =

〈
dn

dxn
xλ+n

+
, ϕ

〉

(λ + 1)(λ + 2) · · · (λ + n)
,

where the derivatives with respect to x must be interpreted in distributional sense.
Hence, if −n − 1 < Re(λ) < −n one defines

〈xλ
+
, ϕ〉 = (−1)n 〈xλ+n

+
, ϕ(n)〉

(λ + 1)(λ + 2) · · · (λ + n)
, ϕ ∈ D(R).
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This means that for each test function ϕ ∈ D(R), the function 〈xλ
+
, ϕ〉 defines a

meromorphic function of λ with simple poles at λ = −1 − n , n ∈ N .
The residue at λ = −1 − n is

ϕ(n)(0)

n!
=

(−1)n

n!
〈δ(n), ϕ〉,

and we can thus say that

Res(xλ
+
, λ = −1 − n) =

(−1)n

n!
δ(n)(x).

In order to remove the simple poles of xλ
+

we divide by Γ(1+λ), and so the distri-
bution xλ

+
/Γ(λ + 1) is well-defined on D(R) for all λ ∈ C with 〈xλ

+
/Γ(λ + 1), ϕ〉

a holomorphic function of λ for all ϕ ∈ D(R).
Next, we introduce the distributions %λ on D(R1,m), with λ again an arbi-

trary complex number. As a general reference to the rest of this section, we refer
to [7], [16] and [18]. The function %(X) is defined for space-time vectors X ∈ R1,m

as

%(X) =

{
Q(X)1/2 in the FC,
0 otherwise.

In the half-plane Re(λ) > −2, the function %λ defines a regular distribution since
%λ is locally integrable for these values of λ . Indeed,

〈%λ, ϕ〉 =

∫ ∫
Qλ/2(T, ~X)ϕ(T, ~X) dT d ~X

defines an analytic function when Re(λ) > −2 for each test function ϕ ∈ D(R1,m).
Using analytic continuation 〈%λ, ϕ〉 can be extended to a meromorphic function
in the whole complex plane.

For that purpose we introduce the wave-operator � on R1,m :

� = ∂2
T −

m∑

i=1

∂2
Xi

= ∂2
T − ∆m.

This operator has a decomposition which is similar to that of the Laplace operator
on Rm :

� =
∂2

∂|X|2 +
m

|X|
∂

∂|X| +
1

|X|2 ∆H ,

∆H being the Laplace–Beltrami operator on the hyperboloid H+ = {ξ ∈ FC :
|ξ| = 1} (see e.g. reference [6]).

Letting the wave operator act on %λ we get

�%λ = λ(λ + m − 1)%λ−2.
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This suggests the following definition for the distribution %λ in the strip −2n−2 <
λ < −2n :

〈%λ, ϕ〉 =
〈�n%λ+2n, ϕ〉

(λ + 2)(λ + 4) · · · (λ + 2n)(λ + m + 1) · · · (λ + m + 2n − 1)
.

From this relation it follows that the distribution %λ has poles at λ = −2 − 2n ,
n ∈ N and at λ = −1 − m − 2n , n ∈ N . For m even all the poles are simple,
while for m odd the points −2,−4, . . . , 1 − m are simple poles and the points
−m − 1,−m − 3, . . . are double poles.

The distributions %λ are normalized by introducing suitable factors. Putting

(1) Zµ =
%µ−m−1

π(m−1)/22µ−1Γ
(

1
2µ

)
Γ
(

1
2(µ + 1 − m)

) ,

the functional 〈Zµ, ϕ〉 becomes an entire function of the complex variable µ for
each test function ϕ ∈ D(R1,m). These so-called Riesz-distributions Zµ enjoy
remarkable properties, a few of which will be listed here (see e.g. [7]):

(1) The support of Zµ is contained in the set FC = {X ∈ R1,m : T ≥ | ~X|} .

(2) The distributions Zµ satisfy the following convolution property: Zµ ∗ Zν =
Zµ+ν .

(3) For all k ∈ N , we have Z−2k = �
kδ(X), with δ(X) = δ(T )δ( ~X) the delta-

function in space-time coordinates. This is the distribution in D ′(R) acting

on test functions ϕ(T, ~X) ∈ D(R) as follows:

〈δ(X), ϕ(T, ~X)〉 = ϕ(0,~0).

(4) For all µ ∈ C and k ∈ N , �
kZµ = Zµ−2k . In particular, we get �

kZ2k =
δ(X).
Let us now introduce D

′

+
(R1,m) as the set of all distributions f ∈ D

′

(R1,m)

such that their supports are contained in FC . Taking the convolution of two
elements of D

′

+
(R1,m), the result is again in D

′

+
(R1,m) and hence D

′

+
(R1,m) is a

convolution algebra. The distributions Zµ belong to D
′

+
(R1,m), and their uniquely

determined inverses in D
′

+
(R1,m) are the distributions Z−µ :

Zµ ∗ Z−µ = δ(X), µ ∈ C.

It follows that the differential equation

�
kf = g,

with f and g belonging to D
′

+
(R1,m) has a unique solution

f = Z2k ∗ g.
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5. Gegenbauer and Legendre functions in the complex plane

In this section we introduce the Gegenbauer and Legendre functions in the
complex plane for future purposes.

The Legendre functions are solutions of Legendre’s differential equation

(2) (1 − z2)
d2f

dz2
− 2z

df

dz
+

[
ν(ν + 1) − µ2(1 − z2)−1

]
f = 0,

with ν and µ unrestricted complex parameters. The solutions P µ
ν (z) and Qµ

ν (z),
defined in terms of the hypergeometric function by

Pµ
ν (z) =

1

Γ(1 − µ)

(
z + 1

z − 1

)µ/2

F

(
−ν, 1 + ν; 1 − µ;

1 − z

2

)
, |1 − z| < 2,(3)

Qµ
ν (z) =

eiµππ1/2

21+ν

Γ(ν + µ + 1)

Γ
(
ν + 3

2

) (z2 − 1)µ/2z−1−ν−µ

× F

(
1 + ν + µ

2
,
2 + ν + µ

2
; ν +

3

2
;

1

z2

)
, |z| > 1,(4)

are known as the associated Legendre functions of the first and second kind, respec-
tively. They can be analytically extended to the whole complex plane supposed
cut along the real axis from −∞ to 1. By means of the transformation formulas
of the hypergeometric function, P µ

ν (z) and Qµ
ν (z) are expressible in several ways

in the forms

Pµ
ν (z) = A1F (a1, b1; c1; ζ) + A2F (a2, b2; c2; ζ),

Qµ
ν (z) = eiµπ

(
A3F (a3, b3; c3; ζ) + A4F (a4, b4; c4; ζ)

)
,

where ζ is a function of z , such that |ζ| < 1. The various expansions for P µ
ν (z)

and Qµ
ν (z) can be found e.g. in [12]. One of these expansions for the Legendre

function Qµ
ν (z) is the following:

(5)

Qµ
ν (z) = eiµπ π1/22µΓ(1 + µ + ν)

Γ
(
ν + 3

2

) (z2 − 1)µ/2

(
z + (z2 − 1)1/2

)1+µ+ν

× F

(
1

2
+ µ, 1 + µ + ν; ν +

3

2
;
z − (z2 − 1)1/2

z + (z2 − 1)1/2

)
.

We will also need the following relation:

(6) e−iµπΓ(1 − µ + ν)Qµ
ν (z) = eiµπΓ(1 + µ + ν)Q−µ

ν (z).
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The Gegenbauer functions Cµ
ν (z) and Dµ

ν (z) are holomorphic functions in the
z -plane cut along the real axis from −∞ to 1, and solution in this region of
Gegenbauer’s differential equation

(1 − z2)
d2f

dz2
− (2µ + 1)z

df

dz
+ ν(ν + 2µ)f = 0.

The Gegenbauer functions are defined in terms of the associated Legendre func-
tions as follows:

Cµ
ν (z) = π1/22−µ+1/2 Γ(ν + 2µ)

Γ(µ)Γ(1 + ν)
(z2 − 1)(1/4)−(µ/2)P

−µ+1/2
ν+µ−1/2(z),(7)

Dµ
ν (z) = π−1/2e2iπ(µ−1/4)2−µ+1/2

× Γ(ν + 2µ)

Γ(µ)Γ(1 + ν)
(z2 − 1)(1/4)−(µ/2)Q

−µ+1/2
ν+µ−1/2(z).(8)

Note that the Gegenbauer function Dµ
ν (z) has zeroes for µ ∈ −N and poles for

ν + 2µ ∈ −N (see e.g. [10]). To calculate the residue in ν = −2µ − k , where k
is an arbitrary integer and µ is being held fixed, we use the following hyperge-
ometric representation of the Gegenbauer function Dµ

ν (z) (combining definitions
(4) and (8)):

Dµ
ν (z) =

eiπµ

22µ+ν

Γ(ν + 2µ)

Γ(µ)Γ(1 + ν + µ)

(z2 − 1)(1/2)−µ

z1+ν
F

(
2 + ν

2
,
1 + ν

2
; 1 + ν + µ;

1

z2

)
.

Together with Res[Γ(z), z = −k] = (−1)k/k! and Γ(z)Γ(1 − z) = π/ sin(πz), we
find

(9) Resν

[
Dµ

ν (z), ν = −2µ − k
]

= (−1)k+1 sin(kπ)

π
Dµ

−k−2µ(z).

The Gegenbauer function also satisfies

(10)
d

dz
Dµ

ν (z) = 2µDµ+1
ν−1(z)

and

(11) νDµ
ν (z) = 2µ

[
zDµ+1

ν−1 (z) − Dµ+1
ν−2(z)

]
.
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6. Arbitrary powers of the Dirac operator on R1,m

In this section we introduce the Dirac operator ∂X on R1,m and we define
the notion of the Dirac operator raised to an arbitrary power µ ∈ C .

Let ∂X = ε∂T −∂ ~X be the Dirac operator on R1,m , where ∂ ~X =
∑m

j=1 ej∂Xj

stands for the Dirac operator on Rm in coordinates ~X ∈ Rm (see e.g. [2] and [15]).
As

X∂X = (εT + ~X)(ε∂T − ∂ ~X)

= T∂T +

m∑

j=1

Xj∂Xj
+ ~Xε∂T − Tε∂ ~X −

m∑

i<j

eij(Xi∂Xj
− Xj∂Xi

),

it is clear that we have the following decomposition for the operator ∂X in the
FC :

(12) ∂X = ξ

(
∂|X| +

1

|X|Γ
)

=
ξ

|X|(E|X| + Γ),

with ξ = X/|X| the unit space-time vector associated to X ∈ FC , with

E|X| = T∂T +

m∑

j=1

Xj∂Xj

the Euler operator in space-time coordinates and with Γ = X ∧ ∂X the angular
hyperbolic operator, tangent to the hyperboloid H+ = {ξ ∈ FC : |ξ| = 1} , in
explicit space-time coordinates given by

Γ = X ∧ ∂X = ~Xε∂T − Tε∂ ~X −
m∑

i<j

eij(Xi∂Xj
− Xj∂Xi

).

For two space-time vectors X and Y in R1,m the angular operator Γ acting on
their inner product yields

Γ(X · Y ) = X ∧ Y.

Furthermore, using the fact that

∂2
X = � =

∂2

∂|X|2 +
1

|X|(Γ + ξΓξ)
∂

∂|X| +
1

|X|2 (ξΓξΓ− Γ)

and recalling the decomposition of the wave operator � as given in the third
section, we have

Γ + ξΓξ = m =⇒ Γξ = mξ
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and the following decomposition of the Laplace–Beltrami operator on the hyper-
boloid H+ :

∆H = (m − 1 − Γ)Γ.

Before we define ∂µ
X for general powers µ ∈ C , we first note that for µ ∈ 2N we

get ∂2k
X f = �

kf . Since Z−2k = �
kδ(X), this leads immediately to the following

definition for ∂2k
X as a convolution operator on D

′

+
(R1,m):

(13) ∂2k
X f = Z−2k ∗ f for all f ∈ D

′

+
(R1,m).

When considering odd powers µ ∈ 2N + 1, we have ∂2k+1
X f = �

k(∂Xf) =
(∂XZ−2k) ∗ f . This leads to

(14) ∂2k+1
X f = ∂XZ−2k ∗ f for all f ∈ D

′

+
(R1,m).

In the following lemma, we try to rewrite this distribution ∂XZ−2k .

Lemma 1. For all µ ∈ C and for all ϕ ∈ D(R1,m) we have

〈∂XZµ, ϕ〉 =

〈
XZµ−2

µ − 2
, ϕ

〉
.

Proof. Consider an arbitrary ϕ ∈ D(R1,m). By definition we have

〈∂XZµ, ϕ〉 = −ε〈Zµ, ∂T ϕ〉 +
m∑

i=1

ei〈Zµ, ∂Xi
ϕ〉.

Let us first consider µ such that Re(µ) > 1 + m .
Putting c(µ, m) = π(m−1)/22µ−1Γ

(
1
2µ

)
Γ
(

1
2 (µ + 1 − m)

)
, and using partial

integration we get for the first term

〈Zµ, ∂Tϕ〉 =
1

c(µ, m)

∫

Rm

d ~X

∫ ∞

| ~X|

(T 2 − | ~X|2)(µ−m−1)/2∂T ϕ(T, ~X)

=
1 + m − µ

c(µ, m)

∫

Rm

d ~X

∫ ∞

| ~X|

T (T 2 − | ~X|2)(µ−m−3)/2ϕ(T, ~X),

where we have used the fact that ϕ has a compact support and that Re(µ) > 1+m .
Using the definition of the Riesz distribution Zµ−2 , this can also be written as

〈Zµ, ∂T ϕ〉 = − 1

µ − 2
〈TZµ−2, ϕ〉.
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The same argument can be used to obtain

〈Zµ, ∂Xi
ϕ〉 =

1

c(µ, m)

∫ ∞

0

dT

∫

B(0,T )

d ~X(T 2 − | ~X|2)(µ−m−1)/2∂Xi
ϕ(T, ~X)

=
1

µ − 2
〈XiZµ−2, ϕ〉.

This means that for all µ ∈ C such that Re(µ) > 1 + m and for all ϕ ∈ D(R1,m)
we have

(15) 〈∂XZµ, ϕ〉 =
1

µ − 2
〈XZµ−2, ϕ〉.

Note that the distribution at the right-hand side does not have a pole at µ = 2
since

lim
µ→2

XZµ−2 = Xδ(X) = 0,

whence XZµ−2/(µ − 2) is well-defined for µ = 2 by putting

lim
µ→2

〈
XZµ−2

µ − 2
, ϕ

〉
= 〈E(X), ϕ〉,

with E(X) = ∂XZ2 the fundamental solution for the Dirac operator ∂X on R1,m .
This means that both sides of equation (15) define a holomorphic function of µ
for all ϕ ∈ D(R1,m). Since those functions coincide in the region where Re(µ) >
1 + m , they are equal. As ϕ was chosen arbitrarily, this proves the lemma.

So far we thus have, for all k ∈ N and for all f ∈ D
′

+
(R1,m),

∂2k
X f = Z−2k ∗ f,

∂2k+1
X f = ∂XZ−2k ∗ f = −XZ−2k−2 ∗ f

2k + 2
.

By analogy with what was done in [1] we thus define ∂µ
Xf as

∂µ
Xf =

(
1 + eiπµ

2
Z−µ − 1 − eiπµ

2

Z−µ−1

1 + µ

)
∗ f

=

(
1 + eiπµ

2
Z−µ +

1 − eiπµ

2

Γ

(
−µ

2

)
Γ

(
1 − m − µ

2

)

Γ

(
1 − µ

2

)
Γ

(−m − µ

2

)ξZ−µ

)
∗ f.

Introducing c± = 1
2 (1 ± eiπµ), we will often write ∂µ

Xf as

∂µ
Xf =

(
c+Z−µ + c

−
∂XZ1−µ

)
∗ f.
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7. The fundamental solution for the operator ∂µ
X

In this section we will construct a distribution Eµ(X) ∈ D
′

+
(R1,m) such that

∂µ
XEµ(X) = (c+Z−µ + c

−
∂XZ1−µ) ∗ Eµ(X) = δ(X).

Since Zµ ∗ Z−µ = Z0 = δ(X) and ∂XZ1−µ ∗ ∂XZ1+µ = �Z2 = δ(X), it seems
natural to look for a fundamental solution which has the form

Eµ(X) = aZµ + b∂XZ1+µ = aZµ + b
XZµ−1

µ − 1
,

with a and b two complex constants that still need to be determined. Letting the
operator ∂µ

X act on Eµ(X), one finds four terms

ac+Z−µ ∗ Zµ = ac+δ(X),

bc+Z−µ ∗ ∂XZµ+1 = bc+∂XZ1,

ac
−
∂XZ1−µ ∗ Zµ = ac

−
∂XZ1,

bc
−
∂XZ1−µ ∗ ∂XZµ+1 = bc

−
δ(X)

so that in order to obtain a fundamental solution, we choose a = c+ and b = −c
−

such that
∂µ

XEµ(X) = (c2
+
− c2

−
)δ(X) = eiπµδ(X).

Let us therefore define the fundamental solution for the operator ∂µ
X , for all µ ∈ C ,

as

Eµ(X) =
1 + e−iπµ

2
Zµ +

1 − e−iπµ

2
∂XZ1+µ

=
1 + e−iπµ

2
Zµ +

1 − e−iπµ

2

XZµ−1

µ − 1
.

8. Arbitrary powers of the Dirac operator on the hyperbolic unit ball

In this section, we determine the fundamental solution for an arbitrary com-
plex power of the Dirac operator on the hyperbolic unit ball. For that purpose,
we have to solve the equation

(16) ∂µ
XEµ,α(X) = T α+m−µ

+
δ( ~X).

This can be understood as follows. Because our model for the hyperbolic unit
ball is projective, each object we introduce—such as a fundamental solution—
has to be defined on the manifold of rays, our true hyperbolic space. This can
be done by considering the homogeneous Clifford line-bundle, defined as couples
(X, c) ∈ R

1,m
0 × R1,m together with the equivalence relation (X, c) ∝ (λX, λαc),
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α being an arbitrary complex number. Each function on the hyperbolic unit ball is
then defined as a section of this homogeneous bundle, i.e. a homogeneous function
in space-time co-ordinates (T, ~X):

F (λX) = λαF (X).

The right-hand side of equation (16) expresses the fact that we are looking for a
fundamental solution which is homogeneous of degree α , having singularities on
the time-axis. For the case µ = k ∈ N0 this was already explained in reference
[11], and (16) is the generalization to arbitrary powers µ ∈ C .

Since Eµ(X) is the fundamental solution for the operator ∂µ
X , we have

Eµ,α(X) = Eµ(X) ∗ T α+m−µ
+

δ( ~X)

=

(
1 + e−iπµ

2
Zµ +

1 − e−iπµ

2
∂XZ1+µ

)
∗ T α+m−µ

+
δ( ~X).

Let us therefore calculate Zσ ∗T α+m−µ
+ δ( ~X), σ being an arbitrary complex num-

ber. Denoting R = | ~X| , we get

Zσ ∗ T α+m−µ
+

δ( ~X) = H(T − R)

∫ T−R

0

(
(T − S)2 − R2

)(σ−m−1)/2
Sα+m−µdS

π(m−1)/22σ−1Γ
(

1
2σ

)
Γ
(

1
2 (σ + 1 − m)

)

= H(T − R)
|X|σ−m−1(T − R)1+α+m−µ

π(m−1)/22σ−1Γ
(

1
2σ

)
Γ
(

1
2 (σ + 1 − m)

)

×
∫ 1

0

(
(1 − t)(1 − zt)

)(σ−m−1)/2
tα+m−µ dt

where we have put z = (T − R)/(T + R). Using Euler’s representation formula
for the hypergeometric function, the integral can be written as

Γ(1 + α + m − µ)Γ
(

1
2 (σ + 1 − m)

)

Γ
(
α − µ + 1

2 (σ + 3 + m)
) F

(
1 + m − σ

2
, 1+α+m−µ; α−µ+

σ + 3 + m

2
; z

)
,

if we assume that Re(σ) > m − 1. Since

z =
T − R

T + R
=

τ − (τ2 − 1)1/2

τ + (τ2 − 1)1/2
for τ =

T

|X| ,

we find with the aid of (5) that the hypergeometric function is equal to an associ-
ated Legendre function of the second kind

e−i(m−σ)π/2 Γ
(
α − µ + 1

2 (σ + 3 + m)
)

√
π 2(m−σ)/2Γ(1 + α + m − µ)

×
(
τ + (τ2 − 1)1/2

)1+α+m−µ

(τ2 − 1)(m−σ)/4
Q

(m−σ)/2
α−µ+(σ+m)/2(τ).
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With the aid of (6), we will eventually find that

Zσ ∗ T α+m−µ
+

δ( ~X) = H(T − R)eiπ(σ−m−1/2|X|α+σ−µ

× Γ
(

1
2 (1 + m − σ)

)

2σ−1π(m−1)/2Γ
(

1
2σ

)D
(1+m−σ)/2
α+σ−µ (τ).

Because the Gegenbauer functions are defined in the complex plane cut along
]−∞, 1], the factor H(T −R) may be omitted. Indeed, as τ ∈ R+ the condition
|arg(τ − 1)| < π is equivalent to τ > 1 ⇔ T > R . The Gegenbauer function
has zeroes for 1

2(1 + m − σ) ∈ −N , cancelling the poles of the Gamma function
Γ
(

1
2
(1 + m − σ)

)
, and poles at (α − µ) = −k − m with k ∈ N0 . Note that these

poles were to be expected since the distribution T α+m−µ
+ also has poles at these

values.
We thus have

Zµ ∗ T α+m−µ
+

δ( ~X) = |X|α eiπ(µ−m−1)/2

2µ−1π(m−1)/2

Γ
(

1
2 (1 + m − µ)

)

Γ
(

1
2
µ
) D(1+m−µ)/2

α (τ)

and

∂XZ1+µ ∗ T α+m−µ
+

δ( ~X) = ∂X

[
|X|1+α eiπ(µ−m)/2

2µπ(m−1)/2

Γ
(

1
2
(m − µ)

)

Γ
(

1
2(1 + µ)

) D
(m−µ)/2
1+α (τ)

]
.

Since ∂X = ξ
(
∂|X| + (|X|Γ)−1

)
and Γ(τ) = Γ(ξ · ε) = ξ ∧ ε , we get

∂X |X|1+αD
(m−µ)/2
1+α (τ) = ξ|X|α

(
(m − µ)D((m−µ)/2)+1

α (τ)ξ ∧ ε

+ (1 + α)D
(m−µ)/2
1+α (τ)

)
.

Writing ξ(ξ ∧ ε) as ε − τξ and using (1), we will eventually find

∂X |X|1+αD
(m−µ)/2
1+α (τ) = (µ − m)|X|α

(
D

((m−µ)/2)+1
α−1 (τ)ξ − D((m−µ)/2)+1

α (τ)ε
)
.

This means that we have now found the fundamental solution for the operator ∂µ
X

on the hyperbolic unit ball, for all µ ∈ C and α 6= µ − m − k , k ∈ N0 :

Eµ,α(X) =
1 + e−iπµ

2
|X|α e−iπ(m+1−µ)/2

2µ−1π(m−1)/2

Γ
(

1
2
(1 + m − µ)

)

Γ
(

1
2µ

) D(1+m−µ)/2
α (τ)

− 1 − e−iπµ

2
|X|α e−iπ(m−µ)/2

2µ−1π(m−1)/2

Γ
(
1 + 1

2
(m − µ)

)

Γ
(

1
2 (1 + µ)

)

×
(
D

((m−µ)/2)+1
α−1 (τ)ξ − D((m−µ)/2)+1

α (τ)ε
)
.
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