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Abstract. In this paper we introduce and develop properties of the chordal exponent of

convergence for the Poincaré series of a quasiconformal group acting discontinuously in R
n

so
that we can establish effective bounds on the distortion of this exponent of convergence under
quasiconformal conjugacy. We also relate this exponent of convergence to a geometric variant of
the standard exponent of convergence, and in doing so we are able to extend previous results to
the full class of discrete quasiconformal groups.

1. Introduction and main results

In our paper [BTT2] we analyze the distortion of the exponent of convergence
of a discrete quasiconformal group under quasiconformal conjugacy in dimension 2.
It is the purpose of this paper to generalize these results to dimensions n > 2, and
also to generalize the class of discrete quasiconformal groups to which the analysis
applies.

Recall that a discrete K -quasiconformal group G acting on R
n

is a discrete

group of homeomorphisms of R
n
, endowed with the chordal metric, each of which

is a K -quasiconformal mapping. A discrete 1-quasiconformal group is called a
Kleinian group.

We have been investigating the relationship between the Hausdorff dimen-
sion of the limit set and the exponent of convergence for the class of discrete
quasiconformal groups in [BTT1], [BTT2], [BTT3], and [ABT]. Central to our
considerations is that it is not known whether in dimensions n ≥ 3 a discrete
quasiconformal group acting on R

n
possesses an extension to a group action pre-

serving Hn+1 . Thus the standard definition of the exponent of convergence, as
used in the study of Kleinian groups, must be adapted to our uses.
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For discrete quasiconformal groups acting on R
n

having regular set one may
define an exponent of convergence solely via the group’s discontinuous action on
its regular set by

(1.1) δchord(G) = inf

{
s > 0

∣∣∣
∑

g∈G

distchord

(
g(z0),Λ(G)

)s
<∞

}

for any z0 ∈ Ω(G) (see Definition 2.6). We will fully develop the properties of this
exponent of convergence. This is the optimal definition for the distortion problem.

If the limit set is all of R
n

this definition will no longer work. We show

that every discrete quasiconformal group acting on R
n

has an extension to a
quasiconformal hyperbolic action on Hn+1 . The point is that this action does
not necessarily possess a group structure. However, by exploiting the discreteness
of the underlying group on R

n
, we show that the extended action is in fact

geometrically tractable. In particular, it allows us to define a variant of the usual
hyperbolic exponent of convergence δhyp(G) (see Definition 2.4). We observe
that the properties known from the Kleinian case mainly remain unchanged (see
Lemma 2.5).

Both approaches to the exponent of convergence are quite natural. In fact,
we show in Theorem 4.2 that for a non-elementary discrete quasiconformal group
with non-empty regular set the hyperbolic exponent of convergence agrees with
the chordal exponent:

Theorem. Let G be a discrete quasiconformal group acting on R
n

having

non-empty regular set Ω(G) ⊂ R
n

and so that |Λ(G)| ≥ 2 . Then

δhyp(G) = δchord(G).

Note that this theorem has been established in the Kleinian group setting by
Bishop and Jones [BJ2].

Remark. The assumption that |Λ(G)| ≥ 2 is necessary in the above theorem
as for example the group 〈z 7→ z + 1〉 , acting on H2 , has hyperbolic exponent 1

2
and chordal exponent 1.

The relationship between the conical limit set and the exponent of convergence
of a discrete quasiconformal group is more complicated than for a Kleinian group.
We show in [BTT1] that the Hausdorff dimension of the conical limit set of a
discrete quasiconformal group acting on Hn+1 (and extended naturally to R

n
) is

bounded above by its exponent of convergence, but the exponent of convergence
can be strictly larger than the Hausdorff dimension of the conical limit set (see
Example 4.1 in [BTT1].) We show that we can remove the assumption that the
group act on Hn+1 and only consider discrete quasiconformal groups acting on R

n

(see Theorem 5.1):
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Theorem. Let G be a discrete quasiconformal group acting on R
n
. Then

δ(G) ≥ dimΛc(G) . (Here, δ(G) is to be properly interpreted according to context,
see the discussion in the beginning of Section 5.)

This result drives the question that is the central motivation for undertaking
the project described in this paper: Is there an upper bound on the exponent of

convergence in terms of the Hausdorff dimension of the conical limit set and the

quasiconformal dilatation of the group? (See Conjecture 6.1 and in dimension
n = 2, [BTT2] and [BTT4].) In this paper we restrict our focus to the easier
analysis of the distortion of the exponent of convergence under quasiconformal
conjugacy. The central result in this paper is Theorem 5.3.

Main Theorem. For each n ≥ 2 and each K ≥ 1 there exits a constant

c > 0 , depending only on n and K , such that the following holds: Let G be

a discrete non-elementary quasiconformal group acting on R
n

with non-empty

regular set. Let ϕ: R
n
→ R

n
be a K -quasiconformal homeomorphism, and set

H = ϕGϕ−1 . Then

δchord(H) ≤
(n+ c)δchord(G)

c+ δchord(G)
.

The constant c comes from a theorem of Gehring (Theorem 5.6) on the inte-
grability of the Jacobian of a quasiconformal mapping. In dimension 2 Astala
proved [As] that c = 2/(K − 1), in higher dimensions it is conjectured that
c = n/(K1/(n−1) − 1). In dimension 2 we proved the above result [BTT2] un-
der the additional assumption that Λ(G) be uniformly perfect.

Finally, we consider discrete quasiconformal groups acting on R
n

having a
purely conical limit set and non-empty regular set. In our paper [ABT] we prove
that if the group has an extension to a group action preserving Hn+1 then it has

the Sullivan–Tukia property, i.e. the exponent of convergence and the Hausdorff
dimension of its limit set are both strictly less than n . We provide a new proof
that removes the assumption that the group extend to Hn+1 (see Theorem 5.5):

Theorem. Let G be a discrete quasiconformal group acting on R
n
, hav-

ing non-empty regular set and having a purely conical limit set Λ(G) . Then

dim Λ(G) ≤ δchord(G) < n .

2. Basic facts concerning discrete groups

and their exponents of convergence

In this section we will compile a list of pertinent facts concerning discrete
group actions on R

n
. Recall that Gehring and Martin [GM] observed that discrete

K -quasiconformal groups are in fact a sub-class of a larger category of discrete
groups called discrete convergence groups. In particular, a discrete quasiconformal
group G has the convergence property, i.e. for every sequence in G there exists
a subsequence {gj} and two (not necessarily distinct) points a, b ∈ R

n
so that
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{gj(x)} converges to a locally uniformly in x ∈ R
n
\ {b} and {g−1

j (y)} converges

to b locally uniformly in y ∈ R
n
\ {a} . Quasiconformal groups, and indeed the

more general class of convergence groups, share many of the basic properties of
Kleinian groups, e.g. the notion of a limit set Λ(G) and a regular set Ω(G), the
dynamical classification of group elements, etc. The conical limit set is the set of
all points of approximation of G , i.e. the set of all points x ∈ R

n
for which there

exists a sequence {gk} in G and two distinct points a, b ∈ R
n

so that gk(x) → a ,

and gk(y) → b for all y ∈ R
n
\ {x}. (See also Maskit [Mas].) For the basics on

the dynamical action of a convergence group see [GM]; for an introduction to the
dynamic and geometric properties of Kleinian groups see [Mas].

Recall that it is not known whether every discrete quasiconformal group acting
on R

n
extends to a group action preserving Hn+1 . It is, however, known that each

K -quasiconformal mapping of R
n

extends (non-uniquely) to a K ′ -quasiconformal
mapping preserving Hn+1 [TV], where K ′ = K ′(n,K) only depends on the di-
mension n and the dilatation K .

Definition 2.1. A K -quasiconformal hyperbolic action G′ on Hn+1 is a
collection of K -quasiconformal homeomorphisms preserving Hn+1 so that:

(1) The collection of extensions of the elements G′ to R
n

forms a discrete qua-

siconformal group G on R
n
.

(2) The elements of G′ and G correspond to each other in a one-to-one manner.

Thus we have:

Lemma 2.2. A discrete quasiconformal group G acting on R
n

has an asso-

ciated quasiconformal hyperbolic action G′ on Hn+1 .

In fact, G has associated to it many quasiconformal hyperbolic actions. How-
ever, each acts nicely on Hn+1 :

Lemma 2.3. Each quasiconformal hyperbolic action acts discontinuously

on Hn+1 .

Proof of Lemma 2.3. Let G′ be a quasiconformal hyperbolic action on Hn+1

with associated boundary group G . The proof that G′ acts discontinuously every-
where on Hn+1 is by contradiction: assume that there exists a point x0 ∈ Hn+1 ,
a small neighborhood U of x0 , and a sequence of distinct elements {gj} ∈ G′ so
that gj(U) ∩ U 6= ∅ for all j .

We consider the corresponding sequence {gj} ∈ G . Then by the convergence
property there exist points a, b ∈ R

n
and a subsequence {gjk

} ⊆ {gj} so that

gjk
( · ) → a uniformly on compact subsets of R

n
\ {b} . Choose a bi-infinite

hyperbolic geodesic β ∈ Hn+1 through x0 , so that both of the endpoints {c, d} of
β do not lie in the collection {a, b} . Then gjk

(c) → a and gjk
(d) → a as k → ∞ .

Furthermore, since gjk
is K -quasiconformal, we know that gjk

(β) is contained
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in a bounded hyperbolic neighborhood of the hyperbolic geodesic with endpoints
gjk

(c) and gjk
(d) (see Lemma 3.4.2 in [E]). Thus we can conclude that for large

enough k the image gjk
(β) lies in an arbitrarily small (n+ 1)-ball centered at a ,

and this implies that gjk
(U) ∩ U = ∅ for large enough k , a contradiction.

Thus we can define a Poincaré series and an exponent of convergence δhyp

that shares many of the properties that are known in the Kleinian case.

Definition 2.4. Let G be a discrete quasiconformal group acting on R
n
, ex-

tend G to a quasiconformal hyperbolic action G′ on Hn+1 . Then the s-geometric

Poincaré series is ∑

g∈G′

e−s%(x,g(y)).

Furthermore, the hyperbolic exponent of convergence of G is

δhyp(G) = inf

{
s > 0

∣∣∣
∑

g∈G′

e−s%(x,g(y)) <∞

}
.

The following lemma validates the previous definition:

Lemma 2.5. Let G be a discrete quasiconformal group acting on R
n
. Then

the value of δhyp(G) only depends on G , but not on the particular extension

action G′ . Furthermore, δhyp(G) is also independent of the choice of base points

x and y , and 0 ≤ δhyp(G) ≤ n .

The proof of this lemma is a slight modification of the proofs of Theorem 3.3
and Lemma 2.3 in [BTT1]. Under additional assumptions we will sharpen this
lemma in Theorem 5.5 and Corollary 5.2.

In considering distortion questions our analysis involves the area distortion of
sets in R

n
under quasiconformal mappings. The optimal bounds are achieved in

dimension n and so we are obliged to ignore the possible existence of an extension
to Hn+1 and develop an exponent of convergence in terms of the chordal metric q .

Definition 2.6. Let G be a discrete quasiconformal group acting on R
n

with non-empty regular set. Let z0 ∈ Ω(G). Then

δchord(G) = inf

{
s > 0

∣∣∣
∑

g∈G

distchord

(
g(z0),Λ(G)

)s
<∞

}

is the chordal exponent of convergence of G .

The value of the chordal exponent of convergence does not depend on the
choice of z0 ∈ Ω(G):
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Lemma 2.7. Let G be a discrete quasiconformal group acting on R
n

with

non-empty regular set, and let z0 , w0 be two points in Ω(G) . Then there exists

a constant C such that

(2.1)

distchord

(
g(w0),Λ(G)

)

C
≤ distchord

(
g(z0),Λ(G)

)

≤ C distchord

(
g(w0),Λ(G)

)

holds for all g ∈ G . The constant C does not depend on g ∈ G (but it does

depend on z0, w0) .

An immediate corollary is the above-mentioned base point independence for
δchord(G).

Corollary 2.8. The chordal exponent of convergence is independent of the

choice of the base point z0 ∈ Ω(G) .

Proof of Lemma 2.7. By conjugation with an isometry of the chordal metric
we can assume without loss of generality that ∞ ∈ Λ(G). Observe that each
g ∈ G extends to a quasiconformal mapping of Hn+1 , by reflection we can then
extend g to a quasiconformal mapping g′ of Rn+1 . By [TV] we can extend each
g ∈ G in this way and keep the dilatation of all g′ bounded by, say, K . Note
that the collection {g′ | g ∈ G} may no longer have a group structure. Let
W = Rn+1 \ Λ(G) ⊂ Rn+1 . Then each g′ keeps W invariant. (In this proof we
have to pass from Ω(G) to W to ensure that we have a connected open set to
work with. If Ω(G) is connected then the passage to W is not necessary.)

Let now z0 and w0 be two points in Ω(G). Let H be the subset of all g ∈ G
so that

distchord

(
g(z0),Λ(G)

)
≤ diamchord

(
Λ(G)

)
/10 and

distchord

(
g(w0),Λ(G)

)
≤ diamchord

(
Λ(G)

)
/10.

Then G \ H is finite. Let g ∈ H . Let z∗ ∈ Λ(G) be a point such that
distchord

(
g(z0),Λ(G)

)
= q

(
g(z0), z

∗
)

(recall that q denotes the chordal metric).
Let z∗∗ ∈ Λ(G) be a point that has chordal distance at least diamchord(Λ(G))/2
from z∗ . Using a chordal isometry ϕ we map z∗∗ to ∞ . Then

(2.2) distchord(ϕ(z∗),∞) = distchord(z∗, z∗∗) ≥ diamchord

(
Λ(G)

)
/2,

and

(2.3)
distchord

(
ϕ
(
g(z0)

)
,∞

)
≥ distchord

(
ϕ(z∗),∞

)
− q

(
ϕ(z∗), ϕ

(
g(z0)

))

≥
(

1
2
− 1

10

)
diamchord

(
Λ(G)

)
.
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Observe that since ϕ is a Möbius transformation, it extends to W . Furthermore,
W ′ = ϕ

(
g′(W )

)
= ϕ(W ) ⊂ Rn+1 since ∞ ∈ ϕ(Λ(G)). An application of Theo-

rem 11.30 in [Vu] (here we need that W is a connected open subset of Rn+1 ) to
the mapping ϕ ◦ g′: W →W ′ yields that

∣∣ϕ
(
g(z0)

)
− ϕ

(
g(w0)

)∣∣
min

{
distEuc

(
ϕ(g(z0)

)
, ϕ

(
Λ(G)

))
, distEuc

(
ϕ
(
g(w0)

)
, ϕ

(
Λ(G)

))}

≤Mn,K

(
|z0 − w0|

min
{
distEuc

(
z0,Λ(G)

)
, distEuc

(
w0,Λ(G)

)}
)

=: M,

where Mn,K : [0,∞) → [0,∞) is a homeomorphism that only depends on n and K .
Hence

distEuc

(
ϕ
(
g(w0)

)
, ϕ

(
Λ(G)

))
≤ (M + 1) distEuc

(
ϕ
(
g(z0)

)
, ϕ

(
Λ(G)

))

and

distEuc

(
ϕ
(
g(z0)

)
, ϕ

(
Λ(G)

))
≤ (M + 1) distEuc

(
ϕ
(
g(w0)

)
, ϕ

(
Λ(G)

))
,

where M depends on n , K , z0 , w0 , Λ(G), but not on the specific element g ∈ G .
By our normalizations (2.2) and (2.3) we now have that the Euclidean and

chordal distances are comparable, so that we obtain

distchord

(
ϕ
(
g(w0)

)
, ϕ

(
Λ(G)

))
≤ (M̃ + 1) distchord

(
ϕ
(
g(z0)

)
, ϕ

(
Λ(G)

))

and

distchord

(
ϕ
(
g(z0)

)
, ϕ

(
Λ(G)

))
≤ (M̃ + 1) distchord

(
ϕ
(
g(w0)

)
, ϕ

(
Λ(G)

))
,

where M̃ is independent of g . Since ϕ is a chordal isometry, this implies that

distchord

(
g(w0),Λ(G)

)
≤ (M̃ + 1) distchord

(
g(z0),Λ(G)

)

and
distchord

(
g(z0),Λ(G)

)
≤ (M̃ + 1) distchord

(
g(w0),Λ(G)

)
,

for all g ∈ H .
Since G \H is finite, we can term by term replace M̃ with a larger constant

(if necessary) so that the last two inequalities hold for all g ∈ G . This proves the
lemma.

Remark 2.9. We will observe that δchord(G) ≤ n by establishing that
δchord(G) = δhyp(G) (see Theorem 4.2).
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3. Geometric facts about quasiconformal mappings

In this section we provide some basic facts concerning the distortion of the
hyperbolic and quasihyperbolic metrics under quasiconformal mappings.

Recall that the hyperbolic metric % on Bn is derived from the differential
2|dz|/(1 − |z|2). The first lemma describes how the hyperbolic distance is distorted
under quasiconformal mappings preserving Bn . This lemma is a special case of
the more general Theorem 3.2 and Corollary 3.3 (see below).

Lemma 3.1. For each n ∈ N and K ≥ 1 there exists a homeomorphism

ΦK,n: [0,∞) → [0,∞) so that any K -quasiconformal mapping g preserving Bn

satisfies

%
(
g(x), g(y)

)
≤ ΦK,n

(
%(x, y)

)

for all x, y ∈ Bn . Furthermore, there exists a constant LK,n depending only on

n and K , so that

1

LK,n
%(x, y) ≤ %

(
g(x), g(y)

)
≤ LK,n%(x, y)

holds for all x, y ∈ Bn with %(x, y) ≥ 1 .

Next we record some results concerning the distortion of the quasihyperbolic
metric under quasiconformal mappings. For a proper subdomain D of Rn we
define the quasihyperbolic metric kD on D by

kD(x1, x2) = inf
C

∫

C

1

dist(x, ∂D)
ds,

where the infimum is taken over all rectifiable arcs C joining x1 and x2 in D , and
dist denotes the Euclidean distance. Many of the basic properties of this metric
can be found in [GO]. In particular, (D, kD) is a complete geodesic space. The
following theorem is proved in [GO]:

Theorem 3.2 (Gehring–Osgood). For each n ∈ N and K ≥ 1 there exists

a constant c only depending on n and K with the following property : If D and

D′ are proper subdomains of Rn and if f is a K -quasiconformal mapping of D
onto D′ then

kD′

(
f(x1), f(x1)

)
≤ cmax

(
kD(x1, x2), kD(x1, x2)

α
)
, α = K1/(1−n),

for all x1, x2 ∈ D .

In particular, this theorem implies that a quasiconformal mapping f as in
the theorem is bi-Lipschitz “in the large”:
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Corollary 3.3. For each n ∈ N , each K ≥ 1 and each a > 0 there exists a

constant L > 1 with the following property : If D and D′ are proper subdomains

of Rn and if f is a K -quasiconformal mapping of D onto D′ then

1

L
kD(x1, x2) ≤ kD′

(
f(x1), f(x2)

)
≤ LkD(x1, x2)

for all x1, x2 ∈ D with kD(x1, x2) ≥ a . Here, L→ ∞ as a→ 0 .

Recall finally that a quasiconformal mapping of R
n

“quasi-preserves” the
cross ratio

|a, b, c, d| =
|a− c| |b− d|

|a− d| |b− c|
,

where a , b , c , d are four distinct points in R
n
, and this quantity is appropriately

interpreted if one of the four points is the point ∞ . See for example [AVV].

Lemma 3.4. For each n ∈ N, n ≥ 2 and each K ≥ 1 there exists a ho-

meomorphism ηK,n: [0,∞) → [0,∞) so that every K -quasiconformal mapping

f : R
n
→ R

n
satisfies:

1

ηK,n(1/|a, b, c, d|)
≤ |f(a), f(b), f(c), f(d)| ≤ ηK,n(|a, b, c, d|).

Note that η1,n(t) = t , i.e. the cross ratio is invariant under Möbius transfor-
mations.

We are now ready to present our first lemma. It quantifies the relation between
balls in the Euclidean versus the quasihyperbolic metric.

Lemma 3.5. Let D ⊂ Rn be a proper subdomain, and let kD be the

quasihyperbolic metric in D . Then for each z0 ∈ D and each M ≥ 2 we have

that

BkD

(
z0,

1

M + 1

)
⊂ BEuc

(
z0,

dist(z0, ∂D)

M

)
⊂ BkD

(
z0,

1

M − 1

)
.

Here, BkD
(z0, r) and BEuc(z0, r) denote a ball with center z0 and radius r

in the quasihyperbolic and the Euclidean metric, respectively.

Proof of Lemma 3.5. Let M ≥ 2 and let z0 ∈ D .

(1) To prove the first inclusion let

z ∈ ∂BEuc

(
z0,

dist(z0, ∂D)

M

)
, i.e. |z − z0| =

dist(z0, ∂D)

M
.
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Then there exists a geodesic C in the quasihyperbolic metric so that

kD(z0, z) =

∫

C

1

dist(w, ∂D)
ds.

Since quasihyperbolic geodesics are 1-convex with respect to balls ([Mar, Theo-
rem 2.2]) we know that

C ⊂ BEuc

(
z0,

dist(z0, ∂D)

M

)
.

Hence, for any w ∈ C , we have that

dist(w, ∂D) ≤ dist(z0, ∂D) + |w − z0|

≤ dist(z0, ∂D) +
dist(z0, ∂D)

M
=
M + 1

M
dist(z0, ∂D).

Thus

kD(z0, z) ≥
M

M + 1

1

dist(z0, ∂D)

∫

C

ds ≥
M

M + 1

|z − z0|

dist(z0, ∂D)
=

1

M + 1
.

Since the sphere ∂BEuc

(
z0, dist(z0, ∂D)/M)

)
separates Rn we conclude that

BkD

(
z0,

1

M + 1

)
⊂ BEuc

(
z0,

dist(z0, ∂D)

M

)
.

(2) To prove the second inclusion, let

z ∈ BEuc

(
z0,

dist(z0, ∂D)

M

)
, i.e. |z − z0| ≤

dist(z0, ∂D)

M
.

Then for any w on the line segment [z0, z] that connects z0 to z we have that

dist(w, ∂D) ≥ dist(z0, ∂D) − |z0 − w|

≥ dist(z0, ∂D) −
dist(z0, ∂D)

M
=
M − 1

M
dist(z0, ∂D).

Thus we have for the quasihyperbolic distance:

kD(z0, z) ≤

∫

[z0,z]

1

dist(w, ∂D)
ds ≤

M

M − 1

1

dist(z0, ∂D)

∫

[z0,z]

ds

=
M

M − 1

|z0 − z|

dist(z0, ∂D)
≤

1

M − 1
.
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Hence we have shown that

BEuc

(
z0,

dist(z0, ∂D)

M

)
⊂ BkD

(
z0,

1

M − 1

)
.

Lemma 3.6 Let D ⊂ Rn be a proper subdomain, and let ϕ: D → Rn

be a K -quasiconformal mapping, let D′ = ϕ(D) . Denote by kD and kD′ the

quasihyperbolic metrics in D , D′ , respectively. Then for each r0 > 0 there exists

a constant L depending only on r0 and K so that for all r ≥ r0 and all z0 ∈ D
we have that

BkD′

(
ϕ(z0),

r

L

)
⊂ ϕ

(
BkD

(z0, r)
)
⊂ BkD′

(
ϕ(z0), Lr

)
.

Proof. Let r0 > 0. Then, following Corollary 3.3 there exists a constant L
depending only on r0 and K so that

1

L
kD(v, w) ≤ kD′

(
ϕ(v), ϕ(w)

)
≤ LkD(v, w)

holds for all v, w ∈ D with kD(v, w) ≥ r0 . Let now r ≥ r0 and let z0 ∈ D .

(1) To show the first inclusion let w ∈ BkD′

(
ϕ(z0), r/L

)
and suppose that

w /∈ ϕ
(
BkD

(z0, r)
)
. Then ϕ−1(w) /∈ BkD

(z0, r) and so kD

(
ϕ−1(w), z0

)
≥ r . But

since r ≥ r0 this implies that kD′

(
w,ϕ(z0)

)
≥ r/L , and this is a contradiction.

(2) To show the second inclusion let z ∈ ∂BkD
(z0, r), i.e. kD(z0, z) = r . Then

kD′

(
ϕ(z0), ϕ(z)

)
≤ Lr , i.e.

ϕ(z) ∈ BkD′

(
ϕ(z0), Lr

)
.

But this implies that

ϕ
(
BkD

(z0, r)
)
⊂ Bk

D′

(
ϕ(z0), Lr

)
.

Remark 3.7. Setting ΨK,n(t) = cK,n max(t, tα), where α = K1/(1−n) and
cK,n is the constant from Theorem 3.2 one similarly obtains that under the hy-
pothesis of Lemma 3.6 we have that

ϕ
(
BkD

(
z0, ψ

−1
K,n(t)

))
⊂ BkD′

(
ϕ(z0), t

)
⊂ ϕ

(
BkD

(
z0, ψK,n(t)

))

holds for all t > 0.
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4. The equality of the chordal and hyperbolic exponents

The space X = R
n
×R

n
×R

n
\diagonals can be identified with the collection

of mutually distinct triples of points in R
n
. For a point (a, b, c) ∈ X , denote by

p the projection map
p: X → Hn+1

that maps c to the point ζ on the hyperbolic geodesic (a, b) ∈ Hn+1 so that the
hyperbolic geodesic determined by c and ζ meets (a, b) orthogonally.

The action of the Möbius group acting on R
n

extends via the diagonal ex-

tension to an action on R
n
× R

n
× R

n
\ diagonals; observe that the action of a

Möbius transformation commutes with the projection map p , that is

(4.1) p
(
γ(a), γ(b), γ(c)

)
= γ

(
p(a, b, c)

)
.

(Of course the action of γ on the right side of the above equation is that of the
isometric action of γ on Hn+1 .)

Equation (4.1) is no longer true for quasiconformal mappings, however it is
not too false either (see Lemma C2 in [T4] for example):

Lemma 4.1. For each n ∈ N and for each K ≥ 1 there exists a constant

CK,n so that for any K -quasiconformal mapping g: Hn+1 → Hn+1 (naturally

extended to R
n
) and any triple (a, b, c) of mutually distinct points in R

n
we

have that

%
(
g
(
p(a, b, c)

)
, p

((
g(a), g(b), g(c)

)))
≤ CK,n.

The results in Section 3 and Lemma 4.1 now enable us to show that both
the chordal and the hyperbolic exponent of convergence agree for discrete quasi-
conformal groups with non-empty regular set and large enough limit set, acting
on R

n
. The analogous result for Kleinian groups was proved by Bishop and Jones

in [BJ2].

Theorem 4.2. Let G be a discrete quasiconformal group acting on R
n

with

non-empty regular set Ω(G) and so that |Λ(G)| ≥ 2 . Then

(4.2) δhyp(G) = δchord(G).

Proof. Suppose first that G is non-elementary. Let G′ be a quasiconformal
hyperbolic action on Hn+1 associated with G . Let z0 ∈ Ω(G). By conjugation
with a Möbius transformation we may assume that ∞ ∈ Ω(G), and that the
orbit of z0 is bounded in Rn , i.e. ∞ /∈ G(z0). With these normalizations, we
can replace the chordal distance distchord with the Euclidean distance distEuc

in the definition of the chordal exponent of convergence (Definition 2.6) without
affecting the convergence behavior of the sum. Furthermore, in the definition
of the hyperbolic exponent of convergence (Definition 2.4) we choose x = y =
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j = (0, . . . , 0, 1) ∈ Hn+1 and then can replace %
(
j, g(j)

)
with

(
− log Im

(
g(j)

))

without affecting the convergence properties. Here, for a point x ∈ Hn+1 , we
write Im(x) for the (n+ 1)st coordinate of x . We often write x = z + tj , where
t = Im(x), and z ∈ Rn . We also refer to the point z in Rn given by the first n
coordinates of x as Re(x). Thus (4.2) becomes
(4.3)

inf

{
s > 0

∣∣∣
∑

g∈G′

(
Im g(j)

)s
<∞

}
= inf

{
s > 0

∣∣∣
∑

g∈G

distEuc

(
g(z0),Λ(G)

)s
<∞

}
.

Clearly, j can be replaced by any other x ∈ Hn+1 .
Choose r > 0 small enough so that the Euclidean ball D = B(z0, r) in Rn

of radius r centered at z0 is contained in Ω(G) and its orbit under G is bounded
in Rn .

Let x = z0 + rj ∈ Hn+1 . Pick (and fix) a, b, c ∈ Λ(G) mutually distinct,
and recall that C = p(a, b, c) ∈ Hn+1 is the projection of c onto the hyperbolic
geodesic with endpoints a and b .

z0

g-1
(v)

yyy g-1
(w)

x p( )g-1
(v),g

-1
(w),z0

v

w
g( )z0

g(x)
~

g(y)
-1

(w)

g

r

r

Figure 1.

Let v ∈ ∂g(D) be a point with minimal Euclidean distance to g(z0). Let w
be the closest point on ∂g(D) that lies on the ray emanating from v and passing
through g(z0). Define τg(x) = p

(
v, w, g(z0)

)
, see Figure 1. We will show that

τg(x) is hyperbolically close to g(x), where “close” is independent of the mapping
g ∈ G . To do so, let y be the point on ∂B(z0, r) that is diametrically opposite to
g−1(v). Then

|g−1(v), z0, g
−1(w), y| =

|g−1(v) − g−1(w)| |z0 − y|

|g−1(v) − y| |z0 − g−1(w)|
= |g−1(v) − g−1(w)|

1

2r
.

On the other hand, using Lemma 3.4 we obtain that

|g−1(v), z0, g
−1(w), y| ≥

1

ηK,n

(
1/|v, g(z0), w, g(y)|

),
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and

|v, g(z0), w, g(y)| =
|v − w|

|g(z0) − w|

|g(z0) − g(y)

|v − g(y)|

≥ 1 ·
|g(z0) − g(y)|

|v − g(z0)| + |g(z0) − g(y)|

=
1

|v − g(z0)|

|g(z0) − g(y)|
+ 1

≥
1

1 + 1
=

1

2
.

Hence |g−1(v), z0, g
−1(w), y| ≥ 1/ηK,n(2) and so |g−1(v)− g−1(w)| ≥ 2r/ηK,n(2).

Thus %
(
x, p(g−1(v), g−1(w), z0)

)
≤ DK,n , where DK,n is a constant that only

depends on K and n , but not on g or r . Hence Lemma 3.1 implies that

%
(
g(x), g

(
p(g−1(v), g−1(w), z0)

))
≤ ΦK,n(DK,n).

Now, since g̃(x) = p
(
v, w, g(z0)

)
= p

(
g
(
g−1(v)

)
, g

(
g−1(w)

)
, g(z0)

)
we obtain from

Lemma 4.1 that

%(g̃(x) , g
(
p
(
g−1(v), g−1(w), z0)

))
≤ CK,n,

so that we can conclude:

%
(
g(x), g̃(x)

)
≤ %

(
g(x), g

(
p
(
g−1(v), g−1(w), z0)

))

+ %
(
g
(
p
(
g−1(v), g−1(w), z0

))
, g̃(x)

)

≤ ΦK,n(DK,n) + CK,n.

Thus, in (4.3) we can replace Im g(j) with Im g̃(x) and hence have to show
that
(4.4)

inf

{
s > 0

∣∣∣
∑

g∈G

(
Im g̃(x)

)s
<∞

}
= inf

{
s > 0

∣∣∣
∑

g∈G

distEuc

(
g(z0),Λ(G)

)s
<∞

}
.

In order to prove (4.4) we compare
(
Im g̃(x)

)
and distEuc

(
g(z0),Λ(G)

)
to

each other.

(1) We first show that “≤” holds in (4.4). Note that |g(z0)− v| ≤ Im g̃(x) ≤
2|g(z0) − v| . Since by choice of v we have that |g(z0) − v| ≤ distEuc

(
g(z0),Λ(G)

)

this implies that

Im g̃(x) ≤ 2 distEuc

(
g(z0),Λ(G)

)

for all g ∈ G , and this proves that

inf

{
s > 0

∣∣∣
∑

g∈G

(
Im g̃(x)

)s
<∞

}
≤ inf

{
s > 0

∣∣∣
∑

g∈G

distEuc

(
g(z0),Λ(G)

)s
<∞

}
.
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(2) Next we show that “≥” holds in (4.4). First observe that Im g̃(x) ≥

|v − g(z0)| ≥
∣∣g(z0) − Re

(
g̃(x)

)∣∣ . Recall that C = p(a, b, c), where a , b , c are

three mutually distinct points in Λ(G). Let M = %(x,C), and define g̃(C) =

p
(
g(a), g(b), g(c)

)
. Then %

(
g(C), g̃(C)

)
≤ CK,n by Lemma 4.1 and thus

%
(
g̃(C) , g̃(x)

)
≤ %

(
g̃(C) , g(C)

)
+ %

(
g(C), g(x)

)
+ %

(
g̃(x) , g(x)

)

≤ 2CK,n + ΦK,n(M).

Hence there exists a constant A that only depends on M , n , K , so that the

Euclidean ball of radius A · Im g̃(x) , centered at Re g̃(x) , must contain at least

one of the points g(a), g(b), g(c). This implies that distEuc

(
Re g̃(x) ,Λ(G)

)
≤

A · Im g̃(x) . Hence

distEuc

(
g
(
z0),Λ(G)

))
≤ |g(z0) − Re g̃(x) | + distEuc

(
Re g̃(x) ,Λ(G)

)

≤ Im g̃(x) +A · Im g̃(x) .

Thus

inf

{
s > 0

∣∣∣
∑

g∈G

(
Im g̃(x)

)s
<∞

}
≥ inf

{
s > 0

∣∣∣
∑

g∈G

distEuc

(
g(z0),Λ(G)

)s
<∞

}
.

If G is elementary, then by our assumptions we have that Λ(G) contains ex-
actly 2 points. One can modify the above argument and still show that δchord(G) =
δhyp(G).

5. The chordal exponent of convergence and its distortion

The results in the previous section show that we can define the exponent of
convergence of a non-elementary discrete quasiconformal group with non-empty
regular set, acting on R

n
, even if the group action does not extend to Hn+1 ,

in two different ways that lead to the same result. In what follows, we will use
the symbol δ(G) to refer to an appropriate choice of exponent of convergence,
i.e. δ(G) = δhyp(G) if G is elementary or if Ω(G) = ∅ , and otherwise, δ(G) is
interpreted hyperbolically or chordally, in whichever way is most convenient.

We show in [BTT1] that the Hausdorff dimension of the conical limit set of a
discrete quasiconformal group acting on Hn+1 (and extended naturally to R

n
) is

bounded above by its exponent of convergence, but the exponent of convergence
can be strictly larger than the Hausdorff dimension of the conical limit set. In
fact, using a standard argument (see for example [BJ1], [N]) which generalizes
to quasiconformal hyperbolic actions (see Definition 2.1) one can see that the

Hausdorff dimension of the conical limit set of a discrete quasiconformal group is

bounded above by its hyperbolic exponent of convergence. Thus we have:
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Theorem 5.1. Let G be a discrete quasiconformal group acting on R
n
.

Then δ(G) ≥ dim Λc(G) .

Establishing this fact allows us to observe that δ(G) shares another funda-
mental property with δ(Γ) where Γ is Kleinian.

Corollary 5.2. Let G be a discrete non-elementary quasiconformal group.

Then δ(G) > 0 .

Proof of Corollary 5.2. For any such G we can find a non-elementary subgroup
H ⊆ G so that H has purely conical limit set and non-empty regular set. It is
a result of Bonfert-Taylor and Martin [BTM] that Λ(H) is uniformly perfect and
so dim

(
Λ(H)

)
> 0 (see [JV].) The conical limit set of the full group G contains

the conical limit set of H , and so dim
(
Λc(G)

)
≥ dim

(
Λc(H)

)
. The conclusion is

now immediate from Theorem 5.1.

As stated in the introduction, our formulation of the exponent of convergence
in the chordal metric was undertaken in order to establish the following distortion
theorem:

Theorem 5.3. Let G be a discrete non-elementary quasiconformal group act-

ing on R
n

with non-empty regular set. Let ϕ: R
n
→ R

n
be a K -quasiconformal

homeomorphism, and set H = ϕGϕ−1 . Then

δ(H) ≤
(n+ c)δ(G)

c+ δ(G)
,

where c > 0 is the constant from Gehring’s Theorem 5.5 (see below).

Remark 5.4. Astala showed that in dimension n = 2 the sharp bound for
c is c = 2/(K − 1). Thus under the assumptions of the theorem, in dimension 2
we obtain that

δ(H) ≤
2Kδ(G)

2 + (K − 1)δ(G)
.

This was proved in [BTT2] under the additional assumption that Λ(G) be uni-
formly perfect.

Finally, we consider discrete quasiconformal groups acting on R
n

with purely
conical limit set and non-empty regular set. In our paper [ABT] we prove that if
the group extends to a group acting on Hn+1 then the exponent of convergence
of the group is strictly less than n , compare to Theorems 1.2 and 1.3 in [ABT].
Here we provide a new proof not requiring the assumption that the group extend
to Hn+1 :

Theorem 5.5. Let G be a discrete non-elementary quasiconformal group

acting on R
n

with purely conical limit set and non-empty regular set. Then

δ(G) < n .
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We now prove the results from this section.

In order to prove Theorem 5.3 we recall results of Gehring [G] and Astala [As]
concerning the integrability of the partial derivatives of a quasiconformal mapping.

Let D be a domain in Rn and let f : D → Rn be a homeomorphism. Let

Lf (x) = lim sup
y→x

|f(y)− f(x)|

|y − x|
and Jf (x) = lim sup

r→0
m

(
f
(
B(x, r)

)

m
(
B(x, r)

)
)

be the maximum stretching and the generalized Jacobian for f at x ∈ D , respec-
tively, where B(x, r) denotes the open n -ball of radius r about x and m denotes
Lebesgue measure in Rn . These functions are nonnegative and measurable in D ,
and Jf (x) ≤ Lf (x)n . Lebesgue’s theorem implies that

∫
E
Jf dm ≤ m

(
f(E)

)
<∞

for each compact set E ⊂ D , and hence Jf is locally L1 -integrable in D . If f
is also K -quasiconformal in D , then Lf (x)n ≤ KJf (x) almost everywhere in D ,
and thus Lf is locally Ln -integrable in D .

Gehring shows ([G, Theorem 1]):

Theorem 5.6. Let D ⊂ Rn be a domain and let f : D → Rn be K -

quasiconformal. Then Lf is locally Lp -integrable in D for each p ∈ [n, n + c) ,
where c is a positive constant which depends only on K and n .

Analyzing the radial stretch mapping near the origin one observes that nec-
essarily c ≤ n/(K1/(n−1) − 1), and it is conjectured that this upper bound for c
is sharp. In dimension n = 2 Astala shows in [As] that indeed c = 2/(K − 1).

We will need a localized version of the exponent of convergence. In [BTT3]
we localize the definition of the hyperbolic exponent of convergence; here we will
do the same in terms of the chordal exponent of convergence (Definition 2.6).

Definition 5.7. Let G be a discrete non-elementary quasiconformal group
acting on R

n
with non-empty regular set. Let z0 ∈ Ω(G). For x ∈ R

n
and r > 0

define

δr
x(G) := inf

{
s > 0

∣∣∣
∑

g∈G:g(z0)∈Bchord(x,r)

distchord

(
g(z0),Λ(G)

)s
<∞

}
.

Furthermore, define the local exponent of convergence of G at x to be

δx(G) := lim
r→0

δr
x(G).

Remark 5.8. Note that for fixed x ∈ R
n

the quantity δr
x(G) is non-

increasing as r ↘ 0, and hence the above limit exists. Furthermore the definition
of the local exponent of convergence is independent of the choice of z0 . (This can
be seen via an argument similar to the proof of Lemma 2.7.)

It is easy to see that δx(G) = 0 for x /∈ Λ(G) and furthermore that δ(G) =
maxx∈Λ(G) δx(G).
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Proof the Theorem 5.3. By composition with a Möbius transformation (which
does not effect the exponent of convergence) we may assume that ϕ(∞) = ∞ , that
∞ ∈ Λ(G), and that there exists ζ0 ∈ Λ(G) with ζ0 6= ∞ so that δζ0

(G) = δ(G),
and ξ0 ∈ Λ(H), ξ0 6= ∞ , with δξ0

(H) = δ(H). Choose R > 0 large enough so
that |ζ0| <

1
2R , |ξ0| <

1
2R , |ϕ(ζ0)| <

1
2R , |ϕ−1(ξ0)| <

1
2R . Choose z0 ∈ Ω(H),

and let w0 = ϕ−1(z0). Then, since δξ0
(H) = δ(H), we have that

δ(H) = inf

{
s > 0

∣∣∣
∑

h∈H:|h(z0)|<R

distEuc

(
h(z0),Λ(H)

)s
<∞

}
.

Note that we can use Euclidean distance instead of chordal distance since we only
consider those h ∈ H for which |h(z0)| < R . In the following we shall write
A ∼ B for two quantities A and B if there exists a constant C that only depends
on n and K and possibly the group G (but not on the particular element g ∈ G
under consideration) so that A/C ≤ B ≤ CA .

In what follows, let M ≥ 2 be a constant (whose exact value will be deter-
mined later) that depends on the group G . Let h ∈ H with |h(z0)| < R , let
g = ϕ−1hϕ ∈ G . For an open set U ⊂ Rn and z ∈ U , r > 0, denote by BkU

(z, r)
the quasihyperbolic ball in the component of U that contains z that is centered
at z and has radius r . Then using Lemma 3.5 and Remark 3.7 we obtain:

distEuc(h(z0),Λ(H)) ∼

(
volEucBEuc

(
h(z0),

distEuc

(
h(z0),Λ(H)

)

M

))1/n

∼

(
volEucBkΩ(H)

(
h(z0),

1

M

))1/n

=

(
volEucBkΩ(H)

(
ϕg(w0),

1

M

))1/n

≤

(
volEuc ϕ

(
BkΩ(G)

(
g(w0),Ψk,n

(
1

M

))))1/n

.

Here, volEuc denotes Euclidean volume.
Enumerate {g ∈ G | |ϕg(w0)| < R} = {gi | i ∈ N} , and write

Bi = BkΩ(G)

(
gi(w0),ΨK,n

(
1

M

))
.

Then there is a constant C that only depends on n , K , M , so that
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∑

h∈H:|h(z0)|<R

distEuc

(
h(z0),Λ(H)

)s
≤ Cs

∑

i

(
volEuc ϕ(Bi)

)s/n

= Cs
∑

i

(∫

Bi

Jϕ dm

)s/n

≤ Cs
∑

i

[(∫

Bi

Jp0
ϕ dm

)1/p0

·

(∫

Bi

1q0 dm

)1/q0
]s/n

, where
1

p0
+

1

q0
= 1

= Cs
∑

i

[(∫

Bi

Jp0
ϕ dm

)s/(np0)

· (volEucBi)
s/(nq0)

]

≤ Cs

(∑

i

∫

Bi

Jp0
ϕ dm

)s/(np0)

·

(∑

i

(volEucBi)
sp0/(q0(np0−s))

)(np0−s)/(np0)

.(5.1)

By discontinuity of the action of G on Ω(G) there exists a constant L > 0
so that kΩ(G)

(
g(w0), g̃(w0)

)
≥ L holds for all g, g̃ ∈ G distinct. (Otherwise

there are gj , g̃j ∈ G distinct so that kΩ(G)

(
gj(w0), g̃j(w0)

)
→ 0 as j → ∞ , but

then kΩ(G)

(
w0, g

−1
j

(
g̃j(w0)

))
→ 0 as well by Theorem 3.2, and this contradicts

discontinuity of the action of G near w0 .)
By choosing M large enough so that ΨK,n(1/M) < 1

2L we thus obtain that
the balls {Bi, i ∈ N} are all disjoint. Furthermore,

{
g(w0)

∣∣ ∣∣ϕ
(
g(w0)

)∣∣ < R
}

is contained in the compact (in Rn ) set ϕ−1({|z| ≤ R}), and so there exists a
compact set F ⊂ Rn so that Bi ⊂ F for all i ∈ N . Hence

∑

i

∫

Bi

Jp0
ϕ dm ≤

∫

F

Jp0
ϕ dm,

and this last integral is finite whenever p0 < (n+ c)/n since Jϕ ≤ Ln
ϕ , and Lϕ is

locally Lp -integrable for p ∈ [n, n+ c) by Theorem 5.6. Hence

(5.2)

(∑

i

∫

Bi

Jp0
ϕ dm

)s/np0

<∞

whenever p0 < (n+ c)/n .
We can assume that M was chosen large enough so that ΨK,n(1/M) ≤ 1

3
.

Hence using Lemma 3.5 we obtain:

volEucBi ≤ volEucBkΩ(G)

(
gi(w0),

1
3

)

≤ volEucBEuc

(
gi(w0),

1
2
dist

(
gi(w0),Λ(G)

))
∼ dist

(
gi(w0),Λ(G)

)n
.
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Thus

(5.3)
∑

i

(volEucBi)
sp0/(q0(np0−s)) .

∑

i

dist
(
gi(w0),Λ(G)

)nsp0/(q0(np0−s))
,

and this last sum is finite if nsp0/(q0(np0 − s)) > δ(G). From (5.2) and (5.3) we
obtain that (5.1) is finite if

p0 <
n+ c

n
and

nsp0

q0(np0 − s)
> δ(G).

Using that
1

p0
+

1

q0
= 1

we thus obtain that (5.1) is finite if

s >
(n+ c)δ(G)

c+ δ(G)
.

This proves that

δ(H) ≤
(n+ c)δ(G)

c+ δ(G)
.

Finally, for the proof of Theorem 5.5 we need the following lemma, the proof
of which makes use of the assumption that the limit set be purely conical:

Lemma 5.9 (Corollary 3.2 in [ABT]). Let G be a discrete non-elementary

quasiconformal group acting on R
n

with purely conical limit set and non-empty

regular set. Then Λ(G) is uniformly porous in the following sense. There exists an

ε > 0 such that if B is a chordal ball in R
n

of chordal radius r then B contains

a chordal ball of chordal radius εr that does not intersect Λ .

Proof of Theorem 5.5. In this proof we work with the chordal exponent
of convergence, and thus omit the subscript chord . We can normalize so that
∞ ∈ Λ(G), and so that there exists x ∈ Λ(G), x 6= ∞ , so that δx(G) = δ(G), see
Definition 5.7. Let z0 ∈ Ω(G) and define

G̃ = {g ∈ G | g(z0) ∈ Q1(x)},

where Q1(x) is a n -cube of side length 1, centered at x . Then

δ(G) = inf

{
s > 0

∣∣∣
∑

g∈G̃

distEuc

(
g(z0), Λ(G)

)s
< ∞

}
.

Let Ak =
{
z ∈ Q1(x) | e−(k+1) ≤ distEuc

(
z,Λ(G)

)
< e−k

}
, and let #Ak be the

number of elements g ∈ G for which g(z0) ∈ Ak .
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Claim 1. We have

lim sup
k→∞

log #Ak

k
= δ(G).

To prove Claim 1, let r = lim supk→∞ log #Ak/k , and suppose first that
r < δ(G). Choose s , t so that r < s < t < δ(G). Then #Ak ≤ eks for all but
finitely many k , and hence there is a finite constant C so that

∑

g∈G̃

distEuc

(
g(z0),Λ(G)

)t
=

∑

k

∑

g:g(z0)∈Ak

distEuc

(
g(z0),Λ(G)

)t

≤
∑

k

#Ak(e−k)t ≤
∑

k

ekse−kt + C < ∞.

This implies that δ(G) ≤ t < δ(G), a contradiction. Similarly, one obtains a
contradiction from the assumption that r > δ(G), and this proves Claim 1.

The proof of the Claim 2 below follows easily from Theorem 3.2 and the fact
that G acts discontinuously on Ω(G).

Claim 2. There exists a constant C > 0 so that

kΩ(G)

(
g(z0), h(z0)

)
≥ C

for all g, h ∈ G with g 6= h . Here, we define that kΩ(G)(z, w) = ∞ , if z and w
are in distinct components of Ω(G) .

Our goal is to use Claim 1 in order to estimate δ(G), and we thus need to
bound #Ak from above. Claim 2 implies that there exists a constant M > 0 so
that #Ak ≤ M · volkΩ(G)

(Ak), where volkΩ(G)
denotes quasihyperbolic volume.

Furthermore,

volkΩ(G)
(Ak) =

∫

Ak

(
1

dist( · ,Λ(G))

)n

dm

≤

∫

Ak

(ek+1)n dm = en(k+1) · volEuc(Ak).

Hence

(5.4) #Ak ≤Men(k+1) · volEuc(Ak).

In order to estimate volEuc(Ak), we use Lemma 5.9 to assert the existence of an
integer q so that the following is true: If Q is a (Euclidean) cube contained in
Q1(x), and we divide Q into qn sub-cubes of equal (Euclidean) side length, then
at least one of these sub-cubes does not intersect Λ(G).
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For a cube Q in Rn , denote by 3 ·Q the cube that has three times the side
length of Q and is centered around Q . Then by replacing the integer q with 3q
we can assume that the following holds: if Q is a cube contained in Q1(x), and
we divide Q into qn sub-cubes of equal side length, then at least one of these
sub-cubes Q̃ has the property that 3 · Q̃ does not intersect Λ(G). This implies

that if the side length of this particular cube Q̃ is at least e−k , then Q̃ cannot
meet Ak .

Inductively we obtain that Q1(x) contains (qn−1)i−1 sub-cubes of side length
1/qi none of which meet Ak as long as q−i ≥ e−k , and all these sub-cubes are
disjoint. Hence

volEuc(Ak) ≤ volEuc

(
Q1(x)

)
−

Ik∑

i=1

(q−i)n(qn − 1)i−1,

where Ik ∈ N with (k/log q) − 1 < Ik ≤ k/log q . Thus

volEuc(Ak) ≤ 1 − q−n
Ik−1∑

i=0

(
qn − 1

qn

)i

=

(
qn − 1

qn

)Ik

≤

(
qn − 1

qn

)(k/log q)−1

.

This together with (5.4) implies that

#Ak ≤Men(k+1)

(
qn − 1

qn

)k/log q

.

Hence

log #Ak

k
≤

logM

k
+ n+

n

k
+

1

log q
log

(
qn − 1

qn

)
−

1

k
log

qn − 1

qn
,

and since log
(
(qn − 1)/qn

)
< 0 and log q > 0 we obtain that

lim sup
k→∞

log #Ak

k
≤ n+

1

log q
log

qn − 1

qn
< n.

Claim 1 now implies that δ(G) < n .

Remark 5.10 (1) Theorem 5.5 as well as Lemma 5.9 should be true in
the more general setting of discrete quasiconformal groups whose limit sets con-
sist entirely of conical limit points and bounded parabolic points in the sense of
Bowditch [Bow] and Tukia [T5].

(2) One could prove Theorem 5.5 using the hyperbolic exponent of conver-
gence δhyp and quasiconformal hyperbolic actions. However, the proof given above
is considerably shorter.
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6. Conjecture

Given the relationship between the exponent of convergence and the Hausdorff
dimension of the conical limit set it is desirable to find an upper bound on the
exponent of convergence in terms of the Hausdorff dimension of the conical limit
set and the dilatation K of the group.

Conjecture 6.1. Let G be a discrete non-elementary quasiconformal group

acting on R
n

with non-empty regular set. Then

δchord(G) ≤
(n+ c) dimΛc(G)

c+ dim Λc(G)
,

where

c =
n

K1/(n−1) − 1
.

A variant of this inequality was established in dimension n = 2 in [BTT2]
using the 2-dimensional analog of Theorem 5.3. The approach used in dimension
2 does not extend to higher dimensions because of the existence of discrete qua-
siconformal groups that are not conjugate to Möbius groups ([FS], [T3], see also
[S1], [T1]). Recent progress has been made towards developing sharp bounds in
dimension 2 in [BTT4].
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