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Abstract. We consider the BMO-invariance of quasiminimizers by means of quasihyperbolic
metric. It is shown that

‖u ◦ ϕ‖BMO(Ω) ≤ C‖u‖BMO(Ω′)

for all quasiminimizers u in Ω′ whenever ϕ: Ω → Ω′ is uniformly continuous with respect to
quasihyperbolic metrics in the domains Ω ⊂ Rn and Ω′ ⊂ Rn . It is also shown that the quasihy-
perbolic uniform continuity is a necessary condition for the BMO-invariance under the additional
assumption that ϕ is a quasiregular mapping.

1. Introduction

Let ϕ: Ω → Ω′ be a mapping between strict subdomains of Rn . In this
paper we consider the following question: Under what assumption on ϕ we have
the condition

(1.1) ‖u ◦ ϕ‖BMO(Ω) ≤ C‖u‖BMO(Ω′)

for all K -quasiminimizers u in Ω′ ? The famous result due to Reimann [Re] says
that (1.1) holds for all functions u ∈ BMO(Ω) if and only if ϕ: Ω → Ω′ is quasi-
conformal. Therefore, if we consider only those BMO-functions which are in some
sense harmonic, it is natural to hope that a larger class of the mappings ϕ sat-
isfy (1.1). This appears to be true, and the correct class consists of those mappings
ϕ: Ω → Ω′ , which are uniformly continuous with respect to the quasihyperbolic
metrics in the domains Ω and Ω′ . The quasihyperbolic uniform continuity is suf-
ficient for the condition (1.1) without any differentiability assumption on ϕ as far
as we do not require u ◦ ϕ to be harmonic in some sense (Theorem 4.1).

The quasihyperbolic uniform continuity is also a necessary condition for (1.1)
at least if ϕ is quasiregular and u is n -harmonic (Theorem 4.5). In particular, the
quasihyperbolic uniform continuity characterizes those analytic functions ϕ: Ω →
Ω′ for which (1.1) holds for all classical harmonic BMO-functions u in Ω′ . Even
this result seems to be untouched in the literature. The special case in which
Ω and Ω′ both coincide with the unit disk in the plane is clear by the Schwarz
lemma, see [RU, Section 1]. In the quasiregular case Vuorinen has characterized
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in [V, Chapter 12] the class we consider by means of a Harnack condition. The
proof of Theorem 4.5 relies on this characterization.

This paper is organized as follows. In Section 2, we briefly introduce those
properties of the quasihyperbolic metric and BMO that are needed for under-
standing the arguments in later sections. In Section 3, we introduce the necessary
properties of quasiminimizers. Among else we characterize quasiminimizers with
bounded mean oscillation by means of a weak Bloch condition. This weak Bloch
condition has appeared at least in the papers [N1], [N2], [N3], [K], [L1] and [L2].
The key results of Section 3 are previously known for solutions of quasilinear ellip-
tic equations. Although the proofs for quasiminimizers are essentially the same,
we have written many of the details in order make the presentation reasonably
self-contained. The main results of the paper are included in Section 4, where we
focus on the BMO-invariance and prove the results introduced above.

2. Quasihyperbolic metric

In this section, we introduce the quasihyperbolic metric and the BMO-norm.
Throughout this paper, Ω and Ω′ are strict subdomains of Rn , n ≥ 2. For a
function u: Ω → R and E ⊂ Ω, we denote

oscEu = sup
E
u− inf

E
u.

All the constants are denoted by C . This should not cause any confusion since
we always make precise how the constant C depend on the given parameters.

Quasihyperbolic metric. The quasihyperbolic metric was introduced by
Gehring and Palka in [GP]. For each x, y ∈ Ω, the quasihyperbolic distance kΩ(x, y)
is defined by

kΩ(x, y) = inf
γ

∫

γ

ds

d(z, ∂Ω)
,

where the infimum is taken over all rectifiable curves γ joining x and y in Ω.
Quasihyperbolic metric extends the classical hyperbolic metric to arbitrary

domains. We only need two basic facts on quasihyperbolic metric. Firstly,

(2.1) kΩ(x, y) ≥ log

(

1 +
|x− y|

d(x, ∂Ω)

)

for all x, y ∈ Ω by [GP, Lemma 2.1]. Secondly, if 0 < % < 1, x ∈ Ω, and
y ∈ B

(

x, %d(x, ∂Ω)
)

, then

(2.2) C−1 |x− y|

d(x, ∂Ω)
≤ kΩ(x, y) ≤ C

|x− y|

d(x, ∂Ω)

for some constant C > 0 only depending on % , see e.g. [V, p. 34].
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Lemma 2.1. Let ϕ: Ω → Ω′ be uniformly continuous between the metric

spaces (Ω, kΩ) and (Ω′, kΩ′) . Then for each 0 < κ < 1 there is 0 < % < 1 such

that ϕ(y) ∈ B
(

ϕ(x), κd
(

ϕ(x), ∂Ω′
))

whenever y ∈ B
(

x, %d(x, ∂Ω)
)

.

Proof. Let 0 < κ < 1. A mapping ϕ: Ω → Ω′ is uniformly continuous
between the metric spaces (Ω, kΩ) and (Ω′, kΩ′) if for each ε > 0 there is δ > 0
such that kΩ′

(

ϕ(x), ϕ(y)
)

< ε whenever kΩ(x, y) < δ . We are free to assume that
0 < ε < log 3

2
and 0 < δ < log 3

2
. Now (2.1) implies that

|x− y| ≤ 1
2d(x, ∂Ω) and |ϕ(x) − ϕ(y)| ≤ 1

2d
(

ϕ(x), ∂Ω′
)

.

Hence by (2.2),
|ϕ(x) − ϕ(y)|

d(ϕ(x), ∂Ω′)
≤ Cε if

|x− y|

d(x, ∂Ω)
≤ Cδ.

It is enough to choose Cε < κ .

Functions of bounded mean oscillation. For any u ∈ L1
loc(Ω), we say

that u is of bounded mean oscillation in Ω, write u ∈ BMO(Ω), if

‖u‖BMO(Ω) = sup
BbΩ

1

|B|

∫

B

|u− uB| dx <∞.

Here and elsewhere |E| is the n -dimensional Lebesgue measure of the set E ⊂ Rn ,
dx refers to the integration with respect to measure | · | , and uB is the integral
average

uB =
1

|B|

∫

B

u dx.

The following result due to Staples [S, Corollary 2.26] plays the key role in our
arguments:

Lemma 2.2. Let α > 1 . If

‖u‖BMOα(Ω) := sup
αB⊂Ω

1

|B|

∫

B

|u− uB| dx <∞,

then

‖u‖BMO(Ω) ≤ C‖u‖BMOα(Ω).

The constant C depends only on n and α .

We also need the following well-known fact, see [St, p. 144]:

Lemma 2.3. Assume that u ∈ BMO(Ω) and let q > 1 . Then

1

|B|

∫

B

|u− uB |q dx ≤ C‖u‖q
BMO(Ω)

for all balls B b Ω . The constant C depends only on n and q .
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3. Quasiminimizers

Quasiminimizers are the functions which minimize up to the constant the p -
energy integral amongst all functions with the same (Sobolev) boundary values.
For the precise definition, we first recall the notion of Sobolev function. Let
Ω ⊂ Rn be an open set and let p ≥ 1. The Sobolev space W 1,p(Ω) consists
of functions u ∈ Lp(Ω) for which the Lp(Ω)-norm ‖∇u‖p is finite. Here and

elsewhere ∇u is the distributional gradient of u . The local Sobolev space W 1,p
loc (Ω)

consists of functions u satisfying u ∈ W 1,p(G) for all open sets G compactly
contained in Ω. Finally, the Sobolev space with zero boundary values is denoted
by W

1,p
0 (Ω).

Definition 3.1. A function u ∈W
1,p
loc (Ω) is called a K -quasiminimizer in Ω

if there is a constant K > 0 such that
∫

Ω

|∇u|p dx ≤ K

∫

Ω

|∇ϕ|p dx

for all ϕ ∈ W 1,p(Ω′) with u − ϕ ∈ W
1,p
0 (Ω′) and for all open sets Ω′ ⊂ Ω with

compact closure in Ω.

Definition 3.2. A function u ∈ W 1,p(Ω) belongs to the De Giorgi class in

Ω, denoted u ∈ DG(Ω), if there is a constant C > 0 such that for all k ∈ R and
0 < r < R

∫

B(x,r)

|∇(u− k)+|p dx ≤
C

(R− r)p

∫

B(x,R)

((u− k)+)p dx

whenever B(x,R) ⊂ Ω.

It is known and vital to our consideration that u ∈ DG(Ω) and −u ∈
DG(Ω) with a constant C only depending on n , p and K whenever u is a
K -quasiminimizer in Ω, see [KS, Section 3]. This easily implies the following
Caccioppoli type estimate:

Lemma 3.3. Let u be a K -quasiminimizer in Ω and let 0 < r < R . Then

∫

B(x,r)

|∇u|p dx ≤
C

(R− r)p

∫

B(x,R)

|u− k|p dx

for all k ∈ R whenever B(x,R) ⊂ Ω . The constant C depends only on n , p

and K .

Proof. Let k ∈ R . Since u ∈ DG(Ω), we obtain

∫

B(x,r)∩{u>k}

|∇u|p dx =

∫

B(x,r)

|∇(u−k)+|p dx ≤
C

(R− r)p

∫

B(x,R)

(

(u−k)+
)p
dx.
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Similarly, since −u ∈ DG(Ω) and |∇u| = 0 a.e. in {x ∈ Ω : u(x) = k} , we have

∫

B(x,r)∩{u<k}

|∇u|p dx =

∫

B(x,r)∩{−u>−k}

|∇u|p dx

≤
C

(R− r)p

∫

B(x,R)

(

(k − u)+
)p
dx.

By combining the estimates,

∫

B(x,r)

|∇u|p dx ≤
C

(R− r)p

∫

B(x,R)

(

(u− k)+
)p

+
(

(k − u)+
)p
dx

=
C

(R− r)p

∫

B(x,R)

|u− k|p dx.

The celebrated De Giorgi method yields the following weak Harnack inequal-

ity, see [KS, p. 413]:

Lemma 3.4. Let u be a K -quasiminimizer in Ω and let α > 1 . Then there

is a constant C > 0 depending only on n , p , K and α such that

sup
B(y,r)

|u| ≤ C

(

1

|B(y, αr)|

∫

B(y,αr)

|u|p dx

)1/p

for all balls B(y, r) with B(y, αr) ⊂ Ω .

As an application of Lemma 3.4 we obtain a useful oscillation estimate.

Lemma 3.5. Let u be a K -quasiminimizer in Ω and let α > 1 . Then there

is a constant C > 0 depending only on n , p , K and α such that

oscBu ≤ Cr

(

1

|αB|

∫

αB

|∇u|p dx

)1/p

for all balls B = B(y, r) such that αB = B(y, αr) is contained in Ω .

Proof. By Lemma 3.4 and the Poincaré inequality [MZ, Theorem 1.51]

oscBu ≤ 2 sup
B

|u− uαB| ≤ C

(

1

|αB|

∫

αB

|u− uαB|
p dx

)1/p

≤ Cr

(

1

|αB|

∫

αB

|∇u|p dx

)1/p

.

Remark. Manfredi has obtained in [M] the estimate of Lemma 3.5 even for
all weakly monotone functions in the case p > n− 1.
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We are now prepared to give a useful characterization for quasiminimizers
with bounded mean oscillation. In order to do this, we first define the weak Bloch
norm by means of certain averages of p -energy integrals. In what follows, we
denote Bx = B

(

x, 1
2
d(x, ∂Ω)

)

, where d(x, ∂Ω) is the distance between x ∈ Ω and
the boundary ∂Ω.

Definition 3.6. Let u be a K -quasiminimizer in Ω. We call u a Bloch

function, denoted u ∈ B(Ω), if

‖u‖B(Ω) := sup
y∈Ω

d(y, ∂Ω)

(

1

|By|

∫

By

|∇u|p dx

)1/p

<∞.

The following lemma is essentially known, see [N1], [N3], [L1], [L2], but we
present the proof in detail since it is needed later in Section 4.

Lemma 3.7. Let u be a K -quasiminimizer in Ω . Then there is a constant

C > 0 depending only on n , p and K such that

C−1‖u‖B(Ω) ≤ ‖u‖BMO(Ω) ≤ C‖u‖B(Ω).

Proof. By Lemma 3.5,

osc2/3By
u ≤ Cd(y, ∂Ω)

(

1

|By|

∫

By

|∇u|p dx

)1/p

≤ C‖u‖B(Ω)

for all y ∈ Ω. Hence it follows from Lemma 2.2 that

‖u‖BMO(Ω) ≤ C‖u‖B(Ω)

with the constant C depending only on n , p and K . On the other hand,
Lemma 3.3 yields

∫

By

|∇u|p dx ≤
C

d(y, ∂Ω)p

∫

3/2By

|u− u3/2By
|p dx.

By multiplying with d(y, ∂Ω)p−n ,

d(y, ∂Ω)p 1

|By|

∫

By

|∇u|p dx ≤
C

∣

∣

3
2By

∣

∣

∫

3/2By

|u− u3/2By
|p.

Since Lemma 2.3 implies that

(

1
∣

∣

3
2
Bx

∣

∣

∫

3/2Bx

|u− u3/2Bx
|p dx

)1/p

≤ C‖u‖BMO(Ω),

we conclude
‖u‖B(Ω) ≤ C‖u‖BMO(Ω)

with a constant C only depending on n , p and K .
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Remark 3.8. Let u be a K -quasiminimizer in Ω and let 1 < α < 2. We
define the weak Bloch norm more generally by setting

‖u‖α;B(Ω) := sup
y∈Ω

d(y, ∂Ω)

(

1

|αBy|

∫

αBy

|∇u|p dx

)1/p

<∞.

It is trivial that
‖u‖B(Ω) ≤ αn/p‖u‖α;B(Ω).

It is also true that

(3.1) ‖u‖α;B(Ω) ≤ C‖u‖B(Ω)

with a constant C only depending on n , p , K and α . In fact, by Lemma 3.3
∫

αBy

|∇u|p dx ≤
C

d(y, ∂Ω)p

∫

(α+2)/2By

|u− u(α+2)/2By
|p dx,

and Lemma 2.3 implies that

(

1
∣

∣

1
2
(α+ 2)By

∣

∣

∫

(α+2)/2By

|u− u(α+2)/2By
|p dx

)1/p

≤ C‖u‖BMO(Ω).

The assertion (3.1) follows by similar reasoning as in the proof of Lemma 3.7.

Remark 3.9. For C1(Ω)-functions, the Bloch seminorm is most naturally
defined by

‖u‖∗
B(Ω) := sup

y∈Ω
d(y, ∂Ω)|∇u(y)|.

The class of C1(Ω)-functions u with ‖u‖∗
B(Ω) < ∞ has been studied e.g. in [J]

and [KX]. It is true that the condition ‖u‖∗
B(Ω) < ∞ implies u ∈ BMO(Ω) (this

is proved first in [J]), but the converse seems to require a kind of harmonicity as-
sumption. For p -harmonic functions, the Bloch seminorms ‖ · ‖∗

B(Ω) and ‖ · ‖B(Ω)

are equivalent, see [L1, Lemma 4.2].

4. BMO-invariance

This section contains our results on BMO-invariance. We first prove that the
quasihyperbolic uniform continuity is a sufficient condition for the BMO-invariance
in the class of quasiminimizers.

Theorem 4.1. Let ϕ: Ω → Ω′ be uniformly continuous as a mapping between

the metric spaces (Ω, kΩ) and (Ω′, kΩ′) . Then

‖u ◦ ϕ‖BMO(Ω) ≤ C‖u‖BMO(Ω′)

for all K -quasiminimizers u in Ω′ . The constant C depends only on n , p and K .
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Proof. Let u be a K -quasiminimizer in Ω′ and let y ∈ Ω′ . Applying
Lemma 3.4 and Lemma 2.3 to a K -quasiminimizer u− uBy

yields

sup
1/2By

|u− uBy
| ≤ C

(

1

|By|

∫

By

|u− uBy
|p dx

)p

≤ C‖u‖BMO(Ω′).

Therefore

(4.1) osc1/2By
u ≤ C‖u‖BMO(Ω′)

for all y ∈ Ω′ . By Lemma 2.1, there is 0 < % < 1 such that ϕ(%Bz) ⊂
1
2
Bϕ(z) for

all z ∈ Ω. Hence

sup
z∈Ω

osc%Bz
(u ◦ ϕ) ≤ sup

y∈Ω′

osc1/2By
u ≤ C‖u‖BMO(Ω),

so that

sup
z∈Ω

1

|%Bz|

∫

%Bz

|(u ◦ ϕ) − (u ◦ ϕ)%Bz
| dx ≤ C‖u‖BMO(Ω).

The claim follows from Lemma 2.2.

Remark 4.2. (a) Using the argument of Theorem 4.1 we easily obtain a
variant of Theorem 4.1 for all functions satisfying Harnack’s inequality. Let u be
a non-negative function in Ω′ satisfying Harnack’s inequality

sup
B
u ≤ C inf

B
u

for all balls B such that 2B ⊂ Ω′ . Then in particular

sup
By

u ≤ C inf
By

u

for all y ∈ Ω′ . Taking logarithms on both sides yields

oscBy
(log u) ≤ logC

for all y ∈ Ω′ . Hence log u satisfies (4.1) and we conclude from the proof of
Theorem 4.1 that logu ◦ ϕ ∈ BMO(Ω) whenever ϕ satisfies the quasihyperbolic
uniform continuity assumption of Theorem 4.1.

(b) The argument of Theorem 4.1 works also in the metric spaces under
the assumptions described in [KS] if the assumption concerning quasihyperbolic
uniform continuity is replaced by the condition in Lemma 2.1. Notice that the
fixed exponent p in Lemma 3.4 can be replaced by any exponent q > 0, see [KS,
p. 414].

Quasiregular mappings. In this subsection we prove the converse for The-
orem 4.1 under the additional assumptions that ϕ: Ω → Ω′ is quasiregular and u

is n -harmonic. Hence we consider the special case p = n in what follows. For the
reader’s convenience we first define quasiregular and n -harmonic functions.
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Definition 4.3. Let Ω ⊂ Rn be open and K ≥ 1. A continuous mapping
f : Ω → Rn is called K -quasiregular if the coordinate functions of f belong to the
Sobolev space W 1,n

loc (Ω) and

max
|h|=1

|f ′(x)h|n ≤ KJf (x)

for almost every x ∈ Ω. Here f ′(x) is the almost everywhere defined Jacobi
matrix at x and Jf (x) is the determinant of f ′(x).

For more on quasiregular mappings, see e.g. [HKM], [Ri] or [V].

Definition 4.4. A function u: Ω′ → R is n -harmonic if u ∈ W
1,n
loc (Ω′) is

continuous and
∫

Ω

|∇u|n−2∇u · ∇ψ dx = 0

for all functions ψ ∈ C∞
0 (Ω′).

The proof of our final theorem is based on the well-known fact that the func-
tion x 7→ log |x − a| is n -harmonic in Rn \ {a} for all a ∈ Rn , see [HKM,
Theorem 14.19].

Theorem 4.5. Let Ω and Ω′ be proper subdomains of Rn and let ϕ: Ω →
Ω′ be a K -quasiregular mapping such that ϕ is not uniformly continuous between

the metric spaces (Ω, kΩ) and (Ω′, kΩ′) . Then

sup
u

‖u ◦ ϕ‖BMO(Ω)

‖u‖BMO(Ω′)
= +∞,

where the supremum is taken over all non-constant n -harmonic BMO -functions

u in Ω′ .

Proof. By [V] (see Theorem 12.5 and Corollary 12.16), there are sequences
xi, yi ∈ Ω such that |xi − yi| ≤

1
2d(xi, ∂Ω) and

(4.2) d
(

ϕ(xi), ∂Ω′
)

<
1

i
d
(

ϕ(yi), ∂Ω′
)

for all i = 1, 2, . . . . Pick a′i ∈ ∂Ω′ such that d
(

ϕ(xi), ∂Ω′
)

= |ϕ(xi) − a′i| and
consider the functions ui: Ω′ → R ,

ui(x) = log |x− a′i|.

The functions ui are n -harmonic in Ω′ and it is easy to compute that

|∇ui(x)| =
1

|x− a′i|
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for all x ∈ Ω′ . For each y ∈ Ω′ and x ∈ By , we have

|y − a′i| ≤ |x− y| + |x− a′i| ≤
1
2
|y − a′i| + |x− a′i|,

and therefore

(4.3)

‖ui‖B(Ω′) = sup
y∈Ω′

d(y, ∂Ω′)

(

1

|By|

∫

By

|∇ui(x)|
n dx

)1/n

≤ sup
y∈Ω′

d(y, ∂Ω′)

(

1

|By|

∫

By

2n

|y − a′i|
n
dx

)1/n

≤ 2.

On the other hand,

|ϕ(yi) − a′i| ≥ d
(

ϕ(yi), ∂Ω′
)

> i · d
(

ϕ(xi), ∂Ω′
)

= i|ϕ(xi) − a′i|.

Hence

(4.4) |(ui ◦ ϕ)(xi) − (ui ◦ ϕ)(yi)| =

∣

∣

∣

∣

log
|ϕ(yi) − a′i|

|ϕ(xi) − a′i|

∣

∣

∣

∣

≥ log i.

Assume now that our claim does not hold. This in particular implies that

(4.5) ‖ui ◦ ϕ‖BMO(Ω) ≤ C‖ui‖BMO(Ω′)

for some constant C independent of i . Since the functions ui ◦ϕ are A -harmonic
in the sense of [HKM] with the structure constants only depending on K ([HKM,
Lemma 14.38 and Theorem 14.39]) and yi ∈ B

(

xi,
1
2d(xi, ∂Ω)

)

, we obtain from
the oscillation estimate [HKM, Theorem 6.6] that

oscB(xi,|xi−yi|)(ui ◦ ϕ) ≤ C

(

|xi − yi|

d(xi, ∂Ω)

)κ

osc3/2Bxi
(ui ◦ ϕ).

By Lemma 3.5 and Remark 3.8,

osc3/2Bxi
(ui ◦ ϕ) ≤ Cd(xi, ∂Ω)

(

1
∣

∣

5
3
Bxi

∣

∣

∫

5/3Bxi

|∇(ui ◦ ϕ)|n dx

)1/n

≤ C‖ui ◦ ϕ‖B(Ω).

By combining the estimates and using (4.3) and (4.5) together with Lemma 3.7
yields

|(ui ◦ ϕ)(xi) − (ui ◦ ϕ)(yi)| ≤ C

(

|xi − yi|

d(xi, ∂Ω)

)κ

‖ui‖B(Ω′) ≤ 2C2−κ.

This contradicts (4.4) and the claim follows.
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Remark 4.6. Let ϕ: Ω → ϕ(Ω) be a quasiconformal mapping such that Ω
and ϕ(Ω) are strict subdomains of Rn . Then ϕ is uniformly continuous as a map-
ping between the metric spaces (Ω, kΩ) and

(

ϕ(Ω), kϕ(Ω)

)

, see [GO, Theorem 3]
or [V, Corollary 12.19]. A similar assertion holds also for quasiregular mappings
if the boundary ∂ϕ(Ω) satisfies a suitable connectedness assumption, see [V, The-
orem 12.21]. There are analytic mappings ϕ defined in a strict subdomain Ω of
R2 , which are not uniformly continuous as a mapping between the metric spaces
(Ω, kΩ) and

(

ϕ(Ω), kϕ(Ω)

)

, see [V, Example 11.4].
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[MZ] Malý, J., and W.P. Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential
Equations. - Amer. Math. Soc., Providence, RI, 1997.

[N1] Nolder, C.A.: Hardy–Littlewood theorems for solutions of elliptic equations in diver-
gence form. - Indiana Univ. Math. J. 40, 1991, 149–160.

[N2] Nolder, C.A.: Lipschitz classes of solutions to certain elliptic equations. - Ann. Acad.
Sci. Fenn. Math. 17, 1992, 211–219.

[N3] Nolder, C.A.: A quasiregular analogue of a theorem of Hardy and Littlewood. - Trans.
Amer. Math. Soc. 331, 1992, 215–226.

[RU] Ramey, W., and D. Ullrich: Bounded mean oscillation of Bloch pull-backs. - Math.
Ann. 291, 1991, 591–606.

[Re] Reimann, H.M.: Functions of bounded mean oscillation and quasiconformal mappings. -
Comment. Math. Helv. 49, 1974, 260–276.



418 Visa Latvala

[Ri] Rickman, S.: Quasiregular Mappings. - Ergeb. Math. Grenzgeb. (3) 26, Springer-Verlag,
Berlin, 1993.

[S] Staples, S.G.: Lp -avering domains and the Poincaré inequality. - Ann. Acad. Sci. Fenn.
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