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Abstract. We consider the limit set of generalised iterated function systems. Under the
assumption of a natural potential, the so-called cylinder function, we prove the existence of the
invariant probability measure satisfying the equilibrium state. We motivate this approach by
showing that for typical self-affine sets there exists an ergodic invariant measure having the same
Hausdorff dimension as the set itself.

1. Introduction

It is well known that applying methods of thermodynamical formalism, we can
find ergodic invariant measures on self-similar and self-conformal sets satisfying
the equilibrium state and having the same Hausdorff dimension as the set itself.
See, for example, Bowen [3], Hutchinson [11] and Mauldin and Urbański [15].
In this work we try to generalise this concept. Our main objective is to study
iterated function systems (IFS) even though we develop our theory in a more
general setting.

We introduce the definition of a cylinder function, which is a crucial tool
in developing the corresponding concept of thermodynamical formalism for our
setting. The use of the cylinder function provides us with a sufficiently general
framework to study iterated function systems. We could also use the notation of
subadditive thermodynamical formalism like in Falconer [5], [7] and Barreira [2],
but we feel that in studying iterated function systems we should use more IFS-
style notation. We can think that the idea of the cylinder function is to generalise
the mass distribution, which is well explained in Falconer [6]. Falconer proved
in [5] that for each approximative equilibrium state there exists an approxima-
tive equilibrium measure, that is, there is a k -invariant measure for which the
approximative topological pressure equals the sum of the corresponding entropy
and energy. More precisely, using the notation of this work, for each t ≥ 0 there
exists a Borel probability measure µk such that

(1.1)
1

k
P k(t) =

1

k
hkµk

+
1

k
Ekµk

(t).
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Letting now k → ∞ , the approximative equilibrium state converges to the desired
equilibrium state, but unfortunately we will lose the invariance. However, Bar-
reira [2] showed that the desired equilibrium state can be attained as a supremum,
that is,

(1.2) P (t) = sup
(
hµ + Eµ(t)

)
,

where the supremum is taken over all invariant Borel regular probability measures.
Using the concept of generalised subadditivity, we show that it is possible to attain
the supremum in (1.2). We also prove that this equilibrium measure is ergodic.

We start developing our theory in the symbol space and after proving the ex-
istence of the equilibrium measure, we begin to consider the geometric projections
of the symbol space and the equilibrium measure. The use of the cylinder function
provides us with a significant generality in producing equilibrium measures for
different kind of settings. A natural question now is: What can we say about the
Hausdorff dimension of the projected symbol space, the so called limit set? To an-
swer this question we have to assume something on our geometric projection. We
use the concept of an iterated function system for getting better control of cylinder
sets, the sets defining the geometric projection. To be able to approximate the size
of the limit set, we also need some kind of separation condition for cylinder sets to
avoid too much overlapping among these sets. Several separation conditions are
introduced and relationships between them are studied in detail. We also study a
couple of concrete examples, namely the similitude IFS, the conformal IFS and the
affine IFS, and we look how our theory turns out in these particular cases. As an
easy consequence we notice that the Hausdorff dimension of equilibrium measures
of the similitude IFS and the conformal IFS equals the Hausdorff dimension of
the corresponding limit sets, the self-similar set and the self-conformal set. After
proving the ergodicity and studying dimensions of the equilibrium measure in our
more general setting, we obtain the same information for “almost all” affine IFS’s
by applying Falconer’s result for the Hausdorff dimension of self-affine sets. This
gives a partially positive answer to the open question proposed by Kenyon and
Peres [13].

Before going into more detailed preliminaries, let us fix some notation. As
usual, let I be a finite set with at least two elements. Put I∗ =

⋃∞
n=1 I

n and
I∞ = IN = {(i1, i2, . . .) : ij ∈ I for j ∈ N} . Thus, if i ∈ I∗ , there is k ∈ N

such that i = (i1, . . . , ik), where ij ∈ I for all j = 1, . . . , k . We call this k the
length of i and we denote |i| = k . If j ∈ I∗ ∪ I∞ , then with the notation i, j
we mean the element obtained by juxtaposing the terms of i and j . If i ∈ I∞ ,
we denote |i| = ∞ , and for i ∈ I∗ ∪ I∞ we put i|k = (i1, . . . , ik) whenever
1 ≤ k < |i| . We define [i;A] = {i, j : j ∈ A} as i ∈ I∗ and A ⊂ I∞ and we
call the set [i] = [i, I∞] the cylinder set of level |i| . We say that two elements
i, j ∈ I∗ are incomparable if [i] ∩ [j] = ∅ . Furthermore, we call a set A ⊂ I∗
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incomparable if all its elements are mutually incomparable. For example, the sets
I and {(i1, i2), (i1, i1, i2)} , where i1 6= i2 , are incomparable subsets of I∗ .

Define

(1.3) |i− j| =

{
2−min{k−1:i|k 6=j|k}, i 6= j,
0, i = j,

whenever i, j ∈ I∞ . Then the couple (I∞, | · |) is a compact metric space. Let
us call (I∞, | · |) a symbol space and an element i ∈ I∞ a symbol. If there is no
danger of misunderstanding, let us call also an element i ∈ I∗ a symbol. Define
the left shift σ: I∞ → I∞ by setting

(1.4) σ(i1, i2, . . .) = (i2, i3, . . .).

Clearly σ is continuous and surjective. If i ∈ In for some n ∈ N , then with
the notation σ(i) we mean the symbol (i2, . . . , in) ∈ In−1 . Sometimes, without
mentioning it explicitly, we work also with “empty symbols”, that is, symbols with
zero length.

For each cylinder we define a cylinder function ψti: I
∞ → (0,∞) depending

also on a given parameter t ≥ 0. The exact definition is introduced at the begin-
ning of the second chapter. To follow this introduction, the reader is encouraged
to keep in mind the idea of the mass distribution. With the help of the cylinder
function we define a topological pressure P : [0,∞) → R by setting

(1.5) P (t) = lim
n→∞

1

n
log

∑

i∈In

ψti(h),

where h ∈ I∞ is some fixed point. Denoting with Mσ(I
∞) the collection of all

Borel regular probability measures on I∞ which are invariant, that is, µ([i]) =∑
i∈I µ([i, i]) for every i ∈ I∗ , we define an energy Eµ: [0,∞) → R by setting

(1.6) Eµ(t) = lim
n→∞

1

n

∑

i∈In

µ([i]) logψti(h)

and an entropy hµ by setting

(1.7) hµ = − lim
n→∞

1

n

∑

i∈In

µ([i]) logµ([i]).

For the motivation of these definitions, see, for example, Mauldin and Urbański
[15] and Falconer [8]. For every µ ∈ Mσ(I

∞) we have P (t) ≥ hµ + Eµ(t), and if
there exists a measure µ ∈ Mσ(I

∞) for which

(1.8) P (t) = hµ + Eµ(t),
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we call this measure a t-equilibrium measure. Using the generalised subadditivity,
we will prove the existence of the t -equilibrium measure. We obtain the ergod-
icity of that measure essentially because µ 7→ hµ + Eµ(t) is an affine mapping
from a convex set whose extreme points are ergodic and then recalling Choquet’s
theorem. Applying now Kingman’s subadditive ergodic theorem and the theorem
of Shannon–McMillan, we notice that

(1.9) P (t) = lim
n→∞

1

n
log

ψt
i|n

(h)

µ([i|n])

for µ -almost all i ∈ I∞ as µ is the t -equilibrium measure. Following the ideas of
Falconer [5], we introduce an equilibrium dimension dimψ for which dimψ(I∞) = t
exactly when P (t) = 0. Using the ergodicity, we will also prove that dimψ(A) = t
if P (t) = 0 and µ(A) = 1, where µ is the t -equilibrium measure. In other words,
the equilibrium measure µ is ergodic, invariant and has full equilibrium dimension.

To project this setting into Rd we need some kind of geometric projection.
With the geometric projection here we mean mappings obtained by the following
construction. Let X ⊂ Rd be a compact set with nonempty interior. Choose then
a collection {Xi : i ∈ I∗} of nonempty closed subsets of X satisfying

(1) Xi,i ⊂ Xi for every i ∈ I∗ and i ∈ I ,
(2) d(Xi) → 0, as |i| → ∞ .

Here d means the diameter of a given set. We define a projection mapping to be
the function π: I∞ → X , for which

(1.10) {π(i)} =
∞⋂
n=1

Xi|n

as i ∈ I∞ . The compact set E = π(I∞) is called a limit set, and if there is no
danger of misunderstanding, we call also the sets π([i]) , where i ∈ I∗ , cylinder
sets. In general, it is really hard to study the geometric properties of the limit set,
for example, to determine the Hausdorff dimension. We might come up against
the following problems: There is too much overlapping among the cylinder sets
and it is too difficult to approximate the size of these sets. Therefore we introduce
geometrically stable IFS’s. With the iterated function system (IFS) we mean the
collection {ϕi : i ∈ I} of contractive injections from Ω to Ω, for which ϕi(X) ⊂ X
as i ∈ I . Here Ω ⊃ X is an open subset of Rd . We set Xi = ϕi(X), where
ϕi = ϕi1 ◦ · · ·◦ϕi|i| as i ∈ I∗ , and making now a suitable choice for the mappings
ϕi , we can have the limit set E to be a self-similar set or a self-affine set, for
example. Likewise, changing the choice of the cylinder function, we can have
the equilibrium measure µ to have different kind of properties, and thus, making
a suitable choice, the measure m = µ ◦ π−1 might be useful in studying the
geometric properties of the limit set. If there is no danger of misunderstanding,
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we call also the projected equilibrium measure m an equilibrium measure. We say
that IFS is geometrically stable if it satisfies a bounded overlapping condition and
the mappings of IFS satisfy the following bi-Lipschitz condition: for each i ∈ I∗

there exist constants 0 < si < si < 1 such that

(1.11) si|x− y| ≤ |ϕi(x) − ϕi(y)| ≤ si|x− y|

for every x, y ∈ Ω. The exact definition of these constants is introduced in Chap-
ter 3. To follow this introduction the reader can think for simplificity that for
each i ∈ I there exist such constants and si = si1 · · ·si|i| and si = si1 · · · si|i|
as i ∈ I∗ . The upper and lower bounds of the bi-Lipschitz condition are crucial
for getting upper and lower bounds for the size of the cylinder sets. The bounded

overlapping is satisfied if the cardinality of the set {i ∈ I∗ : ϕi(X) ∩ B(x, r) 6=
∅ and si < r ≤ si||i|−1

} is uniformly bounded as x ∈ X and 0 < r < r0 = r0(x).

The class of geometrically stable IFS’s includes many interesting cases of
IFS’s, for example, a conformal IFS satisfying the OSC and the so called boundary
condition and an affine IFS satisfying the SSC. The open set condition (OSC) and
the strong separation condition (SSC) are commonly used examples of separation
conditions we need to use for having not too much overlapping among the cylinder
sets. We prove that for the Hausdorff dimension of the limit set of geometrically
stable IFS’s, there exist natural upper and lower bounds obtained from the bi-
Lipschitz constants. It is now very tempting to guess that for geometrically stable
IFS’s, making a good choice for the cylinder function, it could be possible to have
the same equilibrium dimension and Hausdorff dimension for the limit set, and
thus it would be possible to obtain the Hausdorff dimension from the behaviour of
the topological pressure. It has been already proved that this is true for similitude
and conformal IFS’s and also for “almost all” affine IFS’s. Recalling now that
the equilibrium measure has full equilibrium dimension, we conclude that in many
cases, like in “almost all” affine IFS’s, making a good choice for the cylinder
function, we can have an ergodic invariant measure on the limit set having full
Hausdorff dimension.

Acknowledgement. The author is deeply indebted to Professor Pertti Mattila
for his valuable comments and suggestions for the manuscript.

2. Cylinder function and equilibrium measure

In this chapter we introduce the definition of the cylinder function. Using the
cylinder function we are able to define tools of thermodynamical formalism. In
this setting we prove the existence of a so called equilibrium measure.

Take t ≥ 0 and i ∈ I∗ . We call a function ψti: I
∞ → (0,∞) a cylinder

function if it satisfies the following three conditions:
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(1) There exists Kt ≥ 1 not depending on i such that

(2.1) ψti(h) ≤ Ktψ
t
i(j)

for any h, j ∈ I∞ .
(2) For every h ∈ I∞ and integer 1 ≤ j < |i| we have

(2.2) ψti(h) ≤ ψti|j
(
σj(i), h

)
ψtσj(i)(h).

(3) For any given δ > 0 there exist constants 0 < sδ < 1 and 0 < sδ < 1
depending only on δ such that

(2.3) ψti(h)s
|i|
δ ≤ ψt+δi (h) ≤ ψti(h)s

|i|
δ

for every h ∈ I∞ . We assume also that sδ, sδ ↗ 1 as δ ↘ 0 and that ψ0
i ≡ 1.

Note that when we speak about one cylinder function, we always assume
there is a collection of them defined for i ∈ I∗ and t > 0. Let us comment on
these conditions. The first one is called the bounded variation principle (BVP)
and it says that the value of ψti(h) cannot vary too much; roughly speaking, ψti
is essentially constant. The second condition is called the submultiplicative chain

rule for the cylinder function or just subchain rule for short. If the subchain rule
is satisfied with equality, we call it a chain rule. The third condition is there
just to guarantee the nice behaviour of the cylinder function with respect to the
parameter t . It also implies that

(2.4) s
|i|
t ≤ ψti(h) ≤ s

|i|
t

with any choice of h ∈ I∞ .
For each k ∈ N , i ∈ Ik∗ :=

⋃∞
n=1 I

kn and t ≥ 0 define a function ψt,ki : I∞ →
(0,∞) by setting

(2.5) ψt,ki (h) =

|i|/k−1∏

j=0

ψtσjk(i)|k

(
σ(j+1)k(i), h

)

as h ∈ I∞ . Clearly, now ψti(h) ≤ ψt,ki (h) for every k ∈ N and i ∈ Ik∗ using the

subchain rule. Note that if the chain rule is satisfied, then ψti(h) = ψt,ki (h) for

every k ∈ N and that we always have ψti(h) = ψ
t,|i|
i (h).

It is very tempting to see these functions as cylinder functions satisfying the
chain rule on Ik∗ . Indeed, straight from the definitions we get the chain rule
and condition (3) satisfied. However, to get the BVP for ψt,ki we need better
information on the local behaviour of the function ψti . More precisely, we need
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better control over the variation of ψti in small scales. We call a cylinder function

from which we get the BVP for ψt,ki with any choice of k ∈ N smooth cylinder

function. We say that a mapping f : I∞ → R is a Dini function if

(2.6)

∫ 1

0

ωf (δ)

δ
dδ <∞,

where

(2.7) ωf (δ) = sup
|i−j|≤δ

|f(i) − f(j)|

is the modulus of continuity. Observe that Hölder continuous functions are always
Dini.

Proposition 2.1. Suppose the cylinder function is Dini. Then it is smooth

and functions ψt,ki are cylinder functions satisfying the chain rule on Ik∗ .

Proof. It suffices to verify the BVP. For each k ∈ N we denote ωk(δ) =
maxi∈Ik ωψt

i
(δ). Using now the assumption and the definitions we have for each

i ∈ Ik∗

(2.8)

logψt,ki (h) − logψt,ki (j) =

|i|/k−1∑

j=0

log

(
ψtσjk(i)|k

(
σ(j+1)k(i), h

)

ψt
σjk(i)|k

(
σ(j+1)k(i), j

)
)

=

|i|/k−1∑

j=0

log

(
1 +

ψtσjk(i)|k

(
σ(j+1)k(i), h

)
− ψtσjk(i)|k

(
σ(j+1)k(i), j

)

ψt
σjk(i)|k

(
σ(j+1)k(i), j

)
)

≤ s−kt

|i|/k−1∑

j=0

∣∣∣ψtσjk(i)|k

(
σ(j+1)k(i), h

)
− ψtσjk(i)|k

(
σ(j+1)k(i), j

)∣∣∣

≤ s−kt

|i|/k−1∑

j=0

ωk
(
2−(|i|−(j+1)k)

)

≤ s−kt

∫ ∞

0

ωk
(
2−(η−1)k

)
dη =

1

skt k log 2

∫ 1

0

ωk(δ)

δ
dδ,

whenever h, j ∈ I∞ by substituting η = −(1/k)(log2 δ)+1 and dη = −(δk log 2)−1dδ .
This gives

(2.9)
ψt,ki (h)

ψt,ki (j)
≤ Kt,k,

where the logarithm of Kt,k equals the finite upper bound found in (2.8).
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Of course, a cylinder function satisfying the chain rule is always smooth, since
the BVP for ψt,ki is satisfied with the constant Kt . Observe that if we have a
cylinder function satisfying the chain rule, but not the BVP, then the previous
proposition gives us a sufficient condition for the BVP to hold, namely the Dini
condition. Next, we introduce an important property of functions of the following
type. We say that a function a: N × N ∪ {0} → R satisfies the generalised

subadditive condition if

(2.10) a(n1 + n2, 0) ≤ a(n1, n2) + a(n2, 0)

and |a(n1, n2)| ≤ n1C for some constant C . Furthermore, we say that this
function is subadditive if in addition a(n1, n2) = a(n1, 0) for all n1 ∈ N and
n2 ∈ N ∪ {0} .

Lemma 2.2. Suppose that a function a: N × N ∪ {0} → R satisfies the

generalised subadditive condition. Then

(2.11)
1

n
a(n, 0) ≤

1

kn

n−1∑

j=0

a(k, j) +
3k

n
C

for some constant C whenever 0 < k < n . Moreover, if this function is subaddi-

tive, then the limit limn→∞(1/n)a(n, 0) exists and equals infn(1/n)a(n, 0) .

Proof. We follow the ideas found in Lemma 4.5.2 of Katok and Hassel-
blatt [12]. Fix n ∈ N and choose 0 < k < n . Now for each integer 0 ≤ q < k we
define α(q) = b(n− q − 1)/kc to be the integer part of (n− q − 1)/k . Straight
from this definition we shall see that α is non-increasing,

(2.12) n− k − 1 < α(q)k + q ≤ n− 1

and

(2.13)
n

k
− 2 < α(q) ≤

n− 1

k

whenever 0 ≤ q < k . Temporarily fix q and take 0 ≤ l < α(q) and 0 ≤ i < k .
Now

(2.14) q − 1 < lk + q + i < α(q)k + q

and therefore,

(2.15) {0, . . . , n− 1} = {lk + q + i : 0 ≤ l < α(q), 0 ≤ i < k} ∪ Sq,
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where Sq is the union of the sets S1
q = {0, . . . , q−1} and S2

q = {α(q)k+q, . . . , n−
1} . Using (2.12), we notice that 1 ≤ #S2

q ≤ k . It follows from (2.13) that α(q)
can attain at maximum two values, namely b(n− 1)/kc and b(n− 1)/kc− 1. Let
q0 be the largest integer for which α(q0) = b(n− 1)/kc . Then clearly,

(2.16) {lk + q : 0 ≤ l ≤ α(q), 0 ≤ q < k} = {0, . . . , α(q0)k + q0}.

By the choice of q0 it holds also that α(q0) = (n−q0−1)/k and thus α(q0)k+q0 =
n− 1.

It is clear that #S1
q = q . It is also clear that S2

q = {n− k + q, . . . , n− 1} if
q0 = k− 1. But if not, we notice that α(q0 + 1) = α(q0)− 1 = (n− q0 − k− 1)/k ,
and thus α(q0 + 1)k + q0 + 1 = n− k . Therefore, defining a bijection η between
sets {0, . . . , k − 1} and {1, . . . , k} by setting

(2.17) η(q) =

{
q0 − q + 1, 0 ≤ q ≤ q0,
q0 − q + k + 1, q0 < q < k,

we have #S2
q = η(q) for all 0 ≤ q < k .

Since n is of the form η(q) + α(q)k + q for any 0 ≤ q < k , we get, using the
assumption several times that

(2.18)

a(n, 0) = a
(
η(q), α(q)k + q

)
+

α(q)∑

l=1

a
(
k,

(
α(q) − l

)
k + q

)
+ a(q, 0)

≤

α(q)−1∑

l=0

a(k, lk+ q) + 2kC

≤

α(q)∑

l=0

a(k, lk+ q) + 3kC.

In fact, we have

(2.19)

1

n
a(n, 0) ≤

1

kn

k−1∑

q=0

(α(q)∑

l=0

a(k, lk + q) + 3kC

)

=
1

kn

n−1∑

j=0

a(k, j) +
3k

n
C

using (2.16).
If our function is subadditive, we have

(2.20) lim sup
n→∞

1

n
a(n, 0) ≤

1

k
a(k, 0)

with any choice of k using (2.19). This also finishes the proof.
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Now we define the basic concepts for thermodynamical formalism with the
help of the cylinder function. Fix some h ∈ I∞ . We call the following limit

(2.21) P (t) = lim
n→∞

1

n
log

∑

i∈In

ψti(h),

if it exists, the topological pressure for the cylinder function or just topological

pressure for short. For each k ∈ N we also denote

(2.22)

P
k
(t) = lim sup

n→∞

1

n
log

∑

i∈Ikn

ψt,ki (h) and

P k(t) = lim inf
n→∞

1

n
log

∑

i∈Ikn

ψt,ki (h).

If they agree, we denote the common value with P k(t). Recall that the collection
of all Borel regular probability measures on I∞ is denoted by M (I∞). Denote

(2.23) Mσ(I
∞) = {µ ∈ M (I∞) : µ is invariant},

where the invariance of µ means that µ([i]) = µ
(
σ−1([i])

)
for every i ∈ I∗ . Now

Mσ(I
∞) is a nonempty closed subset of the compact set M (I∞) in the weak

topology. For given µ ∈ Mσ(I
∞) we define an energy for the cylinder function

Eµ(t), or just energy for short, by setting

(2.24) Eµ(t) = lim
n→∞

1

n

∑

i∈In

µ([i]) logψti(h)

provided that the limit exists and an entropy hµ by setting

(2.25) hµ = lim
n→∞

1

n

∑

i∈In

H
(
µ([i])

)

provided that the limit exists, where H(x) = −x logx , as x > 0, and H(0) = 0.
Note that H is concave. For each k ∈ N we also denote

(2.26)

E
k

µ(t) = lim sup
n→∞

1

n

∑

i∈Ikn

µ([i])ψt,ki (h) and

Ekµ(t) = lim inf
n→∞

1

n

∑

i∈Ikn

µ([i])ψt,ki (h).

If they agree, we denote the common value with Ekµ(t). Finally, we similarly
denote

(2.27) hkµ = lim
n→∞

1

n

∑

i∈Ikn

H
(
µ([i])

)
.

Let us next justify the existence of these limits using the power of subadditive
sequences. We will actually prove a little more than just subadditivity as we can
see from the following lemma.
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Lemma 2.3. For any given µ ∈ M (I∞) the following functions

(1) (n1, n2) 7→
∑

i∈In1 H
(
µ ◦ σ−n2([i])

)
and

(2) (n1, n2) 7→
∑

i∈In1 µ ◦ σ−n2([i]) logψti(h) + logKt

defined on N×N∪{0} satisfy the generalised subadditive condition. Furthermore,

if µ ∈ Mσ(I
∞) , the functions are subadditive.

Proof. For every n1 ∈ N and n2 ∈ N ∪ {0} we have

(2.28)

∑

i∈In1+n2

H
(
µ([i])

)
= −

∑

i∈In1

∑

j∈In2

µ([j, i]) logµ([j, i])

= −
∑

i∈In1

∑

j∈In2

µ([j, i]) log
µ([j, i])

µ([j])

−
∑

i∈In1

∑

j∈In2

µ([j, i]) logµ([j])

=
∑

i∈In1

∑

j∈In2

µ([j])H

(
µ([j, i])

µ([j])

)
+

∑

j∈In2

H
(
µ([j])

)

≤
∑

i∈In1

H

( ∑

j∈In2

µ([j, i])

)
+

∑

j∈In2

H
(
µ([j])

)

using the concavity of the function H . Note that while calculating, we can sum
over only cylinders with positive measure. Using the concavity again, we get

(2.29)

1

(#I)n1

∑

i∈In1

H

( ∑

j∈In2

µ([j, i])

)
≤ H

(
1

(#I)n1

∑

i∈In1+n2

µ([i])

)

=
1

(#I)n1
log(#I)n1 ,

which finishes the proof of (1).

For every n1 ∈ N and n2 ∈ N ∪ {0} we have

(2.30)

∑

i∈In1+n2

µ([i]) logψti(h) ≤
∑

i∈In1+n2

µ([i]) logψtσn2 (i)(h)

+
∑

i∈In1+n2

µ([i]) logψti|n2
(σn2(i), h)

≤
∑

i∈In1

µ ◦ σ−n2([i]) logψti(h)

+
∑

i∈In2

µ([i]) logψti(h) + logKt
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using the BVP and the subchain rule. From the condition (3) of the definition of
the cylinder function it follows that

(2.31) n1 log st ≤
∑

i∈In1+n2

µ([i]) logψtσn2(i)(h) ≤ n1 log st,

which finishes the proof of (2).

The last statement follows directly from the definition of the invariant mea-
sure.

Now we can easily conclude the existence of the previously defined limits.
Compare the following proposition also with Chapter 3 of Falconer [7].

Proposition 2.4. For any given µ ∈ Mσ(I
∞) it holds that

(1) P (t) exists and equals inf
n

1

n

(
log

∑

i∈In

ψti(h) + Ct

)
with any Ct ≥ logKt ,

(2) Eµ(t) exists and equals inf
n

1

n

( ∑

i∈In

µ([i]) logψti(h) + Ct

)
with any Ct ≥

logKt ,

(3) hµ exists and equals inf
n

1

n

∑

i∈In

H
(
µ([i])

)
,

(4) topological pressure is continuous and strictly decreasing and there exists a

unique t ≥ 0 such that P (t) = 0 .

Furthermore, if the cylinder function is smooth, all the previous conditions hold

for P k(t) , Ekµ(t) and hkµ with any given k ∈ N . It holds also (even without the

smoothness assumption) that

(5) P (t) = lim
k→∞

1

k
P
k
(t) = lim

k→∞

1

k
P k(t) = inf

k

1

k
P
k
(t) = inf

k

1

k
P k(t),

(6) Eµ(t) = lim
k→∞

1

k
E
k

µ(t) = lim
k→∞

1

k
Ekµ(t) = inf

k

1

k
E
k

µ(t) = inf
k

1

k
Ekµ(t),

(7) hµ =
1

k
hkµ for every k ∈ N .

Finally, none of these limits depends on the choice of h ∈ I∞ .

Proof. Take h ∈ I∞ and µ ∈ Mσ(I
∞). From the subchain rule we get

(2.32)

∑

i∈In1+n2

ψti(h) ≤
∑

i∈In1+n2

ψti|n1

(
σn1(i), h

)
ψtσn1(i)(h)

≤ Kt

∑

i∈In1

ψti(h)
∑

i∈In2

ψti(h)
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using the BVP for any choice of n1, n2 ∈ N . Thus, using Lemma 2.2, we get
(1). Statements (2) and (3) follow immediately from the invariance of µ and
Lemmas 2.3 and 2.2.

Using the assumption (3) in the definition of the cylinder function, we have
for fixed n ∈ N

(2.33)

log sδ +
1

n
log

∑

i∈In

ψti(h) ≤
1

n
log

∑

i∈In

ψt+δi (h)

≤ log sδ +
1

n
log

∑

i∈In

ψti(h)

with any choice of δ > 0. Letting n→ ∞ , we get 0 < log 1/sδ ≤ P (t)−P (t+δ) ≤
log 1/sδ . This gives the continuity of the topological pressure since sδ , sδ ↗ 1
as δ ↘ 0. It says also that the topological pressure is strictly decreasing and
P (t) → −∞ , as t→ ∞ . Since P (0) = log #I , we have proved (4).

Assuming the cylinder function to be smooth, we notice that ψt,ki are cylinder
functions on Ik∗ with any choice of k ∈ N , and, therefore, the previous proofs
apply. Using the BVP, we get

(2.34)

1

kn
log

∑

i∈Ikn

ψt,ki (h) ≤
1

kn
logKn

t

∑

i∈Ikn

n−1∏

j=0

ψtσjk(i)|k
(h)

=
1

k
logKt +

1

kn
log

(∑

i∈Ik

ψti(h)

)n

for any choice of k, n ∈ N . Therefore, due to the subchain rule,

(2.35)

P (t) ≤
1

kn
log

∑

i∈Ikn

ψti(h) +
1

kn
logKt

≤
1

kn
log

∑

i∈Ikn

ψt,ki (h) +
1

kn
logKt

≤
1

k
log

∑

i∈Ik

ψti(h) +
1

k
logKt +

1

kn
logKt

using (1). Now letting n → ∞ and then k → ∞ , we get (5). Similarly, using the
invariance of µ and the BVP, we have

1

kn

∑

i∈Ikn

µ([i]) logψt,ki (h) ≤
1

kn

∑

i∈Ikn

µ([i]) logKn
t

n−1∏

j=0

ψtσjk(i)|k
(h)
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=
1

k
logKt +

1

kn

n−1∑

j=0

∑

i∈Ikn

µ([i]) logψtσjk(i)|k
(h)(2.36)

=
1

k
logKt +

1

k

∑

i∈Ik

µ([i]) logψti(h)

for any choice of k, n ∈ N . Therefore

(2.37)

Eµ(t) ≤
1

kn

∑

i∈Ikn

µ([i]) logψti(h) +
1

kn
logKt

≤
1

kn

∑

i∈Ikn

µ([i]) logψt,ki (h) +
1

kn
logKt

≤
1

k

∑

i∈Ik

µ([i]) logψti(h) +
1

k
logKt +

1

kn
logKt

using (2). Now letting n → ∞ and then k → ∞ , we get (6). Using the BVP, we
get rid of the dependence on the choice of h ∈ I∞ on these limits. Noting that
(7) is trivial, we have finished the proof.

Note that if a cylinder function satisfies the chain rule, we have P (t) =
P k(t)/k and Eµ(t) = Ekµ(t)/k for every choice of k ∈ N and µ ∈ Mσ(I

∞).
With these tools of thermodynamical formalism we are now ready to look for a
special invariant measure on I∞ , the so called equilibrium measure. If we denote
α(i) = ψti(h)/

∑
j∈I|i| ψ

t
j(h), as i ∈ I∗ , we get, using Jensen’s inequality for any

n ∈ N and µ ∈ M (I∞),

(2.38)

0 = 1 log 1 =
1

n
H

( ∑

i∈In

α(i)
µ([i])

α(i)

)
≥

1

n

∑

i∈In

α(i)H

(
µ([i])

α(i)

)

=
1

n

∑

i∈In

µ([i])

(
− logµ([i]) + logψti(h) − log

∑

j∈In

ψtj(h)

)

with equality if and only if µ([i]) = Cα(i) for some constant C > 0. Thus, in
the view of Proposition 2.4

(2.39) P (t) ≥ hµ + Eµ(t)

whenever µ ∈ Mσ(I
∞). We call a measure µ ∈ Mσ(I

∞) as t-equilibrium measure

if it satisfies an equilibrium state

(2.40) P (t) = hµ + Eµ(t).
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In other words, the equilibrium measure (or state) is a solution for a variational
equation P (t) = supµ∈Mσ(I∞)

(
hµ + Eµ(t)

)
.

Define now for each k ∈ N a Perron–Frobenius operator Ft,k by setting

(2.41)
(
Ft,k(f)

)
(h) =

∑

i∈Ik

ψt,ki (h)f(i, h)

for every continuous function f : I∞ → R . Using this operator, we are able to find
our equilibrium measure. Assuming

(
F
n−1
t,k (f)

)
(h) =

∑
i∈Ik(n−1) ψ

t,k
i (h)f(i, h),

we get inductively, using the chain rule,

(2.42)

(
F
n
t,k(f)

)
(h) =

(
Ft,k

(
F
n−1
t,k (f)

))
(h)

=
∑

i∈Ik

ψt,ki (h)
(
F
n−1
t,k (f)

)
(i, h)

=
∑

i∈Ik

ψt,ki (h)
∑

j∈Ik(n−1)

ψt,kj (i, h)f(j, i, h)

=
∑

i∈Ikn

ψt,ki (h)f(i, h).

Let us then denote with F ∗
t,k the dual operator of Ft,k . Due to the Riesz rep-

resentation theorem it operates on M (I∞). Relying now on the definitions of
these operators, we may find a special measure using a suitable fixed point the-
orem. If the chain rule is satisfied, this is a known result. For example, see
Theorem 1.7 of Bowen [3], Theorem 3 of Sullivan [24] and Theorem 3.5 of Mauldin
and Urbański [15].

Theorem 2.5. For each t ≥ 0 and k ∈ N there exists a measure νk ∈
M (I∞) such that

(2.43) νk([i;A]) = Π
−|i|/k
k

∫

A

ψt,ki (h) dνk(h),

where Πk > 0 , i ∈ Ik∗ and A ⊂ I∞ is a Borel set. Moreover, limk→∞ Π
1/k
k =

eP (t) and if the cylinder function is smooth, Πk = eP
k(t) for every k ∈ N .

Proof. For fixed t ≥ 0 and k ∈ N define Λ: M (I∞) → M (I∞) by setting

(2.44) Λ(µ) =
1(

F ∗
t,k(µ)

)
(I∞)

F
∗
t,k(µ).

Take now an arbitrary converging sequence, say, (µn) for which µn → µ in the
weak topology with some µ ∈ M (I∞). Then for each continuous f we have

(2.45)
(
F

∗
t,k(µn)

)
(f) = µn

(
Ft,k(f)

)
→ µ

(
Ft,k(f)

)
=

(
F

∗
t,k(µ)

)
(f)
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as n → ∞ . Thus Λ is continuous. Now the Schauder–Tychonoff fixed point
theorem applies and we find νk ∈ M (I∞) such that Λ(νk) = νk . Denoting
Πk =

(
F ∗
t,k(νk)

)
(I∞), we have F ∗

t,k(νk) = Πkνk . Take now some Borel set

A ⊂ I∞ and i ∈ Ik∗ . Then

(2.46)

Π
|i|/k
k νk([i;A]) =

(
(F ∗

t,k)
|i|/k(νk)

)
([i;A]) = νk

(
F

|i|/k
t,k (χ[i;A])

)

=

∫

I∞

∑

j∈I|i|

ψt,kj (h)χ[i;A](j, h) dνk(h)

=

∫

I∞
ψt,ki (h)χA(h) dνk(h) =

∫

A

ψt,ki (h) dνk(h),

which proves the first claim. It also follows applying the BVP that for each n ∈ N

(2.47) Πn
k = Πn

k

∑

i∈Ikn

νk([i]) =

∫

I∞

∑

i∈Ikn

ψt,ki (h) dνk(h) ≤ Kn
t

∑

i∈Ikn

ψt,ki (h)

and, similarly, the other way around. Taking now logarithms, dividing by kn and
taking the limit, we have for each k ∈ N

(2.48)
1

k
P k(t) −

1

k
logKt ≤

1

k
log Πk ≤

1

k
P
k
(t) +

1

k
logKt.

If the cylinder function is smooth, then for each k there exists a constant Kt,k ≥ 1

for which ψt,ki (h) ≤ Kt,kψ
t,k
i (j) whenever h, j ∈ I∞ and i ∈ Ik∗ . Using this in

(2.47) we have finished the proof.

Note that if a cylinder function satisfies the chain rule, then νk = ν for every
k ∈ N , where

(2.49) ν([i;A]) = e−|i|P (t)

∫

A

ψti(h) dν(h)

as i ∈ I∗ and A ⊂ I∞ is a Borel set. The measure ν is called a t-conformal

measure.

Theorem 2.6. There exists an equilibrium measure.

Proof. According to Theorem 2.5, we have for each n ∈ N a measure νn ∈
M (I∞) for which

(2.50) νn([i]) = Π−1
n

∫

I∞
ψti(h) dνn(h),
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where i ∈ In and limn→∞ log Πn/n = P (t). Hence, using the BVP, we get

(2.51)

1

n

∑

i∈In

νn([i])
(
− log νn([i]) + logψti(h)

)

=
1

n

∑

i∈In

νn([i])

(
− log Π−1

n

∫

I∞
ψti(h) dνn(h) + logψti(h)

)

≥
1

n

∑

i∈In

νn([i])(log Πn − logKt) =
1

n
log Πn −

1

n
logKt

for every n ∈ N . Define now for each n ∈ N a probability measure

(2.52) µn =
1

n

n−1∑

j=0

νn ◦ σ−j

and take µ to be some accumulation point of the set {µn}n∈N in the weak topol-
ogy. Now for any i ∈ I∗ we have

(2.53)
∣∣µn([i]) − µn

(
σ−1([i])

)∣∣ =
1

n

∣∣νn([i]) − νn ◦ σ−n([i])
∣∣ ≤ 1

n
→ 0,

as n→ ∞ . Thus µ ∈ Mσ(I
∞). According to Lemma 2.2 and Proposition 2.3(1),

we have, using concavity of H ,

(2.54)

1

n

∑

i∈In

H
(
νn([i])

)
≤

1

kn

n−1∑

j=0

∑

i∈Ik

H
(
νn ◦ σ−j([i])

)
+

3k

n
C1

≤
1

k

∑

i∈Ik

H
(
µn([i])

)
+

3k

n
C1

for some constant C1 whenever 0 < k < n . Using then Lemma 2.2 and Proposi-
tion 2.3(2), we get

(2.55)

1

n

∑

i∈In

νn([i]) logψti(h) +
1

n
logKt

≤
1

kn

n−1∑

j=0

(∑

i∈Ik

νn ◦ σ−j([i]) logψti(h) + logKt

)
+

3k

n
C2

=
1

k

∑

i∈Ik

µn([i]) logψti(h) +
1

k
logKt +

3k

n
C2
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for some constant C2 whenever 0 < k < n . Now putting (2.51), (2.54) and (2.55)
together, we have

(2.56)

1

n
log Πn ≤

1

n

∑

i∈In

H
(
νn([i])

)
+

1

n

∑

i∈In

νn([i]) logψti(h) +
1

n
logKt

≤
1

k

∑

i∈Ik

H
(
µn([i])

)
+

1

k

∑

i∈Ik

µn([i]) logψti(h)

+
3k

n
C1 +

3k

n
C2 +

1

k
logKt

whenever 0 < k < n . Letting now n→ ∞ , we get

(2.57) P (t) ≤
1

k

∑

i∈Ik

H
(
µ([i])

)
+

1

k

∑

i∈Ik

µ([i]) logψti(h) +
1

k
logKt

since cylinder sets have empty boundary. The proof is finished by letting k → ∞ .

Remark 2.7. In order to prove the existence of the equilibrium measure, the
use of the Perron–Frobenius operator is not necessarily needed. Indeed, for fixed
h ∈ I∞ we could define for each n ∈ N a probability measure

(2.58) νn =

∑
i∈In ψti(h)δi,h∑

i∈In ψti(h)
,

where δh is a probability measure with support {h} . Now with this measure we
have equality in (2.38), which is going to be our replacement for (2.51) in the proof
of Theorem 2.6.

Notice that in the simplest case, where the cylinder function is constant and
satisfies the chain rule, the conformal measure equals the equilibrium measure.
This can be easily derived from the following theorem. Compare it also with
Theorem 3.8 of Mauldin and Urbański [15].

Theorem 2.8. Suppose the cylinder function satisfies the chain rule. Then

(2.59) K−1
t ν(A) ≤ µ(A) ≤ Ktν(A)

for every Borel set A ⊂ I∞ , where ν is a t -conformal measure and µ is the

t -equilibrium measure found in Theorem 2.6.

Proof. Using the BVP, we derive from (2.49)

(2.60) 1 =
∑

i∈In

ν([i]) = e−nP (t)
∑

i∈In

∫

I∞
ψti(h) dν(h) ≤ Kte

−nP (t)
∑

i∈In

ψti(h)



On natural invariant measures on generalised IFS 437

for all n ∈ N and, similarly, the other way around. Thus we have

(2.61) K−1
t enP (t) ≤

∑

i∈In

ψti(h) ≤ Kte
nP (t)

for all n ∈ N . Note that in view of the chain rule we have

(2.62)

µ([i]) = lim
n→∞

1

n

n−1∑

j=0

ν ◦ σ−j([i]) = lim
n→∞

1

n

n−1∑

j=0

∑

j∈Ij

ν([j, i])

= lim
n→∞

1

n

n−1∑

j=0

∑

j∈Ij

e−|j,i|P (t)

∫

I∞
ψtj,i(h) dν(h)

= lim
n→∞

1

n

n−1∑

j=0

e−(j+|i|)P (t)

∫

I∞
ψti(h)

∑

j∈Ij

ψtj(i, h) dν(h)

whenever i ∈ I∗ since cylinder sets have empty boundary. Now, using (2.61), we
get

(2.63) K−1
t ν([i]) ≤ µ([i]) ≤ Ktν([i])

for every i ∈ I∗ . Pick a closed set C ⊂ I∞ and define Cn = {i ∈ In : [i]∩C 6= ∅}
whenever n ∈ N . Now sets

⋃
i∈Cn

[i] ⊃ C are decreasing as n = 1, 2, . . ., and,

therefore,
⋂∞
n=1

⋃
i∈Cn

[i] = C . Thus,

(2.64)
K−1
t ν(C) = K−1

t lim
n→∞

∑

i∈Cn

ν([i]) ≤ lim
n→∞

∑

i∈Cn

µ([i])

= µ(C) ≤ Ktν(C).

Let A ⊂ I∞ be a Borel set. Then, by the Borel regularity of these measures, we
may find closed sets C1, C2 ⊂ A such that ν(C1 \ A) < ε and µ(C2 \ A) < ε
for any given ε > 0. Therefore, ν(A) ≤ ν(C1) + ε ≤ Ktµ(A) + ε and µ(A) ≤
µ(C2) + ε ≤ Ktµ(A) + ε . Letting now ε↘ 0, we have finished the proof.

3. Equilibrium dimension and iterated function system

In the previous chapter, with the help of the simple structured symbol space
using the cylinder function, we found measures with desired properties. In the
following we will project this situation into Rd . The natural question now is:
What can we say about the Hausdorff dimension of the projected symbol space,
the so-called limit set? To answer this question, we have to make several extra
assumptions, namely, we define the concept of the iterated function system and
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we introduce a couple of separation conditions. To illustrate our theory, we give
concrete examples at the end of this chapter.

For fixed t ≥ 0 we denote with µt a corresponding equilibrium measure. We
define for each n ∈ N

(3.1) G
t
n(A) = inf

{ ∞∑

j=1

∫

I∞
ψtij

(h) dµt(h) : A ⊂
∞⋃
j=1

[ij], |ij | ≥ n

}

whenever A ⊂ I∞ . Assumptions in Carathéodory’s construction (for example, see
Chapter 4 of [14]) are now satisfied and we have a Borel regular measure G t on
I∞ with

(3.2) G
t(A) = lim

n→∞
G
t
n(A).

Lemma 3.1. If G t0(A) <∞ , then G t(A) = 0 for all t > t0 .

Proof. Let n ∈ N and choose a collection of cylinder sets {[ij ]}j such that
|ij | ≥ n and

∑
j

∫
I∞

ψt0ij
(h) dµt0(h) ≤ G t0

n (A) + 1. Then

(3.3)
G
t
n(A) ≤

∑

j

∫

I∞
ψtij

(h) dµt(h) ≤ KtKt0

∑

j

∫

I∞
ψt0ij

(h) dµt0(h)s
|ij |
t−t0

≤ KtKt0s
n
t−t0

(
G
t0
n (A) + 1

)
.

By letting n→ ∞ we have finished the proof.

Using this lemma, we may now define

(3.4) dimψ(A) = inf{t ≥ 0 : G
t(A) = 0} = sup{t ≥ 0 : G

t(A) = ∞}

and we call this “critical value” the equilibrium dimension of the set A ⊂ I∞ .
Notice that the equilibrium dimension does not depend on the measure µt . In
fact, defining the measure G t by using a fixed h ∈ I∞ instead of the integral
average in (3.1), leads us to the same definition of the equilibrium dimension due
to the BVP. The most important property of the equilibrium dimension is the
following theorem.

Theorem 3.2. We have P (t) = 0 if and only if dimψ(I∞) = t .

Proof. Let us first show that P (t) < 0 implies dimψ(I∞) ≤ t . Using the
BVP, we derive from Theorem 2.5

(3.5) 1 =
∑

i∈In

νn([i]) = Π−1
n

∑

i∈In

∫

I∞
ψti(h) dνn(h) ≥ K−1

t Π−1
n

∑

i∈In

ψti(h),
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where limn→∞ Π
1/n
n = eP (t) . Now

(3.6) lim sup
n→∞

( ∑

i∈In

ψti(h)

)1/n

≤ lim
n→∞

(KtΠn)
1/n = eP (t) < 1

and choosing n0 big enough, we have

(3.7)

( ∑

i∈In

ψti(h)

)1/n

<
1 + eP (t)

2
< 1

whenever n ≥ n0 . Hence, for any given ε > 0 there exists n1 ∈ N such that

(3.8)
∑

i∈In

∫

I∞
ψti(h) dµ(h) < ε

whenever n ≥ n1 . This proves the claim.
For the convenience of the reader, to prove the other direction we repeat

here the argument of Falconer from [5]. Let us assume that t > dim(I∞) and
h ∈ I∞ . Then, clearly, G t(I∞) = 0 and we may choose a finite cover for I∞ of
the form

{
[i] : i ∈ A ⊂

⋃n0

j=1 I
j
}

, where n0 ∈ N is large enough and A is some
incomparable set such that

(3.9)
∑

i∈A

ψti(h) < K−1
t .

Here we can choose a finite cover, since any infinite collection of disjoint cylinders
will not cover the whole I∞ . Define now for each integer n ≥ n0 a set

(3.10)
An =

{
i1, . . . , iq ∈ I∗ : ij ∈ A as j = 1, . . . , q with some q,

|i1, . . . , iq| ≥ n and |i1, . . . , iq−1| ≤ n
}
.

Now, using the subchain rule, we get with any choice of j ∈ I∗

(3.11)
∑

i∈A

ψtj,i(h) ≤ Ktψ
t
j(h)

∑

i∈A

ψti(h) ≤ ψtj(h)

whenever h ∈ I∞ . Thus, inductively, we get for every n ≥ n0

(3.12)
∑

i∈An

ψti(h) ≤ K−1
t .

Assuming i ∈ In+n0 , we have i = j, k for some j ∈ An and k ∈ I∗ with
|k| ≤ n0 . Moreover, for each such j there are at most (#I)n0 such k . Since

ψti(h) ≤ ψtj(k, h)s
|k|
t ≤ ψtj(k, h), we have

(3.13)
∑

i∈In+n0

ψti(h) ≤ (#I)n0Kt

∑

j∈An

ψtj(h) ≤ (#I)n0

for all n ∈ N . From this we derive that P (t) ≤ 0. This also finishes the proof.



440 Antti Käenmäki

So far we have worked only in the symbol space. It has provided us with a
simple structured environment for finding measures with desired properties. It is,
however, more interesting to study geometric projections of these measures and
the symbol space. In the following we define what we mean by this geometric
projection. Let X ⊂ Rd be a compact set with nonempty interior. Choose then
a collection {Xi : i ∈ I∗} of nonempty closed subsets of X satisfying

(1) Xi,i ⊂ Xi for every i ∈ I∗ and i ∈ I ,
(2) d(Xi) → 0, as |i| → ∞ .

Here d means the diameter of a given set. Define now a projection mapping

π: I∞ → X such that

(3.14) {π(i)} =
∞⋂
n=1

Xi|n

as i ∈ I∞ . It is clear that π is continuous. We call the compact set E = π(I∞)
as the limit set of this collection, and if there is no danger of misunderstanding,
we also call the projected cylinder set a cylinder set.

We could now define a cylinder function for this collection of sets. But without
any additional information the equilibrium dimension has most likely nothing to do
with the Hausdorff dimension of the limit set. Therefore, in order to determine the
Hausdorff dimension, it is natural to require that the cylinder function somehow
represents the size of the subset Xi and also that there is not too much overlapping
among these sets. The use of iterated function systems with well-chosen mappings
and separation condition will provide us with sufficient information.

Take now Ω ⊃ X to be an open subset of Rd . Let {ϕi : i ∈ I∗} be a collection
of contractive injections from Ω to Ω such that the collection {ϕi(X) : i ∈ I∗}
satisfies both properties (1) and (2) above. By contractivity we mean that for every
i ∈ I∗ there exists a constant 0 < si < 1 such that |ϕi(x) − ϕi(y)| ≤ si|x − y|
whenever x, y ∈ Ω. This kind of collection is called a general iterated function

system. Furthermore, we call the collection {ϕi : i ∈ I} of the same kind of
mappings an iterated function system (IFS). Defining ϕi = ϕi1 ◦ · · · ◦ ϕi|i| , as
i ∈ I∗ , we clearly get the assumptions of general IFS satisfied. In fact, we have
d
(
ϕi(X)

)
≤ (maxi∈I si)

|i| d(X).
To avoid too much overlapping, we need a decent separation condition for

the subsets ϕi(X). We say that a strong separation condition (SSC) is satisfied
if ϕi(X) ∩ ϕj(X) = ∅ whenever i and j are incomparable. For IFS it suffices
to require ϕi(X) ∩ ϕj(X) = ∅ for i 6= j . Of course, assuming the SSC would
be enough in many cases, but it is a rather restrictive assumption, and usually
we do not need that much. We say that an open set condition (OSC) is satisfied
if ϕi

(
int(X)

)
∩ ϕj

(
int(X)

)
= ∅ whenever i and j are incomparable. Again,

for IFS it suffices to require ϕi
(
int(X)

)
∩ ϕj

(
int(X)

)
= ∅ for i 6= j . With the

notation int(X) we mean the interior of X . Furthermore, we say that a general



On natural invariant measures on generalised IFS 441

IFS has weak bounded overlapping if the cardinality of incomparable subsets of
{i ∈ I∗ : x ∈ ϕi(X)} is uniformly bounded as x ∈ X . Trivially, a general IFS
satisfying the SSC has weak bounded overlapping. Assume now that for each
i ∈ I∗ there exists a constant 0 < si < 1 such that si → 0 as |i| → ∞ . Then
we say that a general IFS has bounded overlapping if the cardinality of the set
Z(x, r) = {i ∈ Z(r) : ϕi(X) ∩ B(x, r) 6= ∅} is uniformly bounded as x ∈ X and
0 < r < r0 = r0(x). Here Z(r) is an incomparable subset of {i ∈ I∗ : si <
r ≤ si||i|−1

} such that {[i] : i ∈ Z(r)} is a cover for I∞ . We will choose the

constants si rigorously in a while. Next we study how these separation conditions
are related.

Lemma 3.3. Suppose a general IFS has bounded overlapping. Then it has

also weak bounded overlapping.

Proof. If the weak bounded overlapping is not satisfied, then the cardinality
of incomparable subsets of R(x) = {i ∈ I∗ : x ∈ ϕi(X)} is not uniformly bounded
as x ∈ X . Therefore, supx∈X #

(
R(x)∩Z(r)

)
→ ∞ , as r ↘ 0. On the other hand,

R(x) ∩ Z(r) ⊂ Z(x, r) for all x ∈ X and r > 0, which gives a contradiction.

It seems that by assuming only the mappings of a general IFS to be Lipschitz
it is very difficult to get information about the Hausdorff dimension of the limit set.
While the Lipschitz condition provides us with an upper bound for the diameter
of the cylinder set, it does not give any kind of lower bound for the size of the
cylinder set. Having the lower bound seems to be crucial for getting this kind
of information. Assuming the mappings ϕi to be bi-Lipschitz, we denote the
“maximal derivative” with

(3.15) Li(x) = lim sup
y→x

|ϕi(x) − ϕi(y)|

|x− y|

and the “minimal derivative” with

(3.16) li(x) = lim inf
y→x

|ϕi(x) − ϕi(y)|

|x− y|
.

We say that a general IFS is bi-Lipschitz if the mappings ϕi are bi-Lipschitz

and there exist cylinder functions ψ t

i
and ψ

t

i satisfying the chain rule such that

ψ t

i
(h) ≤ li

(
π(h)

)t
and ψ

t

i(h) ≥ Li

(
π(h)

)t
for all h ∈ I∞ , and in both functions

the parameter t is an exponent, that is, ψ t

i
(h) =

(
ψ 1

i
(h)

)t
and ψ

t

i(h) =
(
ψ

1

i(h)
)t

.
We also assume that the bi-Lipschitz constants for the mappings ϕi are si =

infh∈I∞ ψ 1

i
(h) and si = suph∈I∞ ψ

1

i(h). From now on, these are the constants si
we will use in the definition of the bounded overlapping.

Lemma 3.4. A bi-Lipschitz IFS satisfying the SSC has bounded overlapping.
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Proof. We use the idea found in the proof of Proposition 9.7 of Falconer [6].
Denote q = mini6=j d

(
ϕi(X), ϕj(X)

)
, where d means the distance between two

given sets, and take x ∈ E and r > 0. We can take x from E since otherwise
there is nothing to prove. Choose i ∈ I∞ such that x = π(i). Since now
ϕi|n(X)∩B(x, r) 6= ∅ for every n ∈ N , we can choose n such that i|n ∈ Z(x, r).
Take also an arbitrary j ∈ Z(r) such that j 6= i|n and let 0 ≤ j < n be the
largest integer for which j|j = i|j . If it were d

(
ϕi|n(X), ϕj(X)

)
< si|jq , there

would be y ∈ ϕi|n(X) and z ∈ ϕj(X) such that

(3.17) |y − z| < si|jq.

The bi-Lipschitz condition implies |(ϕi|j )
−1(y) − (ϕi|j )

−1(z)| < q , which contra-
dicts the strong separation assumption due to the choice of j . Hence

(3.18) d
(
ϕi|n(X), ϕj(X)

)
≥ si|jq ≥ si|n−1

q ≥ rq

and thus i|n is the only symbol in Z(r) with ϕi|n(X) ∩ B(x, rq) 6= ∅ . This also
means that there exists exactly one h ∈ Z(r/q) for which ϕh(X) ∩ B(x, r) 6= ∅ .
Take now an arbitrary j ∈ Z(x, r) and assuming q < 1 we notice that j = h, k for
some k ∈ I∗ . Choose the smallest integer k such that sk < q/K1 for all k ∈ I∗

for which |k| ≥ k . Here Kt is the constant from the BVP of the cylinder function
ψ t

i
. Hence if it were j = h, k for some k ∈ I∗ for which |k| > k , it would hold

that

(3.19) sj||j|−1
≤ K1shsk||k|−1

< r

and therefore j could not be in Z(x, r). Thus there can be at maximum (#I)k

of such k and hence #Z(x, r) ≤ (#I)k .

It seems to be important that the shape of the open set of the OSC would
not be too “wild”, and, therefore, the shape of the cylinder sets, or rather the sets
ϕi(X), is under control. See also Theorem 4.9 of Graf, Mauldin and Williams [9].
Motivated by this, we say that the boundary condition is satisfied if there exists
%0 > 0 such that

(3.20) inf
x∈∂X

inf
0<r<%0

H d
(
B(x, r) ∩ int(X)

)

H d
(
B(x, r)

) > 0,

where ∂X denotes the boundary of the set X . This condition says that the
boundary of X cannot be too “thick”; for example, recalling the Lebesgue density
theorem, we have H d(∂X) = 0. The boundary condition is clearly satisfied if the
set X is convex.
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Proposition 3.5. A bi-Lipschitz general IFS satisfying the OSC and the

boundary condition has weak bounded overlapping if si/si is bounded as i ∈ I∗ .

Proof. Fix x ∈ X and denote with R some incomparable subset of {i ∈
I∗ : x ∈ ϕi(X)} . Put r0 = min{%0, d(X, ∂Ω)} , where %0 is as in the boundary
condition. Now there exists δ > 0 such that for every y ∈ X we have

(3.21) H
d
(
B(y, r) ∩ int(X)

)
≥ H

d
(
B(y, δr)

)

whenever 0 < r < r0 . Note that the collection {ϕi

(
int(X)

)
: i ∈ R} is disjoint

due to the OSC. For each i ∈ R take yi ∈ X such that ϕi(yi) = x and choose an
increasing sequence of finite sets R1 ⊂ R2 ⊂ · · · such that

⋃∞
j=1Rj = R . Now fix

j and choose r > 0 small enough such that ri := r/si < r0 for all i ∈ Rj . Using
now the boundary condition, bi-Lipschitzness and the OSC, we see that

(3.22)

#Rjr
d =

∑

i∈Rj

sdir
d
i =

(
α(d)δd

)−1
∑

i∈Rj

sdiH
d
(
B(yi, δri)

)

≤
(
α(d)δd

)−1 ∑

i∈Rj

sdiH
d
(
B(yi, ri) ∩ int(X)

)

≤
(
α(d)δd

)−1
∑

i∈Rj

H
d
(
ϕi

(
B(yi, ri) ∩ int(X)

))

≤
(
α(d)δd

)−1
H

d

( ⋃
i∈Rj

B(x, siri)

)
≤ δ−dCdrd,

where α(d) is the Hausdorff measure of the unit ball and si/si ≤ C as i ∈ I∗ .
Hence #R = limj→∞ #Rj ≤ δ−dCd , where the upper bound does not depend on
the choice of x ∈ X .

Now we define an important class of iterated function systems. We say that
a general IFS is (weakly) geometrically stable if it is bi-Lipschitz and it has (weak)
bounded overlapping. Geometrically stable systems are clearly weakly geometri-
cally stable by Lemma 3.3. If we have a good control over the size of the cylinder
sets, the converse is also true.

Proposition 3.6. Suppose a general IFS is weakly geometrically stable such

that si/si is bounded as i ∈ I∗ . Then it is also geometrically stable.

Proof. Notice first that the weak bounded overlapping assumption implies
the existence of the constant C for which

∑
i∈A χϕi(X)(x) < C whenever x ∈ X

and the set A ⊂ I∗ is incomparable. Recall that

(3.23) Z(x, r) = {i ∈ Z(r) : ϕi(X) ∩ B(x, r) 6= ∅}
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is incomparable and notice that ϕi(X) ⊂ B(x, rd(X)si/si + r) as i ∈ Z(x, r).
Choosing C big enough such that also d(X)si/si + 1 ≤ C whenever i ∈ I∗ , we
get

(3.24)

#Z(x, r)rd ≤
(
min
i∈I

sdi

)−1 ∑

i∈Z(x,r)

sdi

≤
(
H

d(X) min
i∈I

sdi

)−1 ∑

i∈Z(x,r)

H
d
(
ϕi(X)

)

≤
(
H

d(X) min
i∈I

sdi

)−1
∫

B(x,Cr)

∑

i∈Z(x,r)

χϕi(X)(x) dH
d(x).

Since rd =
(
α(d)Cd

)−1
H d

(
B(x,Cr)

)
, we conclude

(3.25) #Z(x, r) ≤
α(d)Cd+1

H d(X) mini∈I sdi
,

where α(d) is the Hausdorff measure of the unit ball.

Before studying the Hausdorff dimension of the limit set, we show in the
following theorem that with respect to any invariant measure we can have the
same structure in the limit set as in the symbol space. Under the weak bounded
overlapping assumption, somehow the weakest separation condition, we can project
any invariant measure from I∞ to the limit set E such that the overlapping has
measure zero.

Theorem 3.7. Suppose a general IFS has weak bounded overlapping. Then

for m = µ ◦ π−1 , where µ ∈ Mσ(I
∞) , we have

(3.26) m
(
ϕi(X) ∩ ϕj(X)

)
= 0

whenever i and j are incomparable.

Proof. We use the idea found in the proof of Lemma 3.10 of Mauldin and
Urbański [15]. For fixed incomparable h and k we denote A = ϕh(X) ∩ ϕk(X)
and An =

⋃
i∈In ϕi(A) as n ∈ N . Let us first show that

⋂∞
q=1

⋃∞
n=q An = ∅ .

Assume contrarily that there exists x ∈
⋂∞
q=1

⋃∞
n=q An . Then x ∈

⋃∞
n=q An for

every q and hence x ∈ Anq
, where {nq}q∈N is an increasing sequence of indexes.

Now for each q there exists a symbol jq ∈ Inq such that x ∈ ϕjq,h
(X) and

x ∈ ϕjq,k
(X). Denoting with R∗

k the maximal incomparable subset of Rk =
{
i ∈

⋃k
q=1(I

nq+|h| ∪ Inq+|k|) : x ∈ ϕi(X)
}

, we have #R1 ≥ 2 and also #R∗
1 ≥ 2.

Clearly, #R2 ≥ 4, and even if it were j2|n1+|h| = j1, h (or j2|n1+|k| = j1, k),
it is still #R∗

2 ≥ 3 since the two new symbols j2, h and j2, k with the symbol
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j1, k (or j1, h) are incomparable. Observe that for each k the symbol jk can
be comparable at maximum with one element of R∗

k−1 . Thus continuing in this
manner, we get #R∗

k ≥ k+1 as k ∈ N . The claim is proved since this contradicts
the bounded overlapping assumption.

The boundedness assumption also implies
∑

i∈In χϕi(A)(x) ≤ C for every
x ∈ X and n ∈ N with some constant C ≥ 0. Thus, using the invariance of µ ,
we have

(3.27)

m(An) = m

( ⋃
i∈In

ϕi(A)

)
≥ C−1

∑

i∈In

m
(
ϕi(A)

)

≥ C−1
∑

i∈In

µ
(
[i;π−1(A)]

)
= C−1µ ◦ σ−n

(
π−1(A)

)
= C−1m(A)

whenever n ∈ N . So, if m(A) > 0, we get a contradiction immediately since

(3.28) m

(
∞⋂
q=1

∞⋃
n=q

An

)
= lim
q→∞

m

(
∞⋃
n=q

An

)
≥ lim
q→∞

m(Aq) ≥ C−1m(A).

The proof is complete.

If we assume that the cylinder function satisfy

(3.29) ψt
i
(h) ≤ ψti(h) ≤ ψ

t

i(h),

where i ∈ I∗ , then we clearly have dimψ(I∞) ≤ dimψ(I∞) ≤ dimψ(I∞), where

dimψ(I∞) and dimψ(I∞) are the equilibrium dimensions derived from cylinder

functions ψt
i

and ψ
t

i , respectively. The following theorem guarantees that the
similar behaviour occurs also for the Hausdorff dimension with geometrically stable
systems. It is now very tempting to guess that in some cases making a reasonable
choice for the cylinder function, it is possible to get dimH(E) = dimψ(I∞). If
there is no danger of misunderstanding, we call also the projected equilibrium
measure an equilibrium measure.

Theorem 3.8. Suppose a general IFS is geometrically stable. Then it has

(3.30) dimψ(I∞) ≤ dimH(E) ≤ dimψ(I∞),

and, in fact, H t(A) > 0 as t ≤ dimψ(I∞) whenever A is a Borel set such

that m(A) = 1 and m is the equilibrium measure constructed using the cylinder

function ψt
i
.
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Proof. Let us first prove the right-hand side of (3.30). For each t ≥ 0 we have

(3.31)

H
t(E) ≤ lim

n→∞
inf

{∑

j

d
(
ϕij

(E)
)t

: E ⊂
⋃
j

ϕij
(E), |ij | ≥ n

}

≤ lim
n→∞

inf

{∑

j

d(E)tstij
: E ⊂

⋃
j
ϕij

(E), |ij | ≥ n

}

≤ Ktd(E)tG
t
(I∞),

where G
t

is the measure constructed in a similar way as in (3.1) and (3.2) but using

the cylinder function ψ
t

i . Here Kt is the constant of the BVP. Thus dimH(E) ≤
dimψ(I∞). Notice that here we did not need any kind of separation condition.

For the left-hand side recall first that the set Z(r) is incomparable and the
cardinality of the set Z(x, r) is bounded as x ∈ X and 0 < r < r0 = r0(x). Now
for fixed x ∈ X and 0 < r < r0(x) we have, using Theorems 2.5, 2.8 and 3.2,

(3.32)

m
(
B(x, r)

)
≤

∑

i∈Z(x,r)

m
(
ϕi(X)

)

≤ Kt

∑

i∈Z(x,r)

∫

I∞
ψt
i
(h) dν(h) ≤ K2

t#Z(x, r)rt,

where m and ν are the corresponding equilibrium measure and conformal measure
constructed using the cylinder function ψt

i
and t = dimψ(I∞). Taking A ⊂ E

such that m(A) = 1 and defining Ak = {x ∈ A : 1/k < r0(x)} , we have A =⋃∞
k=1Ak . Now for each x ∈ Ak we have

(3.33)
m

(
B(x, r)

)

rt
≤ K2

t#Z(x, r)

as 0 < r < 1/k , and thus H t(Ak) ≥ Cm(Ak) for some positive constant C .
Since H t(A) = limk→∞ H t(Ak) ≥ C > 0, we have finished the proof.

Next we introduce a couple of examples of IFS’s which have aroused great
interest for some time. After each definition we also discuss a little how our theory
turns out to be in that particular case. Our main application is the self-affine case
described below.

Definition 3.9. Let the mappings of IFS be similitudes, that is, for each
i ∈ I there exists 0 < si < 1 such that |ϕi(x) − ϕi(y)| = si|x − y| whenever
x, y ∈ Ω. We call this kind of setting a similitude IFS and the corresponding limit
set a self-similar set.
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If for each i ∈ I∗ we choose ψti ≡ sti , where si = si1 · · · si|i| , then ψti is
a constant cylinder function satisfying the chain rule. Assuming weak bounded
overlapping, the similitude IFS is geometrically stable due to Proposition 3.6,
and, thus, with this choice of the cylinder function we get, applying Theorem 3.8,
that dimH(E) = dimψ(I∞) (we clearly have si = si = si ). Notice also that
Theorem 3.5 provides us with concrete assumptions, namely the OSC and the
boundary condition, to obtain the weak bounded overlapping. The definition of
this setting goes back to the well-known article of Hutchinson [11]. However, the
open set condition was first introduced by Moran in [16]. Schief studied in [21],
extending ideas of Bandt and Graf [1], the relationship between the OSC and the
choice of the mappings of IFS. It also follows from the result of Schief that the
weak bounded overlapping implies the OSC since according to Proposition 3.6
and Theorem 3.8 we have H t(E) > 0, where t = dimH(E). For example, using
Theorems 2.5, 2.8 and 3.7, we see that the t -equilibrium measure, where t =
dimH(E), gives us the idea of “mass distribution”; we start with mass 1 and on
each level of the construction we divide the mass from cylinder sets of the previous
level using the rule obtained by the probability vector (sti)i∈I .

Definition 3.10. Suppose d ≥ 2. Let mappings of IFS be C1 and conformal

on an open set Ω0 ⊃ Ω. Hence |ϕ′
i|
d = |Jϕi

| for every i ∈ I , where J stands for
the usual Jacobian and the norm on the left-hand side is just a standard “sup-
norm” for linear mappings. We call this kind of setting a conformal IFS and the
corresponding limit set a self-conformal set.

Observe that the conformal mapping is complex analytic in the plane and,
by Liouville’s theorem, a Möbius transformation in higher dimensions (see Theo-
rem 4.1 of Reshetnyak [19]). So, in fact, conformal mappings are C∞ and infinites-
imally similitudes. Notice also that it is essential to use the bounded set Ω here
since conformal mappings contractive in the whole Rd are similitudes. If for each

i ∈ I∗ we choose ψti(h) =
∣∣ϕ′

i

(
π(h)

)∣∣t , then ψti is a cylinder function satisfying
the chain rule. The BVP for ψti is guaranteed by the smoothness of mappings ϕi ,
Proposition 2.1 and the chain rule. With this choice of the cylinder function we
may also call the BVP a bounded distortion property (BDP) since it gives informa-
tion about the distortion of mappings ϕi . Assuming weak bounded overlapping,
the system is geometrically stable and we get dimH(E) = dimψ(I∞) like before

(we can choose ψt
i

= ψ
t

i = ψti ). Notice again that, using Theorem 3.5, the OSC
and the bounded overlapping provides us with a sufficient condition for the weak
bounded overlapping to hold. In the conformal case the equilibrium measure is
equivalent to the conformal measure. Peres, Rams, Simon and Solomyak [17] gen-
eralised the result of Schief for the conformal setting. Thus, the weak bounded
overlapping implies the OSC also in this setting. Mauldin and Urbański [15] have
introduced the theory of conformal IFS’s for infinite collections of mappings.

Definition 3.11. Let the mappings of IFS be affine, that is, ϕi(x) = Aix+ai
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for every i ∈ I , where Ai is a contractive non-singular linear mapping and ai ∈
Rd . We call this kind of setting an affine IFS and the corresponding limit set a
self-affine set.

Clearly, the products Ai = Ai1 · · ·Ai|i| are also contractive and non-singular.
Singular values of a non-singular matrix are the lengths of the principle semiaxes
of the image of the unit ball. On the other hand, the singular values 1 > α1 ≥
α2 ≥ · · · ≥ αd > 0 of a contractive, non-singular matrix A are the non-negative
square roots of the eigenvalues of A∗A , where A∗ is the transpose of A . Define
the singular value function αt by setting αt(A) = α1α2 · · ·αl−1α

t−l+1
l , where l

is the smallest integer greater than or equal to t . For all t > d we put αt(A) =
(α1 · · ·αd)

t/d . It is clear that αt(A) is continuous and strictly decreasing in t . If
for each i ∈ I∗ we choose ψti ≡ αt(Ai), then ψti is a constant cylinder function.
The subchain rule for ψti is satisfied by Lemma 2.1 of Falconer [5]. Since in
this case we do not have the chain rule, it is still very difficult to say anything
“concrete” about the equilibrium measure or the Hausdorff dimension of the limit
set. Assuming the SSC, we have bounded overlapping satisfied by Lemma 3.4 and
thus we can at least approximate the Hausdorff dimension of the limit set by using
Theorem 3.8. We study self-affine sets and equilibrium measures of affine IFS’s in
more detail in the next chapter. The following example shows us that in the affine
setting we cannot allow overlapping even at one single point if we want to have
the weak bounded overlapping.

Example 3.12. Put I = {1, 2} , X = B(0, 1) ∩ {(x1, x2) ∈ R2 : |x2| ≤ x1}
and define two affine mappings (in matrix notation) as follows:

(3.34)

ϕ1(x1, x2) =

(
cos(π/8) − sin(π/8)
sin(π/8) cos(π/8)

) (
0.9 0
0 0.3

) (
x1

x2

)
,

ϕ2(x1, x2) =

(
cos(π/8) sin(π/8)
− sin(π/8) cos(π/8)

) (
0.9 0
0 0.3

) (
x1

x2

)
.

The set X is a sector with angle π/2, and functions ϕ1 and ϕ2 map this sector
into two flattened sectors inside X such that ϕ1(X) ∩ ϕ2(X) = {0} . The OSC
is therefore satisfied. Since the origin is the only fixed point of both mappings,
the limit set is nothing but {0} . This setting does not satisfy the weak bounded
overlapping, because the amount of cylinder sets of the level n including the origin
is always 2n .

Notice that the similitude IFS is always both conformal and affine. Also if
we consider the cylinder functions introduced before, we notice that the cylinder
function of the similitude IFS is just a special case of both cylinder functions of
conformal IFS and affine IFS. We could also study more general limit sets in this
manner. Falconer [7] has obtained some dimension results into this direction by
using the singular value function for the derivatives of more general mappings.
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Using the concept of general IFS, it is possible to use bi-Lipschitz mappings for
defining geometric constructions for which it is possible easily to determine the
Hausdorff dimension of the limit set.

Example 3.13. Consider a bi-Lipschitz general IFS satisfying the OSC and
the boundary condition. Suppose that for each i ∈ I∗ there exist balls Bi and
Bi and a constant C > 0 such that

(3.35) Bi ⊂ ϕi(X) ⊂ Bi,

li(x) ≥ Cd(Bi) and Li(x) ≤ Cd(Bi) as x ∈ X . Now, if the ratio between the
radii of Bi and Bi remains bounded, then

(3.36) dimH(E) = t,

where t ≥ 0 is the unique number satisfying

(3.37) lim
n→∞

1

n
log

∑

i∈In

rti = 0

and ri is the radius of either Bi or Bi . This result is easily obtained by first
noting that the ratio si/si is bounded and then using Propositions 3.5 and 3.6,
Theorem 3.8 and recalling the definition of the topological pressure.

The concept of the general IFS is also crucial in the following example, which
says that the relative positions of cylinder sets are irrelevant concerning the Haus-
dorff dimension of the limit set of conformal systems provided that a sufficient
separation condition is satisfied.

Example 3.14. Consider a conformal IFS satisfying the OSC and the bound-

ary condition. Choosing ψti(h) =
∣∣ϕ′

i

(
π(h)

)∣∣t , we have dimH(E) = dimψ(I∞). In
this setting the placement of cylinder sets is fixed and their relative positions fol-
low from the rule obtained by the mappings ϕi . We could now rearrange the
placements and ask what happens to the Hausdorff dimension of the limit set. We
define a general IFS by composing our original conformal mappings with isome-
tries such that the OSC remains satisfied. Since this does not affect our cylinder
function and composed mappings are still conformal, we will get for the limit set
Ẽ of this general IFS that dimH(Ẽ) = dimψ(I∞) using Propositions 3.5, 3.6 and
Theorem 3.8.
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4. Dimension of the equilibrium measure

We say that the Hausdorff dimension of a given Borel probability measure
m is dimH(m) = inf{dimH(A) : A is a Borel set such that m(A) = 1} . To check
if dimH(m) = dimH(E) is one way to examine how well a given measure m is
spread out on a given set E . If we consider similitude and conformal IFS’s and
we choose cylinder functions to be the ones introduced in the previous chapter,
we notice using Proposition 3.6 and Theorem 3.8 that dimH(m) = dimH(E) =: t
provided that the weak bounded overlapping is satisfied. Here m and E are the
corresponding t -equilibrium measure and the limit set. It is an interesting question
whether we can obtain the same result for the affine setting. In the following we
will prove that at least in “almost all” affine cases this is possible. To do that we
first have to prove that the equilibrium measure µ is ergodic, that is, µ(A) = 0 or
µ(A) = 1 for every Borel set A for which A = σ−1(A). In the proof we use some
ideas found in Zinsmeister [26], Bowen [3] and Phelps [18].

Theorem 4.1. There exists an ergodic equilibrium measure.

Proof. Let us first study mappings P,Qn,Q: Mσ(I
∞) → R , for which

P(µ) = hµ , Qn(µ) = (1/n)
∑

i∈In µ([i]) logψti(h) and Q(µ) = limn→∞ Qn(µ) =
Eµ(t). It is clear that each Qn is affine and continuous (basically because cylinder
sets have empty boundary) and Q is affine. We will prove that P is affine and
upper semicontinuous.

Fix 0 ≤ x1, x2 ≤ 1 and λ ∈ [0, 1] and denote x = λx1 +(1−λ)x2 . Now using
the concavity of the function H(x) = −x logx , H(0) = 0, we have

(4.1)

0 ≤ −x logx+ λx1 logx1 + (1 − λ)x2 log x2

= −λx1(logx− logx1) − (1 − λ)x2(logx− logx2)

= −λx1

(
logx− log(λx1)

)
− (1 − λ)x2

(
logx− log((1 − λ)x2)

)

− λx1 logλ− (1 − λ)x2 log(1 − λ)

≤ −x1λ logλ− x2(1 − λ) log(1 − λ) ≤ x1
1

e
+ x2

1

e

since logx− log(λx1) and logx− log
(
(1 − λ)x2

)
are positive. Hence we get

(4.2)

0 ≤
∑

i∈In

H
(
µ([i])

)
− λ

∑

i∈In

H
(
µ1([i])

)
− (1 − λ)

∑

i∈In

H
(
µ2([i])

)

≤
1

e

∑

i∈In

µ1([i]) +
1

e

∑

i∈In

µ2([i]) =
2

e
,

where µ1, µ2 ∈ Mσ(I
∞) and µ = λµ1 + (1 − λ)µ2 . By the convexity of Mσ(I

∞)
we have µ ∈ Mσ(I

∞) and thus it follows from (4.2) that hµ = λhµ1
+ (1−λ)hµ2

,
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and hence, P is affine. Take next ε > 0 and µ ∈ Mσ(I
∞) and choose n0 big

enough such that

(4.3)
1

n

∑

i∈In

H
(
µ([i])

)
≤ hµ +

ε

2

whenever n ≥ n0 . Now we choose arbitrary η ∈ Mσ(I
∞) for which

(4.4)
1

n

∑

i∈In

H
(
η([i])

)
≤

1

n

∑

i∈In

H
(
µ([i])

)
+
ε

2

for some n ≥ n0 . This choice can be made just by taking η to be close enough
to µ in the weak topology and recalling that cylinder sets have empty boundary.
Therefore, using Proposition 2.4(3), we have

(4.5) hη ≤
1

n

∑

i∈In

H
(
η([i])

)
≤

1

n

∑

i∈In

H
(
µ([i])

)
+
ε

2
≤ hµ + ε

for some n ≥ n0 . We have established the upper semicontinuity of the map-
ping P .

Denote the set of all ergodic measures of Mσ(I
∞) with Eσ(I

∞). Let us
now assume contrarily that P + Q cannot attain its supremum with an ergodic
measure, that is, (P + Q)(η) < (P + Q)(µ) for all η ∈ Eσ(I

∞), where µ is an
equilibrium measure. Recalling Theorem 6.10 of Walters [25], we know that the set
Mσ(I

∞) is compact and convex and the set of its extreme points is exactly the set
Eσ(I

∞). An extreme point of a convex set is a point which cannot be expressed as
an average of two distinct points. Using Choquet’s theorem (see Chapter 3 of [18]),
we can get an ergodic decomposition for every invariant measure, namely, for each
µ ∈ Mσ(I

∞) there exists a Borel regular probability measure τµ on Eσ(I
∞) such

that

(4.6) R(µ) =

∫

Eσ(I∞)

R(η) dτµ(η)

for every continuous affine R: Mσ(I
∞) → R .

Denoting now Ak =
{
η ∈ Eσ(I

∞) : (P +Q)(µ)− (P +Q)(η) ≥ 1/k
}

, where
µ is an equilibrium measure, we have

⋃∞
k=1Ak = Eσ(I

∞) and thus τµ(Ak) > 0
for some k . Clearly,

(4.7)

(P + Q)(µ) −

∫

Eσ(I∞)

(P + Q)(η) dτµ(η)

=

∫

Eσ(I∞)

(P + Q)(µ) − (P + Q)(η) dτµ(η)

≥

∫

Ak

1

k
dτµ(η) =

1

k
τµ(Ak)



452 Antti Käenmäki

for every k and thus

(4.8) (P + Q)(µ) >

∫

Eσ(I∞)

(P + Q)(η) dτµ(η).

We will show that this is impossible, and, hence, the contradiction we obtain
finishes the proof.

Our goal now is to prove that we can write (4.6) also by using upper semi-
continuous affine functions, particularly with P + Qn . Fix n ∈ N and define
R: Mσ(I

∞) → R by setting R(µ) = inf
{
R(µ) : R ≥ P + Qn is continuous

and affine
}

. Let us first prove that for each continuous affine R1,R2 > P + Qn

there exists a continuous affine R for which P + Qn < R ≤ R1,R2 . Since
P + Qn is affine and upper semicontinuous, we notice that the set D =

{
(µ, r) :

µ ∈ Mσ(I
∞), r ≤ (P + Qn)(µ)

}
is closed and convex. Since both mappings Ri

are continuous and affine as i = 1, 2, we get that both sets Di =
{
(µ, r) : µ ∈

Mσ(I
∞), r = Ri(µ)

}
are compact and convex. Observe that the convex hull of

the union D1 ∪ D2 is compact and disjoint from the set D . Now applying the
separation theorem for convex sets (Corollary 1.2 of [4]), we notice there exists a
non-zero continuous real-valued linear functional l on Mσ(I

∞) × R and a real
number α such that the affine hyperplane

(4.9) A =
{
(µ, r) : µ ∈ Mσ(I

∞), l(µ, r) = α
}

strictly separates the sets D and the convex hull of D1 ∪ D2 . Because of the
linearity of l , for each µ ∈ Mσ(I

∞) there exists exactly one r for which (µ, r) ∈ A .
Thus there exists a function R: Mσ(I

∞) → R such that l
(
µ,R(µ)

)
= α as

µ ∈ Mσ(I
∞). The function R is affine and continuous because the functional l is

linear and continuous. Since now l(µ, r) > α for every (µ, r) ∈ D and l(µ, r) < α
for every (µ, r) in the convex hull of D1 ∪D2 (or the other way around), we have
R(µ) > (P + Qn)(µ) and R(µ) < R1(µ),R2(µ) for each µ ∈ Mσ(I

∞), which is
exactly what we wanted. A similar reasoning implies that R = P + Qn . Assume
contrarily that there exists ν such that (P + Qn)(ν) < R(ν). Now the set D
is disjoint from the compact convex set

{(
ν,R(ν)

)}
and the separation theorem

gives us an immediate contradiction. We will next show that
∫

Eσ(I∞)

(P + Qn)(η) dτµ(η) = inf

{∫

Eσ(I∞)

R(η) dτµ(η) : R ≥ P + Qn

is continuous and affine

}
.(4.10)

Let us denote with γ the right-hand side of (4.10) and choose a sequence {Ri}i∈N

of continuous affine mappings greater than or equal to P + Qn such that

(4.11) lim
i→∞

∫

Eσ(I∞)

Ri(η) dτµ(η) = γ.
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We can assume that this sequence is monotonically decreasing, and hence there
exists a Borel measurable function R = limi→∞ Ri with R ≥ P + Qn and

(4.12)

∫

Eσ(I∞)

R(η) dτµ(η) = γ

using the monotone convergence theorem. If it held that τµ
({
η ∈ Eσ(I

∞) : R(η) >

(P + Qn)(η)
})

> 0, then there would be real numbers r and q such that also

the set
{
η ∈ Eσ(I

∞) : (P + Qn)(η) < r < q < R(η)
}

has positive measure. By
the Borel regularity, this set contains a compact subset C of positive measure.
Now for each η ∈ C there is a continuous affine mapping R̃ ≥ P + Qn such that
R̃(η) < r . Relying now on compactness and continuity, we can choose a finite

number of them, say, R̃1, . . . , R̃k such that for each η ∈ C there is 1 ≤ j ≤ k
with R̃j(η) < r . For each i ∈ N we choose a continuous affine mapping R̂i such

that P + Qn <R̂i ≤ Ri, R̃1, . . . , R̃k . Hence R̂i < r < r + R − q < Ri − (q − r)

on C and R̂i ≤ Ri elsewhere. Therefore,

(4.13) γ ≤

∫

Eσ(I∞)

R̂i(η) dτµ(η) ≤

∫

Eσ(I∞)

Ri(η) dτµ(η) − (q − r)τµ(C),

which finishes the proof of (4.10) as we let i → ∞ . Using now (4.10) and (4.6),
we get that

∫

Eσ(I∞)

(P + Qn)(η) dτµ(η) = inf

{∫

Eσ(I∞)

R(η) dτµ(η) : R ≥ P + Qn

is continuous and affine

}
(4.14)

= inf
{
R(µ) : R ≥ P + Qn is continuous and affine

}

= (P + Qn)(µ).

Letting n → ∞ and using the dominated convergence theorem, we have shown
that (4.8) cannot happen and thus finished the proof.

The ergodicity of the equilibrium measure is crucial in the following proposi-
tion, which, for example, in the similitude and conformal cases gives information
about the so-called local Hausdorff dimension of the equilibrium measure. Com-
pare it to Proposition 10.4 of Falconer [8].

Proposition 4.2. Suppose t ≥ 0 and µ is an ergodic t -equilibrium measure.

Then

(4.15) lim
n→∞

logµ([i|n])

logψt
i|n

(h)
= 1 −

P (t)

Eµ(t)

for µ -almost all i ∈ I∞ .
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Proof. Let us first note that due to the invariance of the equilibrium measure
and theorem of Shannon–McMillan (for example, see Chapter 3 of Zinsmeister [26])
we have

(4.16) hµ = − lim
n→∞

1

n
logµ([i|n])

for µ -almost all i ∈ I∞ . We can get a similar kind of expression for the energy
as well. Indeed, using Kingman’s subadditive ergodic theorem (for example, see
Steele [23]) and the BVP, we have

(4.17)

Eµ(t) = lim
n→∞

1

n

∑

i∈In

µ([i]) logψti(h)

= lim
n→∞

1

n

∑

i∈In

∫

[i]

logψti(h) dµ(h)

= lim
n→∞

1

n

∫

I∞
logψti|n

(
σn(i)

)
dµ(i)

= lim
n→∞

1

n
logψtj|n

(
σn(j)

)

= lim
n→∞

1

n
logψtj|n(h)

for µ -almost all j ∈ I∞ . Now the claim follows easily from the fact that

(4.18) P (t) = Eµ(t) + hµ.

Now, with the help of this proposition, we can prove the next theorem, our
main tool in studying the Hausdorff dimension of the equilibrium measure on affine
systems. We define the equilibrium dimension of a measure µ ∈ M (I∞) by setting
dimψ(µ) = inf{dimψ(A) : A is a Borel set such that µ(A) = 1} .

Theorem 4.3. Suppose P (t) = 0 and µ is an ergodic t -equilibrium measure.

Then

(4.19) dimψ(µ) = t.

Proof. Let us denote

(4.20) R =

{
i ∈ I∞ : lim

n→∞

logµ([i|n])

logψt
i|n

(h)
= 1

}

and take an arbitrary Borel set A ⊂ I∞ for which µ(A) = 1. Using Proposi-
tion 4.2, we also have µ(R ∩ A) = 1. Fix i ∈ R ∩ A and q < t . Now it follows
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from the definition of the cylinder function, Proposition 4.2 and (4.16) that

(4.21)

lim inf
n→∞

log µ([i|n])

logψq
i|n

(h)
≥ lim
n→∞

logµ([i|n])

logψt
i|n

(h) + log s−nt−q

=
1

1 +
1

hµ
log st−q

> 1.

Thus there exists n0 = n0(i) such that

(4.22)
log µ([i|n])

logψq
i|n

(h)
≥ 1

whenever n ≥ n0 . Denoting Ak = {i ∈ R ∩ A : n0(i) < k} , we have R ∩ A =⋃∞
k=1Ak . Hence, using (4.22), we get for each i ∈ Ak

(4.23)
µ([i|n])

ψq
i|n

(h)
≤ 1

whenever n ≥ k . Take {[ij ]}j to be any cover for Ak such that |ij | > k and
[ij ] ∩ Ak 6= ∅ for every j . We can choose each ij to be of the form i|n for some
i ∈ Ak and n ∈ N . Hence by (4.23)

(4.24) µ(Ak) ≤
∑

j

µ([ij ]) ≤
∑

j

ψqij
(h) ≤ Kq

∑

j

∫

I∞
ψqij

(h) dµ(h),

from which we get G q(Ak) ≥ K−1
q µ(Ak). Now, clearly,

G
q(R ∩A) = lim

k→∞
G
q(Ak) ≥ K−1

q lim
k→∞

µ(Ak) = K−1
q µ(R ∩ A),

which gives G q(A) > 0 and dimψ(A) ≥ q . Since q < t was arbitrary as was the
choice of the Borel set A of full measure, we conclude dimψ(µ) ≥ t . The proof is
finished by recalling Theorem 3.2.

In the similitude and conformal cases we obtained the desired dimension result
easily straight from Theorem 3.8. For the affine IFS we can not apply Theorem 3.8
because in that case it gives only upper and lower bounds for the Hausdorff di-
mension of the equilibrium measure. We will use Theorem 4.3 and the following
result of Falconer [5].

Theorem 4.4. Suppose mappings of an affine IFS are of the form ϕi(x) =
Aix+ ai , where |Ai| <

1
3 , as i ∈ I and the cylinder function is chosen to be the

singular value function, ψti ≡ αt(Ai) . We also assume that P (t) = 0 . Then for

H d#I -almost all a = (a1, . . . , a#I) ∈ Rd#I we have

(4.25) dimψ(I∞) = dimH(E)

where E = E(a) .
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The main idea of the proof is to use ellipsoids as a covering. Since the singular
value function refers to the size of the corresponding ellipsoid, this is natural. The
upper bound for the Hausdorff dimension is a straightforward calculation and
the lower bound is obtained using the potential theoretic characterisation of the
Hausdorff dimension. Solomyak has improved the constant 1

3 used in the theorem.
He proved that it can be replaced by 1

2
, which, rather surprisingly, he showed to be

sharp in a sense if |Ai| ≥
1
2 +ε for some i ∈ I and for any ε > 0, then the theorem

may fail. For details see Proposition 3.1 of [22]. Falconer’s theorem is true also for
subsets of E , that is, for H d#I -almost all a we have dimψ

(
π−1(A)

)
= dimH(A)

whenever A ⊂ E = E(a) is a Borel set. This generalisation follows just by noting
that Lemma 4.2 of [5] remains true if the set I∞ is replaced by an arbitrary Borel
set.

Notice that in the theorem no separation condition of any kind is assumed.
However, there are situations where the equilibrium dimension and the Hausdorff
dimension do not coincide if we just assume |Ai| <

1
2

for every i ∈ I . For example,
there is too much overlapping among the sets ϕi(X), or these sets are aligned in
a way that it is not possible to obtain economical covers using ellipsoids, and,
thus, the use of the singular value function does not fit. In the theorem all of
these “bad” situations are excluded by the statement “for H d#I -almost all a”.
It is an interesting question to find a characterisation for these “bad” situations.
Hueter and Lalley have provided in [10] with checkable sufficient conditions for
the theorem to hold for all a .

The following theorem gives a partially positive answer to the open question
proposed by Kenyon and Peres in [13]. They asked whether there exists a T -
invariant ergodic probability measure on a given compact set, where the mapping
T is continuous and expanding, such that it has full dimension. In our case the
mapping T is constructed by using inverses of the mappings of IFS.

Theorem 4.5. Suppose mappings of an affine IFS are of the form ϕi(x) =
Aix + ai , where |Ai| <

1
2 , as i ∈ I and the cylinder function is chosen to be

the singular value function, ψti ≡ αt(Ai) . We also assume that P (t) = 0 , µ is

an ergodic t -equilibrium measure and m = µ ◦ π−1 . Then for H d#I -almost all

a = (a1, . . . , a#I) ∈ Rd#I we have

(4.26) dimH(m) = dimH(E),

where E = E(a) .

Proof. Due to Theorems 4.3 and 3.2 we have dimψ(A) = dimψ(I∞) whenever
A ⊂ I∞ has full µ -measure. Hence for any A ⊂ E with full m -measure we have

(4.27) dimH(A) = dimψ

(
π−1(A)

)
= dimψ(I∞) = dimH(E)

using Theorem 4.4 and the comments after it.
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