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INTEGRAL MEANS OF ANALYTIC FUNCTIONS
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Abstract. If 0 < p < ∞ and f is an analytic function in the unit disc ∆ = {z ∈ C : |z| < 1} ,
we set, as usual,

Mp(r, f) =

(

1

2π

∫ 2π

0

|f(reiθ)|p dθ

)1/p

, 0 < r < 1.

Given p ∈ (0,∞) , we let Fp denote the space of those functions f which are analytic in ∆ and
satisfy Mp(r, f

′) = O(1/(1−r)) , as r → 1 . In this paper we obtain sharp estimates on the growth
of the integral means Mp(r, f) , f ∈ Fp .

1. Introduction and main results

Let ∆ denote the unit disc {z ∈ C : |z| < 1} . If 0 < r < 1 and g is an
analytic function in ∆, we set

Ip(r, g) =
1

2π

∫ π

−π

|g(reiθ)|pdθ, 0 < p < ∞,

Mp(r, g) = Ip(r, g)1/p, 0 < p < ∞,

M∞(r, g) = max
|z|=r

|g(z)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions g , analytic in ∆,
for which

‖g‖Hp = sup
0<r<1

Mp(r, g) < ∞.

We refer to [4] for the theory of Hardy spaces.
It is well known that there is a close relation between the integral means of

an analytic function and those of its derivative. A classical result of Hardy and
Littlewood [8], [9] (see Theorem 5.5 of [4]) asserts that if 0 < p ≤ ∞ , α > 1 and
f is an analytic function in ∆, then

(1) Mp(r, f
′) = O

(

1

(1 − r)α

)

, as r → 1 ,
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if and only

(2) Mp(r, f) = O

(

1

(1 − r)α−1

)

, as r → 1 .

If 0 < α < 1 and f satisfies (1) then it follows that f ∈ Hp (see Theorem 5.1
and Theorem 5.4 of [4] for the case 1 ≤ p ≤ ∞ and Remark 1 below for the case
0 < p < 1).

Now it remains to consider the case α = 1. Studying this case is the main
object of this paper.

Applying the continuous form of Minkowski’s inequality, in the case 1 ≤ p <
∞ , and simply integration of the derivative, in the case p = ∞ , yield:

If 1 ≤ p ≤ ∞ and f is an analytic function in ∆ which satisfies

(3) Mp(r, f
′) = O

(

1

1 − r

)

, as r → 1 ,

then

(4) Mp(r, f) = O

(

log
1

1 − r

)

, as r → 1 .

This result is certainly sharp for p = ∞ and for p = 1. Indeed:

(i) f(z) = log
(

1/(1 − z)
)

, z ∈ ∆, satisfies

M∞(r, f ′) ∼
1

1 − r
and M∞(r, f) ∼ log

1

1 − r
, as r → 1 .

(ii) The function f(z) = 1/(1 − z), z ∈ ∆, satisfies

M1(r, f
′) ∼

1

1 − r
and M1(r, f) ∼ log

1

1 − r
, as r → 1 .

However, in Theorem 1 and Theorem 2 we obtain better estimates for 1 < p < ∞
and we also obtain sharp estimates in the case 0 < p < 1.

Theorem 1. (a) If 2 < p < ∞ and f is an analytic function in ∆ such that

(5) Mp(r, f
′) = O

(

1

1 − r

)

, as r → 1,

then

(6) Mp(r, f) = O

((

log
1

1 − r

)β)

, as r → 1 , for all β >
1

2
.
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(b) Furthermore, this result is sharp in the sense that there exists a function

f , analytic in ∆ , which satisfies (5) for every p ∈ (2,∞) and such that

Mp(r, f) � O

((

log
1

1 − r

)1/2)

as r → 1, for every p ∈ (2,∞).

Theorem 2. (a) If 0 < p ≤ 2 and f is an analytic function in ∆ which

satisfies (5) then

(7) Mp(r, f) = O

((

log
1

1 − r

)1/p)

, as r → 1.

(b) Furthermore, this result is sharp: For every p ∈ (0, 2] the function f(z) =
1/(1 − z)1/p , z ∈ ∆ , satisfies (5) and

(8) Mp(r, f) �

((

log
1

1 − r

)1/p)

, as r → 1.

2. Proof of the main results

For simplicity, for 0 < p ≤ ∞ we let Fp be the space of those functions f
which are analytic in ∆ and satisfy (3). Notice that F∞ coincides with the space
B of Bloch functions [1]. Also, since Mp(r, g) increases with p , we have

(9) B = F∞ ⊂ Fq ⊂ Fp, 0 < p < q < ∞.

Let us recall that Clunie and MacGregor [3] and Makarov [11] proved the following
result.

Theorem A. If f ∈ B then

Mp(r, f) = O

((

log
1

1 − r

)1/2)

, as r → 1,

for all p ∈ (0,∞) .

Theorem A is sharp. Indeed, if

f(z) =
∞
∑

n=0

z2n

, z ∈ ∆,

then f ∈ B (see e.g. Lemma 2.1 of [1]) and

Mp(r, f) � O

((

log
1

1 − r

)1/2)

, as r → 1,

for all p ∈ (0,∞). Notice that, bearing in mind (9), this proves part (b) of
Theorem 1.
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Proof of Theorem 1(a). Take p ∈ (2,∞) and f ∈ Fp . As noted above, we
have

(10) Mp(r, f) = O

(

log
1

1 − r

)

, as r → 1.

Using a result of Hardy [7] (see p. 126 of [12]), we see that

d

dr

[

rI ′
p(r, f)

]

=
p2r

2π

∫ π

−π

|f(reit)|p−2|f ′(reit)|2 dt,

which, since I ′
p(r, f) ≥ 0, implies

(11) I ′′
p (r, f) ≤

p2

2π

∫ π

−π

|f(reit)|p−2|f ′(reit)|2 dt.

For 0 < r < 1, we set

(12) E1,1(r) =

{

t ∈ [−π, π] : |f ′(reit)| ≤
|f(reit)|

(1 − r) log
1

1 − r

}

,

and

(13) E2,1(r) = [−π, π] \ E1,1(r).

Using (11), (12), (13) and bearing in mind that p > 2, we deduce that

(14)

I ′′
p (r, f) ≤

p2

2π

∫

E1,1(r)

|f(reit)|p−2|f ′(reit)|2 dt

+
p2

2π

∫

E2,1(r)

|f(reit)|p−2|f ′(reit)|2 dt

≤ p2

[

Ip(r, f)

(1 − r)2
(

log
1

1 − r

)2 +

(

(1 − r) log
1

1 − r

)p−2

Ip(r, f
′)

]

.

Using this, (5) and (10), we obtain

I ′′
p (r, f) = O

(

1

(1 − r)2

(

log
1

1 − r

)p−2)

, as r → 1,
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which, integrating twice, gives

(15) Ip(r, f) = O

((

log
1

1 − r

)p−1)

, as r → 1,

which is better than (10).
This process can be iterated. We define a sequence {αk}

∞
k=1 inductively as

follows:

(16)











α1 = 1,

αk+1 =
1

p

(

p − 2

k
∑

j=1

(

αj −
1

2

))

, k = 1, 2, . . . .

We have

(17) pαk+1 = pαk − 2
(

αk − 1
2

)

= (p − 2)αk + 1, k ≥ 1.

Arguing by induction we can easily see that

(18) αk > 1
2
, k = 1, 2, . . . ,

which, together with (17), implies that the sequence {αk}
∞
k=1 is decreasing and,

hence, convergent. Using again (17), we deduce that

(19) lim
k→∞

αk = 1
2
.

Let us remark that (15) can be written as

Ip(r, f) = O

((

log
1

1 − r

)pα2
)

, as r → 1.

We are going to prove inductively that

(20) Ip(r, f) = O

((

log
1

1 − r

)pαj
)

, as r → 1,

for all j . Since αj ↓ 1
2 , this will finish the proof.

We already know that (20) is true for j = 1 and j = 2. Suppose that it is
true for j = k , that is, suppose that

(21) Ip(r, f) = O

((

log
1

1 − r

)pαk
)

, as r → 1.
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For 0 < r < 1, we set

(22) E1,k(r) =

{

t ∈ [−π, π] : |f ′(reit)| ≤
|f(reit)|

(1 − r)

(

log
1

1 − r

)αk

}

,

and

(23) E2,k(r) = [−π, π] \ E1,k(r).

Using (11), (22) and (23), we obtain

(24)

I ′′
p (r, f) ≤

p2

2π

∫

E1,k(r)

|f(reit)|p−2|f ′(reit)|2 dt

+
p2

2π

∫

E2,k(r)

|f(reit)|p−2|f ′(reit)|2 dt

≤ p2

[

Ip(r, f)

(1 − r)2
(

log
1

1 − r

)2αk

+ (1 − r)p−2

(

log
1

1 − r

)(p−2)αk

Ip(r, f
′)

]

.

Using (5), (21) and (24), we deduce that

I ′′
p (r, f) = O

(

1

(1 − r)2

(

log
1

1 − r

)(p−2)αk
)

, as r → 1,

and then, integrating twice and using (17), it follows that

(25)

Ip(r, f) = O

((

log
1

1 − r

)(p−2)αk+1)

= O

((

log
1

1 − r

)pαk+1
)

, as r → 1.

This is (20) for j = k + 1.

We do not know whether or not (6) can be substituted by

(26) Mp(r, f) = O

((

log
1

1 − r

)1/2)

, as r → 1,

in Theorem 1(a). We know that any Bloch function satisfies (26) for any p ∈
(2,∞) but the question of determining whether or not the condition f ∈ Fp ,
2 < p < ∞ , is enough to conclude (26) remains open. It is worth noticing that
no counterexample (if any) can be given by a power series with Hadamard gaps
because of the following result.
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Proposition 1. Let f be an analytic function in ∆ given by a power series

with Hadamard gaps,

(27) f(z) =

∞
∑

j=1

ajz
nj , with

nj+1

nj
≥ λ > 1 for all j .

Then the following conditions are equivalent.

(i) f ∈ B .

(ii) f ∈ Fp for some p ∈ (0,∞) .
(iii) f ∈ Fp for all p ∈ (0,∞) .
(iv) supj≥1 |aj| < ∞ .

Proof. The implication (i) ⇒ (ii) follows from (9). Bearing in mind that
f ′ is also given by a power series with Hadamard gaps, (ii) ⇒ (iii) follows using
Theorem 8.20 in Chapter V of [14], Vol. I.

We turn now to prove that (iii) ⇒ (iv). Hence, suppose that f is given by
(27) and satisfies (iii). Then there exists a positive constant C such that

(28) M1(r, f
′) ≤ C

1

1 − r
, 0 < r < 1.

Now,

zf ′(z) =
∞
∑

j=1

njajz
nj ,

and then, using Cauchy’s formula and (28), we obtain

nj |aj | =

∣

∣

∣

∣

1

2πi

∫

|z|=r

f ′(z)

znj
dz

∣

∣

∣

∣

≤
M1(r, f

′)

rnj−1
≤

C

rnj−1(1 − r)
, 0 < r < 1.

Taking r = 1 − 1/nj we obtain (iv).
Finally, the implication (iv) ⇒ (i) follows from Lemma 2.1 of [1].

Before embarking into the case 0 < p ≤ 2, let us introduce a new family of
spaces. For 0 < p < ∞ , the space of Dirichlet type D

p
p−1 consists of all functions

f which are analytic in ∆ and satisfy

∫

∆

(1 − |z|2)p−1|f ′(z)|p dA(z) < ∞.

Here, dA(z) = (1/π) dx dy denotes the normalized Lebesgue area measure in ∆.
The spaces D

p
p−1 are closely related to Hardy spaces. Indeed, a classical result of

Littlewood and Paley [10] asserts that

(29) Hp ⊂ D
p
p−1, 2 ≤ p < ∞.
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On the other hand, we have

(30) D
p
p−1 ⊂ Hp, 0 < p ≤ 2,

(see [10] and [13]). Notice that D2
1 = H2 . However, we remark that if p 6= 2

then Hp 6= D
p
p−1 . A number of results about the spaces D

p
p−1 have been recently

proved in [2] and [6]. In particular, estimates on the growth of the integral means
of D

p
p−1 -functions have been obtained in [6]. We remark that

(31) D
p
p−1 ⊂ Fp, 0 < p < ∞.

Indeed, the condition f ∈ D
p
p−1 is equivalent to saying that

(32)

∫ 1

0

(1 − r)p−1Ip(r, f
′) dr < ∞,

and, taking into account that Ip(r, f
′) is an increasing function of r , we easily see

that (32) implies that Mp(r, f
′) = o

(

1/(1 − r)
)

, as r → 1.
In view of (31), the results contained in this paper complement those of [6].

Our proof of Theorem 2 will be based on (30). Actually, we shall use the
following result which follows from (30) by the closed graph theorem.

Theorem B. If 0 < p ≤ 2 then there exists a positive constant Cp , which

only depends on p , such that

(33) ‖f‖p
Hp ≤ Cp

(

|f(0)|p +

∫

∆

(1 − |z|2)p−1|f ′(z)|p dA(z)

)

,

for every f ∈ D
p
p−1 .

Proof of Theorem 2. Take p ∈ (0, 2] and f ∈ Fp . Assume, without loss of
generality, that f(0) = 0. For 0 < r < 1, set fr(z) = f(rz), z ∈ ∆. In what
follows we shall be using the convention that C will denote a positive constant
which may depend on p and f but not on r or % , and which is not necessarily
the same at different occurrences. Applying (33) to fr , 0 < r < 1, and using that
f ∈ Fp , yield

(34)

Ip(r, f) ≤ C

∫ 1

0

(1 − %)p−1Ip(r%, f ′) d% ≤ C

∫ 1

0

(1 − %)p−1

(1 − r%)p
d%

= C

(
∫ r

0

(1 − %)p−1

(1 − r%)p
d% +

∫ 1

r

(1 − %)p−1

(1 − r%)p
d%

)

, 0 < r < 1.

Since r% < % and r% < r , 0 < r, % < 1, (34) implies

(35)

Ip(r, f) ≤ C

(
∫ r

0

1

1 − %
d% +

1

(1 − r)p

∫ 1

r

(1 − %)p−1 d%

)

= O

(

log
1

1 − r

)

, as r → 1.

This finishes the proof of part (a) of Theorem 2. Part (b) is clear.
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Remark 1. If 0 < p < 1, 0 < α < 1, and f is an analytic function in ∆
which satisfies (1) with f(0) = 0, then, arguing as in the proof of Theorem 2, we
obtain

Ip(r, f) ≤ C

∫ 1

0

(1 − %)p−1

(1 − r%)αp
d% ≤ C

∫ 1

0

(1 − %)p(1−α)−1 d%, 0 < r < 1,

and hence it follows that f ∈ Hp as we asserted in Section 1.

3. Univalent functions in the classes Fp

A complex-valued function defined in ∆ is said to be univalent if it is analytic
and one-to-one there. We refer to [5] and [12] for the theory of these functions.
Throughout the paper, U will stand for the class of all univalent functions in ∆.
The aim of this section is studying the growth of the integral means Mp(r, f) of
functions f ∈ U ∩ Fp .

It is well known that U ⊂ Hp , if 0 < p < 1
2

(see e.g. Theorem 3.16 of [4]).
Hence, if 0 < p < 1

2 and f ∈ U , then Mp(r, f) = O(1), as r → 1. We can prove
the following result for p ≥ 1

2
.

Theorem 3. If 1
2 ≤ p < ∞ and f ∈ U ∩ Fp , then

Mp(r, f) = O

((

log
1

1 − r

)1/p)

, as r → 1 .

The following proposition will be used in the proof of Theorem 3.

Proposition 2. If 1
2
≤ p < ∞ and f ∈ Fp , then

(36) M∞(r, f) = O

((

1

1 − r

)1/p)

, as r → 1.

Proof. Arguing as in the proof of Theorem 5.9 of [4] and using Minkowski’s
inequality in continuous form (notice that 2p ≥ 1), we see that there exists a
constant C which only depends on p such that

(37)

M∞(r, f) ≤ C
M2p

(

1
2 (1 + r), f

)

(1 − r)1/2p

≤ C

[

|f(0)| +
∫ (1+r)/2

0
M2p(s, f

′) ds

(1 − r)1/2p

]

, 0 < r < 1.

Reasoning again as in the proof of Theorem 5.9 of [4] and using that f ∈ Fp , we
obtain that

(38) M2p(s, f
′) ≤ C

Mp

(

1
2
(1 + s), f ′

)

(1 − s)1/2p
≤ C

1

(1 − s)1+1/2p
, 0 < s < 1.
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Putting together (37) and (38) we deduce that

M∞(r, f) = O

(

∫ (1+r)/2

0
(1 − s)−1−1/2p ds

(1 − r)1/2p

)

= O

((

1

1 − r

)1/p)

, as r → 1.

This finishes the proof.

Proof of Theorem 3. Let p and f be as in Theorem 3. Assume, without loss
of generality that f ∈ S , that is f(0) = 0 and f ′(0) = 1. It follows from (11)
that

rI ′
p(r, f) ≤ CpM

p
∞(r, f),

(see p. 127 of [12]) and then, using (36), we deduce that

Ip(r, f) ≤ Ip

(

1

2
, f

)

+ 2Cp

∫ r

1/2

Mp
∞(s, f) ds ≤ Ip

(

1

2
, f

)

+ 2Cp

∫ r

1/2

1

1 − s
ds

= O

(

log
1

1 − r

)

, as r → 1.

Remark 2. Notice that if 1
2
≤ p < ∞ then the function

f(z) = 1/(1 − z)1/p, z ∈ ∆,

belongs to U ∩ Fp and satisfies

Mp(r, f) �

((

log
1

1 − r

)1/p)

, as r → 1.

Hence, Theorem 3 is sharp.
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