INTEGRAL MEANS OF ANALYTIC FUNCTIONS

Daniel Girela and José Ángel Peláez
Universidad de Málaga, Facultad de Ciencias, Departamento de Análisis Matemático Campus de Teatinos, ES-29071 Málaga, Spain; girela@uma.es, pelaez@anamat.cie.uma.es

Abstract. If $0<p<\infty$ and f is an analytic function in the unit disc $\Delta=\{z \in \mathbf{C}:|z|<1\}$, we set, as usual,

$$
M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}, \quad 0<r<1
$$

Given $p \in(0, \infty)$, we let \mathscr{F}_{p} denote the space of those functions f which are analytic in Δ and satisfy $M_{p}\left(r, f^{\prime}\right)=\mathrm{O}(1 /(1-r))$, as $r \rightarrow 1$. In this paper we obtain sharp estimates on the growth of the integral means $M_{p}(r, f), f \in \mathscr{F}_{p}$.

1. Introduction and main results

Let Δ denote the unit disc $\{z \in \mathbf{C}:|z|<1\}$. If $0<r<1$ and g is an analytic function in Δ, we set

$$
\begin{aligned}
I_{p}(r, g) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|g\left(r e^{i \theta}\right)\right|^{p} d \theta, \quad 0<p<\infty \\
M_{p}(r, g) & =I_{p}(r, g)^{1 / p}, \quad 0<p<\infty \\
M_{\infty}(r, g) & =\max _{|z|=r}|g(z)| .
\end{aligned}
$$

For $0<p \leq \infty$ the Hardy space H^{p} consists of those functions g, analytic in Δ, for which

$$
\|g\|_{H^{p}}=\sup _{0<r<1} M_{p}(r, g)<\infty
$$

We refer to [4] for the theory of Hardy spaces.
It is well known that there is a close relation between the integral means of an analytic function and those of its derivative. A classical result of Hardy and Littlewood [8], [9] (see Theorem 5.5 of [4]) asserts that if $0<p \leq \infty, \alpha>1$ and f is an analytic function in Δ, then

$$
\begin{equation*}
M_{p}\left(r, f^{\prime}\right)=\mathrm{O}\left(\frac{1}{(1-r)^{\alpha}}\right), \quad \text { as } r \rightarrow 1 \tag{1}
\end{equation*}
$$

2000 Mathematics Subject Classification: Primary 30D55.
The authors are partially supported by a grant from "La Junta de Andalucía" (FQM-210) and by an MCyT grant, BFM2001-1736, Spain.
if and only

$$
\begin{equation*}
M_{p}(r, f)=\mathrm{O}\left(\frac{1}{(1-r)^{\alpha-1}}\right), \quad \text { as } r \rightarrow 1 \tag{2}
\end{equation*}
$$

If $0<\alpha<1$ and f satisfies (1) then it follows that $f \in H^{p}$ (see Theorem 5.1 and Theorem 5.4 of [4] for the case $1 \leq p \leq \infty$ and Remark 1 below for the case $0<p<1$).

Now it remains to consider the case $\alpha=1$. Studying this case is the main object of this paper.

Applying the continuous form of Minkowski's inequality, in the case $1 \leq p<$ ∞, and simply integration of the derivative, in the case $p=\infty$, yield:

If $1 \leq p \leq \infty$ and f is an analytic function in Δ which satisfies

$$
\begin{equation*}
M_{p}\left(r, f^{\prime}\right)=\mathrm{O}\left(\frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1 \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
M_{p}(r, f)=\mathrm{O}\left(\log \frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1 \tag{4}
\end{equation*}
$$

This result is certainly sharp for $p=\infty$ and for $p=1$. Indeed:
(i) $f(z)=\log (1 /(1-z)), z \in \Delta$, satisfies

$$
M_{\infty}\left(r, f^{\prime}\right) \sim \frac{1}{1-r} \quad \text { and } \quad M_{\infty}(r, f) \sim \log \frac{1}{1-r}, \quad \text { as } r \rightarrow 1
$$

(ii) The function $f(z)=1 /(1-z), z \in \Delta$, satisfies

$$
M_{1}\left(r, f^{\prime}\right) \sim \frac{1}{1-r} \quad \text { and } \quad M_{1}(r, f) \sim \log \frac{1}{1-r}, \quad \text { as } r \rightarrow 1
$$

However, in Theorem 1 and Theorem 2 we obtain better estimates for $1<p<\infty$ and we also obtain sharp estimates in the case $0<p<1$.

Theorem 1. (a) If $2<p<\infty$ and f is an analytic function in Δ such that

$$
\begin{equation*}
M_{p}\left(r, f^{\prime}\right)=\mathrm{O}\left(\frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1 \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
M_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{\beta}\right), \quad \text { as } r \rightarrow 1, \text { for all } \beta>\frac{1}{2} \tag{6}
\end{equation*}
$$

(b) Furthermore, this result is sharp in the sense that there exists a function f, analytic in Δ, which satisfies (5) for every $p \in(2, \infty)$ and such that

$$
M_{p}(r, f) \asymp \mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{1 / 2}\right) \quad \text { as } r \rightarrow 1, \text { for every } p \in(2, \infty)
$$

Theorem 2. (a) If $0<p \leq 2$ and f is an analytic function in Δ which satisfies (5) then

$$
\begin{equation*}
M_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{1 / p}\right), \quad \text { as } r \rightarrow 1 \tag{7}
\end{equation*}
$$

(b) Furthermore, this result is sharp: For every $p \in(0,2]$ the function $f(z)=$ $1 /(1-z)^{1 / p}, z \in \Delta$, satisfies (5) and

$$
\begin{equation*}
M_{p}(r, f) \asymp\left(\left(\log \frac{1}{1-r}\right)^{1 / p}\right), \quad \text { as } r \rightarrow 1 \tag{8}
\end{equation*}
$$

2. Proof of the main results

For simplicity, for $0<p \leq \infty$ we let \mathscr{F}_{p} be the space of those functions f which are analytic in Δ and satisfy (3). Notice that \mathscr{F}_{∞} coincides with the space \mathscr{B} of Bloch functions [1]. Also, since $M_{p}(r, g)$ increases with p, we have

$$
\begin{equation*}
\mathscr{B}=\mathscr{F}_{\infty} \subset \mathscr{F}_{q} \subset \mathscr{F}_{p}, \quad 0<p<q<\infty . \tag{9}
\end{equation*}
$$

Let us recall that Clunie and MacGregor [3] and Makarov [11] proved the following result.

Theorem A. If $f \in \mathscr{B}$ then

$$
M_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{1 / 2}\right), \quad \text { as } r \rightarrow 1
$$

for all $p \in(0, \infty)$.
Theorem A is sharp. Indeed, if

$$
f(z)=\sum_{n=0}^{\infty} z^{2^{n}}, \quad z \in \Delta
$$

then $f \in \mathscr{B}$ (see e.g. Lemma 2.1 of [1]) and

$$
M_{p}(r, f) \asymp \mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{1 / 2}\right), \quad \text { as } r \rightarrow 1
$$

for all $p \in(0, \infty)$. Notice that, bearing in mind (9), this proves part (b) of Theorem 1.

Proof of Theorem 1(a). Take $p \in(2, \infty)$ and $f \in \mathscr{F}_{p}$. As noted above, we have

$$
\begin{equation*}
M_{p}(r, f)=\mathrm{O}\left(\log \frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1 \tag{10}
\end{equation*}
$$

Using a result of Hardy [7] (see p. 126 of [12]), we see that

$$
\frac{d}{d r}\left[r I_{p}^{\prime}(r, f)\right]=\frac{p^{2} r}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(r e^{i t}\right)\right|^{p-2}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} d t
$$

which, since $I_{p}^{\prime}(r, f) \geq 0$, implies

$$
\begin{equation*}
I_{p}^{\prime \prime}(r, f) \leq \frac{p^{2}}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(r e^{i t}\right)\right|^{p-2}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} d t \tag{11}
\end{equation*}
$$

For $0<r<1$, we set

$$
\begin{equation*}
E_{1,1}(r)=\left\{t \in[-\pi, \pi]:\left|f^{\prime}\left(r e^{i t}\right)\right| \leq \frac{\left|f\left(r e^{i t}\right)\right|}{(1-r) \log \frac{1}{1-r}}\right\} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{2,1}(r)=[-\pi, \pi] \backslash E_{1,1}(r) \tag{13}
\end{equation*}
$$

Using (11), (12), (13) and bearing in mind that $p>2$, we deduce that

$$
\begin{align*}
I_{p}^{\prime \prime}(r, f) \leq & \frac{p^{2}}{2 \pi} \int_{E_{1,1}(r)}\left|f\left(r e^{i t}\right)\right|^{p-2}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} d t \\
& +\frac{p^{2}}{2 \pi} \int_{E_{2,1}(r)}\left|f\left(r e^{i t}\right)\right|^{p-2}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} d t \tag{14}\\
\leq & p^{2}\left[\frac{I_{p}(r, f)}{(1-r)^{2}\left(\log \frac{1}{1-r}\right)^{2}}+\left((1-r) \log \frac{1}{1-r}\right)^{p-2} I_{p}\left(r, f^{\prime}\right)\right]
\end{align*}
$$

Using this, (5) and (10), we obtain

$$
I_{p}^{\prime \prime}(r, f)=\mathrm{O}\left(\frac{1}{(1-r)^{2}}\left(\log \frac{1}{1-r}\right)^{p-2}\right), \quad \text { as } r \rightarrow 1
$$

which, integrating twice, gives

$$
\begin{equation*}
I_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{p-1}\right), \quad \text { as } r \rightarrow 1 \tag{15}
\end{equation*}
$$

which is better than (10).
This process can be iterated. We define a sequence $\left\{\alpha_{k}\right\}_{k=1}^{\infty}$ inductively as follows:

$$
\left\{\begin{array}{l}
\alpha_{1}=1, \tag{16}\\
\alpha_{k+1}=\frac{1}{p}\left(p-2 \sum_{j=1}^{k}\left(\alpha_{j}-\frac{1}{2}\right)\right), \quad k=1,2, \ldots
\end{array}\right.
$$

We have

$$
\begin{equation*}
p \alpha_{k+1}=p \alpha_{k}-2\left(\alpha_{k}-\frac{1}{2}\right)=(p-2) \alpha_{k}+1, \quad k \geq 1 \tag{17}
\end{equation*}
$$

Arguing by induction we can easily see that

$$
\begin{equation*}
\alpha_{k}>\frac{1}{2}, \quad k=1,2, \ldots, \tag{18}
\end{equation*}
$$

which, together with (17), implies that the sequence $\left\{\alpha_{k}\right\}_{k=1}^{\infty}$ is decreasing and, hence, convergent. Using again (17), we deduce that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \alpha_{k}=\frac{1}{2} \tag{19}
\end{equation*}
$$

Let us remark that (15) can be written as

$$
I_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{p \alpha_{2}}\right), \quad \text { as } r \rightarrow 1
$$

We are going to prove inductively that

$$
\begin{equation*}
I_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{p \alpha_{j}}\right), \quad \text { as } r \rightarrow 1 \tag{20}
\end{equation*}
$$

for all j. Since $\alpha_{j} \downarrow \frac{1}{2}$, this will finish the proof.
We already know that (20) is true for $j=1$ and $j=2$. Suppose that it is true for $j=k$, that is, suppose that

$$
\begin{equation*}
I_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{p \alpha_{k}}\right), \quad \text { as } r \rightarrow 1 \tag{21}
\end{equation*}
$$

For $0<r<1$, we set

$$
\begin{equation*}
E_{1, k}(r)=\left\{t \in[-\pi, \pi]:\left|f^{\prime}\left(r e^{i t}\right)\right| \leq \frac{\left|f\left(r e^{i t}\right)\right|}{(1-r)\left(\log \frac{1}{1-r}\right)^{\alpha_{k}}}\right\} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{2, k}(r)=[-\pi, \pi] \backslash E_{1, k}(r) \tag{23}
\end{equation*}
$$

Using (11), (22) and (23), we obtain

$$
\begin{align*}
I_{p}^{\prime \prime}(r, f) \leq & \frac{p^{2}}{2 \pi} \int_{E_{1, k}(r)}\left|f\left(r e^{i t}\right)\right|^{p-2}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} d t \\
& +\frac{p^{2}}{2 \pi} \int_{E_{2, k}(r)}\left|f\left(r e^{i t}\right)\right|^{p-2}\left|f^{\prime}\left(r e^{i t}\right)\right|^{2} d t \\
\leq & p^{2}\left[\frac{I_{p}(r, f)}{(1-r)^{2}\left(\log \frac{1}{1-r}\right)^{2 \alpha_{k}}}\right. \tag{24}\\
& \left.+(1-r)^{p-2}\left(\log \frac{1}{1-r}\right)^{(p-2) \alpha_{k}} I_{p}\left(r, f^{\prime}\right)\right] .
\end{align*}
$$

Using (5), (21) and (24), we deduce that

$$
I_{p}^{\prime \prime}(r, f)=\mathrm{O}\left(\frac{1}{(1-r)^{2}}\left(\log \frac{1}{1-r}\right)^{(p-2) \alpha_{k}}\right), \quad \text { as } r \rightarrow 1
$$

and then, integrating twice and using (17), it follows that

$$
\begin{align*}
I_{p}(r, f) & =\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{(p-2) \alpha_{k}+1}\right) \tag{25}\\
& =\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{p \alpha_{k+1}}\right), \quad \text { as } r \rightarrow 1
\end{align*}
$$

This is (20) for $j=k+1$. ㅁ
We do not know whether or not (6) can be substituted by

$$
\begin{equation*}
M_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{1 / 2}\right), \quad \text { as } r \rightarrow 1 \tag{26}
\end{equation*}
$$

in Theorem 1(a). We know that any Bloch function satisfies (26) for any $p \in$ $(2, \infty)$ but the question of determining whether or not the condition $f \in \mathscr{F}_{p}$, $2<p<\infty$, is enough to conclude (26) remains open. It is worth noticing that no counterexample (if any) can be given by a power series with Hadamard gaps because of the following result.

Proposition 1. Let f be an analytic function in Δ given by a power series with Hadamard gaps,

$$
\begin{equation*}
f(z)=\sum_{j=1}^{\infty} a_{j} z^{n_{j}}, \quad \text { with } \frac{n_{j+1}}{n_{j}} \geq \lambda>1 \text { for all } j \tag{27}
\end{equation*}
$$

Then the following conditions are equivalent.
(i) $f \in \mathscr{B}$.
(ii) $f \in \mathscr{F}_{p}$ for some $p \in(0, \infty)$.
(iii) $f \in \mathscr{F}_{p}$ for all $p \in(0, \infty)$.
(iv) $\sup _{j \geq 1}\left|a_{j}\right|<\infty$.

Proof. The implication (i) \Rightarrow (ii) follows from (9). Bearing in mind that f^{\prime} is also given by a power series with Hadamard gaps, (ii) \Rightarrow (iii) follows using Theorem 8.20 in Chapter V of [14], Vol. I.

We turn now to prove that (iii) \Rightarrow (iv). Hence, suppose that f is given by (27) and satisfies (iii). Then there exists a positive constant C such that

$$
\begin{equation*}
M_{1}\left(r, f^{\prime}\right) \leq C \frac{1}{1-r}, \quad 0<r<1 \tag{28}
\end{equation*}
$$

Now,

$$
z f^{\prime}(z)=\sum_{j=1}^{\infty} n_{j} a_{j} z^{n_{j}},
$$

and then, using Cauchy's formula and (28), we obtain

$$
n_{j}\left|a_{j}\right|=\left|\frac{1}{2 \pi i} \int_{|z|=r} \frac{f^{\prime}(z)}{z^{n_{j}}} d z\right| \leq \frac{M_{1}\left(r, f^{\prime}\right)}{r^{n_{j}-1}} \leq \frac{C}{r^{n_{j}-1}(1-r)}, \quad 0<r<1
$$

Taking $r=1-1 / n_{j}$ we obtain (iv).
Finally, the implication (iv) \Rightarrow (i) follows from Lemma 2.1 of [1]. व
Before embarking into the case $0<p \leq 2$, let us introduce a new family of spaces. For $0<p<\infty$, the space of Dirichlet type \mathscr{D}_{p-1}^{p} consists of all functions f which are analytic in Δ and satisfy

$$
\int_{\Delta}\left(1-|z|^{2}\right)^{p-1}\left|f^{\prime}(z)\right|^{p} d A(z)<\infty
$$

Here, $d A(z)=(1 / \pi) d x d y$ denotes the normalized Lebesgue area measure in Δ. The spaces \mathscr{D}_{p-1}^{p} are closely related to Hardy spaces. Indeed, a classical result of Littlewood and Paley [10] asserts that

$$
\begin{equation*}
H^{p} \subset \mathscr{D}_{p-1}^{p}, \quad 2 \leq p<\infty \tag{29}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\mathscr{D}_{p-1}^{p} \subset H^{p}, \quad 0<p \leq 2 \tag{30}
\end{equation*}
$$

(see [10] and [13]). Notice that $\mathscr{D}_{1}^{2}=H^{2}$. However, we remark that if $p \neq 2$ then $H^{p} \neq \mathscr{D}_{p-1}^{p}$. A number of results about the spaces \mathscr{D}_{p-1}^{p} have been recently proved in [2] and [6]. In particular, estimates on the growth of the integral means of \mathscr{D}_{p-1}^{p}-functions have been obtained in [6]. We remark that

$$
\begin{equation*}
\mathscr{D}_{p-1}^{p} \subset \mathscr{F}_{p}, \quad 0<p<\infty . \tag{31}
\end{equation*}
$$

Indeed, the condition $f \in \mathscr{D}_{p-1}^{p}$ is equivalent to saying that

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{p-1} I_{p}\left(r, f^{\prime}\right) d r<\infty \tag{32}
\end{equation*}
$$

and, taking into account that $I_{p}\left(r, f^{\prime}\right)$ is an increasing function of r, we easily see that (32) implies that $M_{p}\left(r, f^{\prime}\right)=\mathrm{o}(1 /(1-r))$, as $r \rightarrow 1$.

In view of (31), the results contained in this paper complement those of [6].
Our proof of Theorem 2 will be based on (30). Actually, we shall use the following result which follows from (30) by the closed graph theorem.

Theorem B. If $0<p \leq 2$ then there exists a positive constant C_{p}, which only depends on p, such that

$$
\begin{equation*}
\|f\|_{H^{p}}^{p} \leq C_{p}\left(|f(0)|^{p}+\int_{\Delta}\left(1-|z|^{2}\right)^{p-1}\left|f^{\prime}(z)\right|^{p} d A(z)\right) \tag{33}
\end{equation*}
$$

for every $f \in \mathscr{D}_{p-1}^{p}$.
Proof of Theorem 2. Take $p \in(0,2]$ and $f \in \mathscr{F}_{p}$. Assume, without loss of generality, that $f(0)=0$. For $0<r<1$, set $f_{r}(z)=f(r z), z \in \Delta$. In what follows we shall be using the convention that C will denote a positive constant which may depend on p and f but not on r or ϱ, and which is not necessarily the same at different occurrences. Applying (33) to $f_{r}, 0<r<1$, and using that $f \in \mathscr{F}_{p}$, yield

$$
\begin{align*}
I_{p}(r, f) & \leq C \int_{0}^{1}(1-\varrho)^{p-1} I_{p}\left(r \varrho, f^{\prime}\right) d \varrho \leq C \int_{0}^{1} \frac{(1-\varrho)^{p-1}}{(1-r \varrho)^{p}} d \varrho \\
& =C\left(\int_{0}^{r} \frac{(1-\varrho)^{p-1}}{(1-r \varrho)^{p}} d \varrho+\int_{r}^{1} \frac{(1-\varrho)^{p-1}}{(1-r \varrho)^{p}} d \varrho\right), \quad 0<r<1 \tag{34}
\end{align*}
$$

Since $r \varrho<\varrho$ and $r \varrho<r, 0<r, \varrho<1$, (34) implies

$$
\begin{align*}
I_{p}(r, f) & \leq C\left(\int_{0}^{r} \frac{1}{1-\varrho} d \varrho+\frac{1}{(1-r)^{p}} \int_{r}^{1}(1-\varrho)^{p-1} d \varrho\right) \tag{35}\\
& =\mathrm{O}\left(\log \frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1
\end{align*}
$$

This finishes the proof of part (a) of Theorem 2. Part (b) is clear. a

Remark 1. If $0<p<1,0<\alpha<1$, and f is an analytic function in Δ which satisfies (1) with $f(0)=0$, then, arguing as in the proof of Theorem 2, we obtain

$$
I_{p}(r, f) \leq C \int_{0}^{1} \frac{(1-\varrho)^{p-1}}{(1-r \varrho)^{\alpha p}} d \varrho \leq C \int_{0}^{1}(1-\varrho)^{p(1-\alpha)-1} d \varrho, \quad 0<r<1,
$$

and hence it follows that $f \in H^{p}$ as we asserted in Section 1.

3. Univalent functions in the classes \mathscr{F}_{p}

A complex-valued function defined in Δ is said to be univalent if it is analytic and one-to-one there. We refer to [5] and [12] for the theory of these functions. Throughout the paper, \mathscr{U} will stand for the class of all univalent functions in Δ. The aim of this section is studying the growth of the integral means $M_{p}(r, f)$ of functions $f \in \mathscr{U} \cap \mathscr{F}_{p}$.

It is well known that $\mathscr{U} \subset H^{p}$, if $0<p<\frac{1}{2}$ (see e.g. Theorem 3.16 of [4]). Hence, if $0<p<\frac{1}{2}$ and $f \in \mathscr{U}$, then $M_{p}(r, f)=\mathrm{O}(1)$, as $r \rightarrow 1$. We can prove the following result for $p \geq \frac{1}{2}$.

Theorem 3. If $\frac{1}{2} \leq p<\infty$ and $f \in \mathscr{U} \cap \mathscr{F}_{p}$, then

$$
M_{p}(r, f)=\mathrm{O}\left(\left(\log \frac{1}{1-r}\right)^{1 / p}\right), \quad \text { as } r \rightarrow 1
$$

The following proposition will be used in the proof of Theorem 3.
Proposition 2. If $\frac{1}{2} \leq p<\infty$ and $f \in \mathscr{F}_{p}$, then

$$
\begin{equation*}
M_{\infty}(r, f)=\mathrm{O}\left(\left(\frac{1}{1-r}\right)^{1 / p}\right), \quad \text { as } r \rightarrow 1 \tag{36}
\end{equation*}
$$

Proof. Arguing as in the proof of Theorem 5.9 of [4] and using Minkowski's inequality in continuous form (notice that $2 p \geq 1$), we see that there exists a constant C which only depends on p such that

$$
\begin{align*}
M_{\infty}(r, f) & \leq C \frac{M_{2 p}\left(\frac{1}{2}(1+r), f\right)}{(1-r)^{1 / 2 p}} \\
& \leq C\left[\frac{|f(0)|+\int_{0}^{(1+r) / 2} M_{2 p}\left(s, f^{\prime}\right) d s}{(1-r)^{1 / 2 p}}\right], \quad 0<r<1 \tag{37}
\end{align*}
$$

Reasoning again as in the proof of Theorem 5.9 of [4] and using that $f \in \mathscr{F}_{p}$, we obtain that

$$
\begin{equation*}
M_{2 p}\left(s, f^{\prime}\right) \leq C \frac{M_{p}\left(\frac{1}{2}(1+s), f^{\prime}\right)}{(1-s)^{1 / 2 p}} \leq C \frac{1}{(1-s)^{1+1 / 2 p}}, \quad 0<s<1 \tag{38}
\end{equation*}
$$

Putting together (37) and (38) we deduce that

$$
M_{\infty}(r, f)=\mathrm{O}\left(\frac{\int_{0}^{(1+r) / 2}(1-s)^{-1-1 / 2 p} d s}{(1-r)^{1 / 2 p}}\right)=\mathrm{O}\left(\left(\frac{1}{1-r}\right)^{1 / p}\right), \quad \text { as } r \rightarrow 1
$$

This finishes the proof. 口
Proof of Theorem 3. Let p and f be as in Theorem 3. Assume, without loss of generality that $f \in S$, that is $f(0)=0$ and $f^{\prime}(0)=1$. It follows from (11) that

$$
r I_{p}^{\prime}(r, f) \leq C_{p} M_{\infty}^{p}(r, f)
$$

(see p. 127 of [12]) and then, using (36), we deduce that

$$
\begin{aligned}
I_{p}(r, f) & \leq I_{p}\left(\frac{1}{2}, f\right)+2 C_{p} \int_{1 / 2}^{r} M_{\infty}^{p}(s, f) d s \leq I_{p}\left(\frac{1}{2}, f\right)+2 C_{p} \int_{1 / 2}^{r} \frac{1}{1-s} d s \\
& =\mathrm{O}\left(\log \frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1 .
\end{aligned}
$$

Remark 2. Notice that if $\frac{1}{2} \leq p<\infty$ then the function

$$
f(z)=1 /(1-z)^{1 / p}, \quad z \in \Delta
$$

belongs to $\mathscr{U} \cap \mathscr{F}_{p}$ and satisfies

$$
M_{p}(r, f) \asymp\left(\left(\log \frac{1}{1-r}\right)^{1 / p}\right), \quad \text { as } r \rightarrow 1
$$

Hence, Theorem 3 is sharp.

References

[1] Anderson, J. M., J. Clunie, and Ch. Pommerenke: On Bloch functions and normal functions. - J. Reine Angew. Math. 270, 1974, 12-37.
[2] Baernstein, A., II, D. Girela, and J. A. Peláez: Univalent functions, Hardy spaces and spaces of Dirichlet type. - Illinois J. Math. (to appear).
[3] Clunie, J. G., and T. H. MacGregor: Radial growth of the derivative of univalent functions. - Comment. Math. Helv. 59, 1984, 362-365.
[4] Duren, P. L.: Theory of H^{p} Spaces, Second edition. - Dover, Mineola, New York, 2000.
[5] Duren, P.L.: Univalent Functions. - Springer-Verlag, New York-Berlin-HeidelbergTokyo, 1983.
[6] Girela, D., and J.A. Peláez: Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type. - Preprint, 2004.
[7] Hardy, G. H.: The mean value of the modulus of an analytic function. - Proc. London Math. Soc. (2) 14, 1915, 269-277.
[8] Hardy, G. H., and J. E. Littlewood: Some properties of conjugate functions. - J. Reine Angew. Math. 167, 1931, 405-423.
[9] Hardy, G. H., and J. E. Littlewood: Some properties of fractional integrals, II. - Math. Z. 34, 1932, 403-439.
[10] Littlewood, J. E., and R. E. A. C. Paley: Theorems on Fourier series and power series. II. - Proc. London Math. Soc. 42, 1936, 52-89.
[11] Makarov, N. G.: On the distortion of boundary sets under conformal mappings. - Proc. London Math. Soc. (3) 51, 1985, 369-384.
[12] Pommerenke, Ch.: Univalent Functions. - Vandenhoeck und Ruprecht, Göttingen, 1975.
[13] Vinogradov, S. A.: Multiplication and division in the space of the analytic functions with area integrable derivative, and in some related spaces. - Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 222, 1995, 45-77, 308 (Russian). English translation in: J. Math. Sci. 87, 1997, 3806-3827.
[14] Zygmund, A.: Trigonometric Series. Vol. I and Vol. II, Second edition. - Cambridge Univ. Press, Cambridge, 1959.

