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Abstract. If 0 < p < oo and f is an analytic function in the unit disc A = {z € C: |z| < 1},

we set, as usual,
1/p

27
M,y (r, f) = ( ! / |f(re?®)|P d9> ,  O0<r<l.
0

2

Given p € (0,00), we let %, denote the space of those functions f which are analytic in A and
satisfy M,(r, f') = 0O(1/(1—r)), as  — 1. In this paper we obtain sharp estimates on the growth
of the integral means M,(r, f), f € Fp.

1. Introduction and main results

Let A denote the unit disc {z € C: |z| < 1}. f 0 < r <1 and g is an
analytic function in A, we set

1 4 .
Lirg) = — / g(re®)Pds, 0 < p < oo,

2 J_,
My(r, g) = I,(r,g)"/?,  0<p< o0,
My (r, g) = max [g(z)|.

lz|=r
For 0 < p < oo the Hardy space HP consists of those functions g, analytic in A,
for which
lgllz» = sup My(r,g) < .
0<r<1

We refer to [4] for the theory of Hardy spaces.

It is well known that there is a close relation between the integral means of
an analytic function and those of its derivative. A classical result of Hardy and
Littlewood [8], [9] (see Theorem 5.5 of [4]) asserts that if 0 < p < oo, @ > 1 and
f is an analytic function in A, then

1) M) =0( ) w e,
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if and only

) Mp(r,f)zo(ﬁ), as 7 1.
If 0 < a<1 and f satisfies (1) then it follows that f € H? (see Theorem 5.1
and Theorem 5.4 of [4] for the case 1 < p < oo and Remark 1 below for the case
0<p<1).

Now it remains to consider the case o = 1. Studying this case is the main
object of this paper.

Applying the continuous form of Minkowski’s inequality, in the case 1 < p <
0o, and simply integration of the derivative, in the case p = oo, yield:

If 1 <p< oo and f is an analytic function in A which satisfies

(3) Mp(r,f'):O<1ir), asr—1,
then
(4) Mp<r,f>=o<1og1ir), as T 1.

This result is certainly sharp for p = co and for p = 1. Indeed:
(i) f(z) =log(1/(1—2)), z € A, satisfies

1 1
My (r, f') ~ T and Moo(r,f)wlogl_r, as r — 1.
(ii) The function f(z) =1/(1 —=2), z € A, satisfies
' 1 1
Ml(ﬁf)Nl— and M1(T,f)wlog1 , as r — 1.
_T —

However, in Theorem 1 and Theorem 2 we obtain better estimates for 1 < p < oo
and we also obtain sharp estimates in the case 0 < p < 1.

Theorem 1. (a) If 2 < p < oo and f is an analytic function in A such that

5) M f) =011 ) e,

1—r

B
(6) Mp(r,f):O<(loglir) ), asr—>1,fora]]ﬁ>%.
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(b) Furthermore, this result is sharp in the sense that there exists a function
f, analytic in A, which satisfies (5) for every p € (2,00) and such that

1/2
1
Mp(r,f)x0(<log1_r) ) asr — 1, for every p € (2,00).

Theorem 2. (a) If 0 < p < 2 and f is an analytic function in A which
satisfies (5) then

™ My 1) = 0 (10 ir)w), ast— 1.

(b) Furthermore, this result is sharp: For every p € (0,2] the function f(z) =
1/(1 —2)7, 2 € A, satisfies (5) and

o = (o)), wern

—T

2. Proof of the main results

For simplicity, for 0 < p < oo we let %, be the space of those functions f
which are analytic in A and satisfy (3). Notice that %, coincides with the space
% of Bloch functions [1]. Also, since M,(r,g) increases with p, we have

9) B =P CFqC Fp, 0<p<qg<oo.

Let us recall that Clunie and MacGregor [3] and Makarov [11] proved the following
result.

Theorem A. If f € & then

1 1/2
Mp(rhf):O((lOgl_r) )7 asr—>1,

for all p € (0,00).
Theorem A is sharp. Indeed, if

oo

fe)=)_2", zeA,
n=0
then f € A (see e.g. Lemma 2.1 of [1]) and

1o\ L2
Mp(r,f)x0<<log1_r) ), asr — 1,

for all p € (0,00). Notice that, bearing in mind (9), this proves part (b) of
Theorem 1.
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Proof of Theorem 1(a). Take p € (2,00) and f € .%#,. As noted above, we
have

(10) Mp(r,f):O<loglir), as r — 1.

Using a result of Hardy [7] (see p. 126 of [12]), we see that

2 ki
S ) = BL [ lrepis et P an

Coom ).

which, since I,(r, f) > 0, implies

2 ™
(1) e N e T

2 J_,

For 0 <r <1, we set

(12 &MF&H%MW%%K ”le}
(1—r)log T

and

(13) EQ’l(T> == [—7T,7T] \ E171(’I“>.

Using (11), (12), (13) and bearing in mind that p > 2, we deduce that

1 p2 ; 3 , .
Ip(T,f)S %/El’l(r)‘f(ret)‘p Q‘f (Tet)‘th
ﬁ PN(DP—2| £/ (0|2
(14) i 2 E2,1(T)|f(re )| |fi(re™)|” dt
—2
<p? L,(r, f) +(u_mm%iry QWfJ

(1—ry(mg1ir)2

Using this, (5) and (10), we obtain

1 1\
Ig(r,f):O<(1_r)2 (IOgl—r) ), asr — 1,
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which, integrating twice, gives

(15) I(r, f) = o((log 1i)) as - 1,

which is better than (10).
This process can be iterated. We define a sequence {aj}72, inductively as
follows:

] = 1,
k
1 1
(16) ak+1:—(p—2z<aj——)), k=1,2,....
p — 2
j
We have
(17) POk = pag — 2(ozk — %) =(p—2)ag + 1, k> 1.

Arguing by induction we can easily see that
(18) o > 3, k=1,2,...,

which, together with (17), implies that the sequence {a}32, is decreasing and,
hence, convergent. Using again (17), we deduce that

(19) lim o = 1

k—o0 2

Let us remark that (15) can be written as

(R

We are going to prove inductively that

(20) Lep=o((leer)" ). o,

for all j. Since o | %, this will finish the proof.
We already know that (20) is true for j = 1 and j = 2. Suppose that it is
true for j = k, that is, suppose that

) bon=o(ler 1)) wro
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For 0 <r <1, we set

-Tr

22)  Eil= {t e o] o) < — TN }
(1—r) (log : )

and

(23) Es i(r) = [—m, 7|\ E1 k().
Using (11), (22) and (23), we obtain

)< /E e
2 e RS e 2 at

(24) o

1 (p—2)a
+ (1 —r)P2 (log | ) I(r, f’)] .

Using (5), (21) and (24), we deduce that

y 1 1 (p—2)ag
Ip(rvf):()(m(logl_,r) )7 asr—>1,

and then, integrating twice and using (17), it follows that

1 (p—2)ax+1
Ip(T,f):O((IOgl_T) )
1 P&E+1
:O((logl ) ), as r — 1.
-Tr

This is (20) for j =k+1. o
We do not know whether or not (6) can be substituted by

(25)

1o\ L2
(26) Mp(r,f):O<(log1_r) ), as r — 1,

in Theorem 1(a). We know that any Bloch function satisfies (26) for any p €
(2,00) but the question of determining whether or not the condition f € .7,
2 < p < 00, is enough to conclude (26) remains open. It is worth noticing that
no counterexample (if any) can be given by a power series with Hadamard gaps
because of the following result.
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Proposition 1. Let f be an analytic function in A given by a power series
with Hadamard gaps,

(27) f() = azzm,  with L > A > 1 forall .
n
j=1 J

Then the following conditions are equivalent.

(i) feAB.

(ii) f € .%, for some p € (0,0).

(iii) f € .#, for all p € (0,00).

(iv) SUp,>1 la;| < 0.

Proof. The implication (i) = (ii) follows from (9). Bearing in mind that
f’ is also given by a power series with Hadamard gaps, (ii) = (iii) follows using
Theorem 8.20 in Chapter V of [14], Vol. I.

We turn now to prove that (iii) = (iv). Hence, suppose that f is given by
(27) and satisfies (iii). Then there exists a positive constant C' such that

1
1—7’

(28) Mi(r,f) < C 0<r<l

Now,

o
zf'(z) = anajz”f,
j=1

and then, using Cauchy’s formula and (28), we obtain

/ /
L/ MCZZ’ < M1<T,f) < C 7
211 lz|=r 2™ - b T e N1 — )

Taking » =1 —1/n,; we obtain (iv).
Finally, the implication (iv) = (i) follows from Lemma 2.1 of [1]. o

nj|aj|: O0<r<l.

Before embarking into the case 0 < p < 2, let us introduce a new family of
spaces. For 0 < p < 0o, the space of Dirichlet type @5_1 consists of all functions
f which are analytic in A and satisfy

/ (1~ |22 £ ()P dA(2) < oo,
A

Here, dA(z) = (1/7) dx dy denotes the normalized Lebesgue area measure in A.
The spaces @5_1 are closely related to Hardy spaces. Indeed, a classical result of
Littlewood and Paley [10] asserts that

(29) HP? Cc 97

p_17 2§p<00.
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On the other hand, we have

(30) 7y C H?, 0<p<2,

(see [10] and [13]). Notice that 2? = H?. However, we remark that if p # 2
then HP # .@5_1. A number of results about the spaces .@5_1 have been recently

proved in [2] and [6]. In particular, estimates on the growth of the integral means
of 9} ,-functions have been obtained in [6]. We remark that

(31) Dy C Fp, 0<p< 0.
Indeed, the condition f € .@5_1 is equivalent to saying that

(32) /0 (1= )P L (r, f) dr < oo,

and, taking into account that I,(r, f') is an increasing function of r, we easily see
that (32) implies that My (r, f') =o(1/(1—r)), as r — 1.
In view of (31), the results contained in this paper complement those of [6].

Our proof of Theorem 2 will be based on (30). Actually, we shall use the
following result which follows from (30) by the closed graph theorem.

Theorem B. If 0 < p < 2 then there exists a positive constant Cp,, which
only depends on p, such that

(33) 1 e < Co (\f(o)\” + /A(l — )P () dA(Z)),

for every f € 9, ;.

Proof of Theorem 2. Take p € (0,2] and f € .#,. Assume, without loss of
generality, that f(0) = 0. For 0 < r < 1, set f.(2) = f(rz), z € A. In what
follows we shall be using the convention that C' will denote a positive constant
which may depend on p and f but not on r or p, and which is not necessarily
the same at different occurrences. Applying (33) to f,, 0 < r < 1, and using that

[ € %,, yield
C ' pll /d C 1<1_Q)p_1
I T, < 1-— - T0, < . =7
S <C [ 0= e de< e [ T2
"1t /1(1—9)”_1 )
:C/7d+ ———dp|, 0<r<l.
<o L=rop ") A=rop ™
Since ro < ¢ and Tp <7, 0 <71,0< 1, (34) implies
T 1 1 1
< 1—o)Ptd
fp(ﬁf)_C(/O 1_Qd9+(1_r)p/T( 0) 9)

1
:O<log ), asr — 1.
1—r

This finishes the proof of part (a) of Theorem 2. Part (b) is clear. o

do

(34)

(35)
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Remark 1. If 0 <p< 1, 0 < a <1, and f is an analytic function in A
which satisfies (1) with f(0) = 0, then, arguing as in the proof of Theorem 2, we
obtain

I( f)<0/17<1 )pld <C/1(1— )p(l ) 1dg 0<r<l1
T? — Q— Q ) r )
: o (L—ro)r 0

and hence it follows that f € HP as we asserted in Section 1.

3. Univalent functions in the classes .%#,

A complex-valued function defined in A is said to be univalent if it is analytic
and one-to-one there. We refer to [5] and [12] for the theory of these functions.
Throughout the paper, % will stand for the class of all univalent functions in A.
The aim of this section is studying the growth of the integral means My(r, f) of
functions f € % N.%,.

It is well known that % C HP,if 0 <p <1 (see e.g. Theorem 3.16 of [4]).
Hence, if 0 < p < 3 and f € %, then My(r, f) = O(1), as r — 1. We can prove
the following result for p > 3.

Theorem 3. If <p< o and f €U N.Z,, then

1/p
Mp(rvf)20<(10g1ir) ), asr— 1.

The following proposition will be used in the proof of Theorem 3.

Proposition 2. If <p<oo and f € .%,, then

(36) Moo(r,f):o<(1ir)l/p), asr — 1.

Proof. Arguing as in the proof of Theorem 5.9 of [4] and using Minkowski’s
inequality in continuous form (notice that 2p > 1), we see that there exists a
constant C' which only depends on p such that

Moy (2(1+7), f)
(1 — 7)1/2p

‘—FI(H—T)/Z S,f’) ds
- (1-— 7")1/21” ’

My (r, f) < C

(37)

0<r<l.

Reasoning again as in the proof of Theorem 5.9 of [4] and using that f € .%,, we
obtain that

M,(5(1+s), f) _ 1
(]_ _ 8)1/2p — (1 _ 8)1—|—1/2p’

(38) My, (s, f') < C 0<s<l1.
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Putting together (37) and (38) we deduce that

(A+r)/24 _ \—1-1/2p 1/p
B 0 (1—25) ds\ 1 _
Moo(ﬂf)—O( (1= 7)1/ )_O<(1—r , as r — 1.

This finishes the proof. o

Proof of Theorem 3. Let p and f be as in Theorem 3. Assume, without loss
of generality that f € S, that is f(0) = 0 and f'(0) = 1. It follows from (11)
that
rI(r, f) < CpME (7, f),

(see p. 127 of [12]) and then, using (36), we deduce that

1 " 1 " 1
Iy(r, f) < Ip<§,f) +2C, MP (s, f)ds < Ip<§,f) +26’p/ : ds
1/2 124 —38
1
= O log ) asr — 1.0
1—7r
Remark 2. Notice that if % < p < oo then the function
1
fl)=1/A=-2)"  zeA,
belongs to % N .%#, and satisfies
1 1/p
My(r, f) = (<log ) ), as r — 1.
1—7r
Hence, Theorem 3 is sharp.
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