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Abstract. A cylinder of radius r in hyperbolic space is the closed set of points within
distance r of a given geodesic. We define the density of a packing of cylinders of radius r in
n dimensions and prove that, when n = 3, this density cannot exceed (1 + 23e−r)%∞ . Here
%∞ = 0.853276 . . . is the greatest possible density of a horoball packing in space, from which the
above bound is obtained by applying a continuity argument.

Applications of this result are found in volume estimates for hyperbolic 3 -manifolds and
orbifolds where estimates on the density of cylinder packings are an essential part of identifying
hyperbolic 3 -manifolds with maximal automorphism groups or with high order symmetries.

We further give a generalization of Blichfeld’s inequality and construct packings of horoballs
in n -space with density at least 21−n .

Cylinder packings associated with the fundamental group of the orbifold obtained by perform-
ing (m, 0) Dehn filling on the figure of eight knot complement provide examples of dense packings
for a spectrum of radii when n = 3. We explicitly calculate the densities of these packings.

1. Introduction

A cylinder in hyperbolic space of radius r is the set of points within distance
r of a given geodesic. The subject of this paper is packings of cylinders of a given
radius in hyperbolic space. In particular we evaluate lower bounds for the density
of such a packing in three dimensions. Such bounds are of interest because they
can be used to improve estimates of volumes of hyperbolic manifolds in much the
same way that Böröczky’s bounds [Bö1], [Bö2] for the optimal packing density of
balls in hyperbolic space have been used in the past [GM1]. Virtually all known
bounds for the volume of hyperbolic 3-manifolds are obtained from the study
of hyperbolic cylinder packings obtained as the lift of a tubular neighbourhood

2000 Mathematics Subject Classification: Primary 51M09, 52C17, 57M50, 57N10; Secondary

51M04.

Research supported in part by grants from the N. Z. Marsden Fund and the N. Z. Royal

Society (James Cook Fellowship).



4 T. H. Marshall, and G. J. Martin

of a simple closed geodesic, [GM1], [GM2], [MM1], [GMM], [P1], [P2], [P3]. In
particular, applications of our results are concerning estimates on the density of
cylinder packings are an essential part of identifying hyperbolic 3-manifolds with
maximal automorphism groups and high order symmetries [MM3].

If a hyperbolic manifold M = H3/Γ contains a geodesic with an embedded
tubular neighbourhood of radius r , called a collar, then the volume of the collar
provides a trivial lower bound for the volume of M . The lifts of this collar to H3

constitute a cylinder packing and if the density of any such packing is known not
to exceed % , then the volume estimate for M can be increased by a factor of %−1 .
In this way our results can be used to improve many known bounds.

In contrast to the Euclidean case, it is a non-trivial problem even to define

what is meant by the density of a packing in hyperbolic space. Generally this is
possible only in a “local” sense rather than for the packing as a whole. We make
these ideas precise in Sections 2 and 4. Given these definitions, we prove that the
local packing density of a cylinder packing cannot exceed

(1) (1 + 23e−r)%∞

in 3-dimensional space. Here %∞ = 0.853276 . . . is the optimal horoball packing
density in 3-space [F].

This bound is not sharp. We prove a somewhat more elaborate bound, of
which (1) is a simplification, and this in turn can be slightly improved by refining
the proof given here, but there seems to be no chance of obtaining a sharp bound
without some essentially new methods. On the other hand, (1) is asymptotically
sharp, in the sense that there is a spectrum of radii rn → ∞ , for which there are
packings of cylinders of radius rn whose densities are asymptotically equal to %∞ ,
and thus to the bound in (1). These packings are invariant under the Kleinian
groups associated with (n, 0) Dehn filling on the figure of eight knot complement.
We consider them in more detail in Section 6.

Roughly, as r → ∞ the shape of a cylinder of radius r approaches that of a
horoball which we thus consider to be a degenerate cylinder of infinite radius. The
bound at (1) is closely related to known density results about horoball packings.
It is obtained by using the fact that, for large r , a cylinder packing is well approx-
imated locally by a horoball packing, together with the known horoball packing
of greatest density.

Horoball packings in hyperbolic n -space are in turn closely related to ball
packings in Euclidean (n− 1)-space (horoballs in the halfspace model project to
balls in the boundary). In particular the best known bounds for horoball packings
in space depends on the known best disk packing in the Euclidean plane. The
fact that densest ball packings are still unknown in Euclidean spaces of dimension
greater than two is the main difficulty in generalizing our results to dimension four
or more. (We note that Hales recent solution of the Kepler conjecture, though an
important result, does not help here since no uniqueness has been established).
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We do however obtain some results about horoball packings in n dimensions,
including a generalization of Blichfeld’s inequality [Ro], and a construction of an
n -dimensional horoball packing, with local density at least 21−n .

While for large r cylinder packings are approximated by horoball packings,
for small r they are (locally) approximated by Euclidean cylinder packings. The
densest such packing has been determined by A. Bezdek and W. Kuperberg [BK]
to be that in which the cylinders are all parallel and which meet any plane perpen-
dicular to them all in an optimal packing of disks. This packing consequently has
the same density

(
π/

√
12

)
as the optimal Euclidean disk packing. More surpris-

ingly cylinder packings with positive density are known in which no two cylinders
are parallel and indeed the possibility has not been excluded that the density of
such packings may be made arbitrarily close to π/

√
12 [K].

The methods of [BK] can be adapted in a manner not too different to that
of the present paper (that is by approximation) to give upper density bounds
for packings by “thin” cylinders in hyperbolic space asymptotic to those of the
Euclidean case. Przeworski [P2], [P3] has used this approach to find nontrivial
density bounds for all r . For small r (roughly r ≤ 7.1) these estimates are better
than ours.

Obtaining sharp bounds appears to be much more difficult, as the densest
Euclidean cylinder packing has no analogue in hyperbolic space. Indeed it seems
possible that the optimal density of a lattice packing of H3 by cylinders of radius
r tends to 0 with r , as in the analogous case in two dimensions [MM2].

Finally we would like to thank Mike Hilden for a very helpful correspondence.

2. Local density

Let B be a subset of a metric space X . A packing of X by copies of B is a
set P of isometric copies of B in X whose interiors are disjoint. We will assume
that B is closed.

We will assume that X is either the unit n -sphere Sn , n -dimensional Eucli-
dean space Rn or n -dimensional hyperbolic space Hn . Let P denote the union
of sets in a packing P in one of these spaces. For a packing in Sn the density %
of the packing P is then defined by

% =
vol(P )

vol(Sn)
.

For a packing in Rn we define

% = lim
R→∞

vol
(
P ∩ B(a,R)

)

vol
(
B(a,R)

) ,

where this limit exists. It is easily shown that this definition is independent of the
choice of a ; (see e.g. [F, pp. 161–162]).
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The problem with hyperbolic packings is that it is not clear that the above
limit is independent of a in this case. (For further discussion of this point see [F,
Section 40]).

To avoid this problem we can define various types of “local” density. These
definitions all involve partitioning the space into finite-volume regions {Ri} with
disjoint interiors, and then defining, for each i , a local density

%i =
vol (P ∩Ri)

vol (Ri)
.

In general, these densities will differ from one region to another, but it is often
possible to find an upper bound for the %i , which can then in some sense be
considered as an upper bound for the packing as a whole. If B is a set in a
packing, then the Dirichlet cell D(B) is defined by

{
z ∈ Hn | ∀B′ ∈ P, B′ 6= B, %(z, B) ≤ %(z, B′)

}
,

where %( · , · ) is the hyperbolic metric. Thus D(B) is the set of all points which
are at least as close to B as to any other set in the packing. Clearly the set
{D(B) | B ∈ P} tessellate Hn , and, provided these cells are of finite volume,
we obtain a definition of local density. For cylinder packings the Dirichlet cells
have infinite volume so that the definition needs to be modified. We do this in
Section 4.

The nicest situation arises when some co-finite volume discrete group Γ acts
transitively on P . Moreover, this is also where most applications are to be found.
We refer to such a packing as a lattice packing. It is natural in this case to let
{Ri} be the translates of a fundamental domain for Γ. In this case, the values of
the local density %i are clearly all the same, and independent of the fundamental
domain chosen. Moreover, as the following corollary shows, this definition is also
independent of the choice of group. We refer to the local density defined in this
way as the group density of the packing.

We define the symmetry group of a packing P to be the group of isometries
which permute the members of P .

Lemma 2.1. Let P be a packing of Hn by cylinders or horoballs. If the

endpoints of the cylinders (respectively tangency points of the horoballs) fail to

lie on any codimension 2 sphere or hyperplane in ∂Hn , then the symmetry group

of P is discrete.

Proof. We prove the lemma for cylinders. The proof for horoballs is similar.
Let Γ be the symmetry group of P and {gk} a sequence of isometries in Γ which
converges to the identity. There is a finite set of cylinders whose endpoints fail
to lie on any codimension 2 sphere or hyperplane in ∂Hn . For sufficiently large
k , gk leaves these cylinders invariant and fixes their endpoints. Therefore gk is
either a reflection or the identity. But, for sufficiently large k , gk must be the
identity and so Γ is discrete.
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The necessity of the condition that the endpoints of the cylinders fail to lie
on any codimension 2 sphere or hyperplane is clear.

The lemma implies in particular that any packing in H3 of two or more
cylinders or three or more horoballs has discrete symmetry group.

We next show the density of a lattice packing does not depend on the group.

Corollary 2.1. Let P be a packing of Hn by horoballs, or cylinders, which

is invariant under the actions of two cofinite volume discrete groups, Γ1 and Γ2

which act transitively on P and have respective fundamental domains D1 and

D2 , then
vol (P ∩D1)

vol (D1)
=

vol (P ∩D2)

vol (D2)
.

Proof. From the above lemma, the symmetry group, Γ, of P is discrete and,
since it contains Γ1 and Γ2 , it is also cofinite volume. We may therefore assume
that Γ2 = Γ, so that Γ1 is a subgroup of Γ2 , of finite index, say, k . We may also
assume that D1 is the union of k disjoint translates of D2 , whence

vol (P ∩D1)

vol (D1)
=
k vol (P ∩D2)

k vol (D2)
=

vol (P ∩D2)

vol (D2)

which proves the corollary.

3. Notation and definitions

Throughout this paper we use exclusively the halfspace models Hn of hy-
perbolic n -space. The boundary of this model is Rn−1 ∪ {∞} , and when n = 3
we tacitly identify this with the extended complex plane C . In the following
definitions there is a dependence on the dimension n which is not made explicit.

We let ν(x) denote the vertical projection of x ∈ Hn to the boundary. We
let %(x, y) denote the (hyperbolic) distance in these spaces, where x and y may
denote either points or sets (or one of each).

For a < b , let A(a, b) be the closed annulus in ∂Hn lying between the circles
of radius a and b , C(a, b) = ν−1

(
A(a, b)

)
and H(a, b) the region of Hn lying on

or between the two hemispheres in Hn centred at the origin with radii a and b .
If B is a cylinder, then ax(B) denotes its axis, that is the geodesic joining

its endpoints. If B is a horoball, then tg(B) denotes its point of tangency with
the boundary. We adopt the convention that a horoball B is a cylinder of infinite
radius both of whose endpoints coincide at tg(B). We let I denote the geodesic
with endpoints 0 and ∞ , B(r) the cylinder of radius r with axis I , when r <∞ ,
and B(∞) the horoball with boundary xn = 1.

If A is a geodesic ultraparallel (that is disjoint and not meeting at ∞) to
I , then the bisecting plane of A , which we denote by bp(A), is the hyperplane
which perpendicularly bisects the shortest geodesic arc joining A and I . If B is
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a cylinder of finite radius with axis ultraparallel to I , then we define its bisecting
plane, bp(B), to be that of its axis. If B is a horoball with tg(B) 6= ∞ , and
Euclidean diameter ≤ 1, then we define bp(B) as the perpendicular bisector of
the shortest geodesic arc joining B to B(∞).

4. Local density of cylinder packings

We now use Dirichlet regions to define the local density of a cylinder packing
at a specified cylinder. A slightly modified version of the definition also applies to
horoball packings.

Let B be a cylinder in a packing P of Hn , and d(B) its associated Dirichlet
region. Since both B and d(B) have infinite volume, we define density as a limit.
If r < ∞ , fix a point a on ax(B) and let P and Q be the hyperplanes which
cut ax(B) perpendicularly at the two points on ax(B), which are on either side
of, and distance d1 and d2 , respectively, from a . Let S(a, d1, d2) be the “slice”
of space lying between P and Q . We now define

(2) %(B) = lim
d1,d2→∞

Vol (B) ∩ S(a, d1, d2)

Vol
(
d(B) ∩ S(a, d1, d2)

) ,

where this limit exists. Clearly, when it does, its value is independent of the
choice of a . The upper and lower densities at B are defined in the same way, with
limsup and liminf respectively being used above. We denote these by %(B) and
%(B) respectively. It is these quantities which are most important in applications.

It is natural to normalize by the assumption that ax(B) = I . In this case a
is, say, the point (0, 0, . . . , 0, A) and P and Q are the hemispheres of radius Aed1

and Ae−d2 centred at the origin.
We might attempt to apply this definition when r = ∞ , but, in this case,

the “slice” S(a, d1, d2) degenerates into a region lying between two parallel hy-
perplanes, which both contain tg(B) in their boundaries. Since (for n > 2) this
still meets B in a region of infinite volume, we modify this region slightly. Let Ai

(1 ≤ i ≤ n−1) be mutually perpendicular hyperplanes, all touching the boundary
at tg(B) and at one other chosen point a ∈ ∂Hn . Let Pi , Qi be hyperplanes,
parallel to and either side of Ai , whose intersections with the horosphere ∂B are
distance di1 and di2 , respectively, from Ai ∩ ∂B . Let Si be the region lying
between Pi and Qi and S the intersection of these regions. Now define the local

density %(B) of P at B , by

(3) %(B) = lim
vol (B ∩ S)

vol
(
d(B) ∩ S

) ,

the limit being taken as each di1, di2 → ∞ for each i . Clearly this limit, if it
exists, is independent of the choice of the Ai and a . As before, the upper and
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lower densities at B , %(B) and %(B), are defined using the obvious modification.
It is natural to normalize by the assumption that tg(B) = ∞ . In this case the
Pi, Qi are parallel pairs of vertical Euclidean hyperplanes, and S is the inverse
projection of a box in Rn−1 = ∂Hn .

It is easily shown that, if some cofinite volume Kleinian group Γ leaves P

invariant and acts transitively on it, then %(B) coincides with the group density
of P and so, in particular, that %(B) exists and is independent of B . To see this,
in the case r < ∞ , let ΓB be the stabilizer in Γ of a cylinder B , which we may
assume to have axis I . Since Γ is cofinite volume, ΓB contains (the restriction
to Hn of) a map of the form x → kAx , where A is an orthogonal matrix and
k > 1. Let k0 be the smallest such k > 1, and let p be the maximum order of
an elliptic in ΓB (setting p = 1 if there are none). Since Γ acts transitively on
P , it also does so on the Dirichlet regions and these tessellate Hn . Therefore
d(B) ∩H(1, d0) is the union of p fundamental domains for Γ and, in particular,
is of finite volume. It readily follows that %(B) coincides with the group density
of P .

In the case r = ∞ we may assume that tg(B) = ∞ . In this case the fact that
Γ is cofinite volume implies that the stabilizer of B in Γ is the Poincaré extension
of a cofinite volume Euclidean group. Let this group have compact fundamental
domain E , then ν−1(E) ∩ d(B) is a fundamental domain for ΓB and so again it
is evident that %(B) and the group density of P coincide.

We have shown in particular, for a packing with a transitive symmetry group
Γ, that if Γ is cofinite volume, then the local density at each cylinder is finite. It
remains an open problem to determine whether or not the converse of this is true.

In three or more dimensions, the set of points equidistant from two geodesics
is generally not a hyperplane. (This is so only when the geodesics span a two
dimensional space.) Consequently the boundary of the Dirichlet region of a cylin-
der is very complicated in general. For this reason we define a more manageable
region as follows. Let B be a cylinder of radius r ≤ ∞ in a packing P . For
each C ∈ P (C 6= B ), let D be the hyperplane which perpendicularly bisects the
shortest geodesic arc joining B and C (when r <∞ we could equivalently use the
shortest geodesic arc joining the axes of B and C ), then D determines a halfspace
containing B . Define the polyhedral region of B , p(B), to be the intersection of
these halfspaces, taken over all C 6= B . In order to justify the terminology we
must show that p(B) is indeed a polyhedron. The proof of this is deferred to the
next section (Corollary 5.1).

Clearly p(B) contains B and the p(B) (B ∈ P ) are disjoint, though they
will not in general tessellate space. In two dimensions, and for horoballs in all
dimensions, p(B) is simply d(B). For large r , p(B) is a good approximation to
d(B) (Lemma 8.1 below).

The next lemma gives a more convenient way of expressing %(B). Some
further definitions will be useful.
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For a measurable set A ⊆ C with 0 /∈ A , define

µ(A) =

∫

A

dx dy

x2 + y2
= Area

(
Log (A)

)
.

Observe that this measure is invariant under complex multiplication.

Lemma 4.1. Let P be a packing of cylinders of radius r < ∞ in H3 , and

suppose B = B(r) ∈ P , then

(4) %(B) = lim
a→0, b→∞

vol
(
B ∩ C(a, b)

)

vol
(
d(B) ∩ C(a, b)

) ,

in the sense that either neither limit exists, or both limits exist and are equal.

Corresponding results hold for upper and lower densities.

Proof. Let θ(s) be the angle between the boundary of B(s) and ∂H3 . We
have

sin θ(s) = 1/ cosh s, tan θ(s) = 1/ sinh s

(see e.g. [Be, Section 7.20]).

For all x < y we have

(5) Vol
(
B(s) ∩ C(x, y)

)
= 1

2µ
(
A(x, y)

)
/tan2θ(s) = π log(y/x) sinh2 s

and

Vol
(
B(s) ∩H(x, y)

)
= π log(y/x) sinh2 s.

Let s < r be chosen. Since B(s) ⊆ B(r) = B ⊆ d(B), we have

vol
((
C(x, y)

)
∩ d(B)

)
\B(s)

)

vol
((
C(x, y)

)
∩ d(B)

)) ≥ vol
((
C(x, y)

)
∩B(r)

)
\B(s)

)

vol
((
C(x, y)

)
∩ B(r)

))

=
sinh2 r − sinh2 s

sinh2 r
,

whenever the fraction on the left is defined (that is not ∞/∞). Choose a , b so
that a < b′ = b sin θ(s). Then

(
C(a, b′) ∩ d(B)

)
\B(s) ⊆ H(a, b) ∩ d(B)

see Figure 1.
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B(s)

0 a b′ b

∂p(B)

θ(s)

∂p(B)

−b′
−a

Figure 1.

From these inequalities it follows that

vol
(
B ∩H(a, b)

)

vol
(
d(B) ∩H(a, b)

) ≤ π log(b′/a) sinh2 r

vol
((
C(a, b′) ∩ d(B)

)
\B(s)

)
(

log(b/a)

log(b′/a)

)

=
vol (B ∩ C

(
a, b′)

)

vol
((
C(a, b′) ∩ d(B)

)
\B(s)

)
(

log(b/a)

log(b/a) + log sin θ(s)

)
(6)

≤ vol
(
B ∩ C(a, b′)

)

vol
((
C(a, b′) ∩ d(B)

))
(

log(b/a)

log(b/a) + log sin θ(s)

)

×
(

sinh2 r

sinh2 r − sinh2 s

)
.

In the limit as a → ∞ , b → 0, the middle term goes to 1, and, since s can be
chosen arbitrarily small, one half of the theorem follows. To prove the reverse
inequality, let η ∈ (0, 1) be chosen arbitrarily. We have

d(B) ∩H(a, b) ⊆
(
d(B) ∩ C(ηa, b)

)
∪

(
H(a,∞) ∩ ν−1

(
B(0, ηa)

))
.

The volume of the second set in union is finite and depends only on η . Abbrevi-
ating it to C , we have

lim
a→0, b→∞

vol
(
B ∩H(a, b)

)

vol
(
d(B) ∩H(a, b)

) ≥ vol
(
B ∩ C(a, b)

)

vol
(
d(B) ∩ C(ηa, b)

)
+ C

=
vol

(
B ∩ C(ηa, b)

)

vol
(
d(B) ∩ C(ηa, b)

)
+ C

(
log(b/a)

log(b/a) − log η

)
.

The required inequality follows by letting b/a→ ∞ .
The same arguments give the corresponding results for upper and lower den-

sities.
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Let h(x, y) be the vertical distance from the point (x, y) ∈ ∂H3 to p(B). In

view of (5) the above theorem can be expressed by saying that %(B)
−1

is 1/ sinh2 r

of the limiting mean of (x2 + y2)h(x, y)
−2

with respect to the measure µ .
Our main result is

Theorem 4.1. If P is a packing of H3 by cylinders of radius r , and B ∈ P ,

then

(7) %(B) ≤ (1 + 23e−r)%∞,

where %∞ = 0.853276 . . . is the density of the optimal horoball packing.

Of course this theorem only has content when the right-hand side of (7) is
less than 1, which occurs for r > 4.896 . . . .

Figure 2. A cylinder packing in H3 .

We define the “optimal packing” function λ(r) by

(8) λ(r) = sup
P

sup
B∈∩P

%(B)

where the supremum is taken over all packings by cylinders of radius r . Our
main result shows λ(r) ≤ (1 + 23e−r)%∞ . The Figure of 8 packings discussed
below give conjectural values for λ(r) for specific values of r . We next sketch
a proof that λ(r) is upper semi-continuous, however it would be very useful to
have more generic information about λ(r). For instance, is λ(r) continuous, or
even monotone concave as the values for the Figure of 8 packings might suggest?
Notice that Böröczky’s bound [Bö1], [Bö2], [BF] for the optimal packing of spheres
of radius r in hyperbolic space exhibits these features, though of course the exact
values remain unknown for any value of r .

Theorem 4.2. The function λ(r) is upper semi-continuous.
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Proof. It is clear that λ is a well defined function, 0 ≤ λ(r) ≤ 1. Also

(9) lim inf
r↗r0

λ(r) ≥ λ(r0)

as we may slightly decrease the radii of cylinders (keeping their axes fixed) of any
nearly optimal packing of radius r0 effecting a continuous decrease in the density.

Let ε > 0 and set lim supr1↗r0
λ(ri) = α . The desired conclusion will follow

as soon as we exhibit a packing containing a cylinder B0 of radius r0 and %(B0) >
α− ε . Choose packings Pi of cylinders of radius ri such that

λ(ri) < sup
B∈Pi

%(B) − 1
2
ε.

For each i choose Bi ∈ Pi so that

sup
B∈Pi

%(B) < %(Bi) + 1
2
ε.

Whence
λ(ri) > %(Bi) − ε.

We normalise the packings so that each Bi has the same axis. Fix j and let Kj

denote the closed hyperbolic ball of radius j centered at the origin. We suppose
that 1

2r0 < ri < 2r0 for all i . Then Kj meets a finite number (independent of i)
of cylinders of any of the packings Pi . Thus we can select a subsequence rij

such
that the packings Pij

converge uniformly on Kj to a packing of cylinders about
B0 , a cylinder of radius r0 with the same axis as the Bi . The notion of convergence
is clear here, we require the convergence of the endpoints on the boundary of
hyperbolic space, a compact set. We inductively construct such subsequences for
all j . The usual Cantor diagonal process provides us with a limit packing about
B0 , the convergence being uniform on compact subsets. It is a simple matter to
observe from the definition that the density of the packing about B0 is at least
α− ε .

5. Basic lemmas

It is possible to define unambiguously the rotation angle between two ultra-
parallel oriented geodesics g1 and g2 in H3 (modulo 2π ) in the following way.
Let g be the common perpendicular to g1 and g2 and for i = 1, 2, let pi be the
point of intersection of g and gi , and ri the ray along gi emanating from pi in
the direction of the orientation of gi . Orient g in the direction from g1 to g2 .
Now define the rotation angle θ between g1 and g2 to be the angle obtained by
going from r1 to r2 in the anticlockwise direction determined by the orientation
of g and the right-hand rule. Clearly this definition is independent of the ordering
of g1 and g2 . It does not apply however when g1 and g2 intersect, in which case
the angle is defined only up to sign. Thus the angle between two ultraparallel
non-oriented geodesics is well defined modulo π .
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Lemma 5.1. Let g1 , g2 , g , p1 , p2 , r1 , r2 and θ be as above. For i = 1, 2
let ai be a point on gi displaced αi from pi in the direction of gi . Let l denote

the distance from p1 to p2 , then

(1) cosh
(
%(a1, a2)

)
= coshα1 coshα2 cosh l − sinhα1 sinhα2 cos θ .

(2) cosh2
(
%(g1, a2)

)
= cosh2 α2 cosh2 l − sinh2 α2 cos2 θ .

(3) If l1 + l2 = l and cosh2 l2 ≥ cosh2 l1 + 1 , then every point on the plane Π
which meets g perpendicularly at the point distance l1 from p1 , is closer to

g1 than to g2 .

Proof. Let t and u be the rays emanating from p2 and passing through the
points p1 and a1 respectively (t is thus half of the geodesic g ).

These two rays, along with the ray r2 form the edges of a cone P (degenerate
when θ = 0) which has a vertex at p2 . See Figure 3.

θ

ψ

a2

a1

g1

g2

p2

p1

φ

Figure 3.

Let φ and ψ be the angles between u and t and between u and r2 respec-
tively. The angle between t and r2 is 1

2π and the angle between the faces of P
which meet along t is θ . Spherical cosine rule applied to the link of P at p2 , then
gives

(10) cosψ = cos θ sinφ.
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Let y = %(a1, p2). Since the triangle a1p1p2 is right-angled we have (see e.g. [Be,
Theorem 7.11.2]),

(11) sinhα1 = sinh y sinφ.

Combining (10) and (11) gives

(12) cosψ = cos θ
sinhα1

sinh y
.

Hyperbolic cosine rule applied to the triangle a1p2a2 gives

cosh %(a1, a2) = cosh y coshα2 − cosψ sinh y sinhα2,

which combined with Pythagoras theorem and (12) gives the first part of the
lemma. The second part follows by minimizing this distance with respect to α1

and is a straightforward exercise in calculus.
If l1 and l2 satisfy the conditions of (3) and if x ∈ Π is distance β from g ,

then by (2)

cosh2
(
%(x, g1)

)
≤ cosh2 β cosh2 l1 ≤ cosh2 β(cosh2 l2 − 1)

< cosh2 β cosh2 l2 − sinh2 β ≤ cosh2
(
%(x, g2)

)
.

This proves (3) of the lemma.

Corollary 5.1. Let P be a packing of Hn by cylinders of radius r . Let B
and C be distinct cylinders in P , u ∈ ax(B) . Let l(B,C) be the shortest geodesic

arc from ax(B) to ax(C) and let bp(B,C) be the hyperplane perpendicular to

and bisecting it.

Let R > r . If bp(B,C) meets the open ball B(u,R) , then ax(C) meets

B(u,R+ α) , where α is defined by

(13) coshα = (coshR)/(sinh r).

The set of hyperplanes bp(B,C) (B,C ∈ P , B 6= C ) is locally finite, and so

p(B) is a polyhedron.

Proof. We prove the lemma for 3 dimensions. The general case follows by
restricting to the subspace of Hn spanned by ax(B) and ax(C).

Let x be the point in l(B,C)∩ax(B). If bp(B,C) meets B(u,R), then there
is a geodesic g in bp(B,C), which passes through B(u,R) and bp(B,C)∩l(B,C).
Let β = %(u, x). We have

cosh2 β sinh2(r) < cosh2 β cosh2(r) − sinh2 β ≤ cosh2R,

using Lemma 5.1(2), whence β < α , and so

%
(
u, ax(C)

)
≤ %(u, x) + %

(
x, ax(C)

)
< α+ 2r.

Since the axes of the cylinders of P are distance at least 2r apart from each
other, only finitely many of them can meet any ball. It follows from the above
that this must also be true of the set of hyperplanes bp(B,C) (C 6= B ), and, by
definition, it follows that p(B) is a polyhedron.
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The next lemma gives the angle between two geodesics in terms of the cross
ratio of their four end points.

Lemma 5.2. Let L1 and L2 be ultraparallel geodesics in H3 oriented from

end points z1 to z2 and w1 to w2 respectively, and let κ be the cross ratio

[z1, w1, w2, z2] = (z1 − w2)(w1 − z2)/(z1 − w1)(w2 − z2).

If δ is the distance, and θ the rotation angle, between L1 and L2 , then

(14) cosh(δ + iθ) =
κ+ 1

κ− 1
,

(15) κ = coth2
(

1
2 (δ + iθ)

)

(16)
1

1 − κ
= [z1, z2, w1, w2] =

(z1 − w1)(z2 − w2)

(z1 − z2)(w1 − w2)
= − sinh2

(
1
2 (δ + iθ)

)

(17)
κ

κ− 1
= cosh2

(
1
2 (δ + iθ)

)

and

(18) cosh δ =
1 + |κ|
|1 − κ| .

Proof. Since δ , θ and the cross ratio κ are all invariant under orientation
preserving isometries, we may assume that the common perpendicular of L1 and
L2 is I . By applying a further orientation preserving isometry if necessary we
may assume that L1 has end points −1 and 1 and is oriented from −1 to 1 and
that L2 is oriented from −keiθ to keiθ , where k = eδ . A simple calculation gives
(15) whence (14), (16) and (17) all follow.

As in [GM1] we have

(19)

2 cosh2
(

1
2δ

)
= | cosh2 1

2 (δ + iθ)| + | sinh2 1
2 (δ + iθ)| + 1

=

∣∣∣∣
1

1 − κ

∣∣∣∣ +

∣∣∣∣
κ

1 − κ

∣∣∣∣ + 1

and (18) follows.
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Lemma 5.3. Let C be a cylinder with endpoints 1 and w . If the rotation

angle between ax(C) and I , oriented from 1 to w and from 0 to ∞ respectively,

is θ and the distance from ax(C) to I is r , then bp(C) is the hemisphere with

centre
√
w

(∣∣1 +
√
w

∣∣ +
∣∣1 −√

w
∣∣

∣∣1 +
√
w

∣∣ −
∣∣1 −√

w
∣∣

)
= coth

(
r + 1

2 iθ
)
coth r

and radius

2
√
|w|

( ∣∣√1 − w
∣∣

∣∣1 +
√
w

∣∣ −
∣∣1 −√

w
∣∣

)
=

∣∣coth
(
r + 1

2 iθ
)∣∣cosech r.

[Note: The choice of square root is immaterial provided it is made consistently

throughout.]

Sketch of proof. Applying the Möbius transform

(20) φ(z) =
z +

√
w

z −√
w

maps the geodesics with endpoints {0,∞} and {1, w} to those with endpoints
{−1, 1} and {α,−α} respectively, where α =

(
1+

√
w

)
/
(
1−√

w
)
. The perpendic-

ular bisector of the shortest geodesic arc joining these geodesics is the hemisphere
S centred at the origin with radius

∣∣√α
∣∣ . We have

(21) φ−1(z) =
√
w

(
z + 1

z − 1

)
,

which takes the line R to
√
wR , so that it takes S to a hemisphere perpendicular

to
√
wR which meets it at the points φ−1

(
±

∣∣√α
∣∣) . These are the points

√
w

(∣∣√1 − w
∣∣ +

∣∣1 −√
w

∣∣
∣∣√1 − w

∣∣ −
∣∣1 −√

w
∣∣

)
,

√
w

(∣∣√1 − w
∣∣ −

∣∣1 −√
w

∣∣
∣∣√1 − w

∣∣ +
∣∣1 −√

w
∣∣

)
,

and the equations in w now follow. To obtain the equations in r we use (15) and
the identity | cosh z ± sinh z| = exp(±Re z).

Lemma 5.4. Let A be a geodesic in H3 at distance 2r from, and with

rotation angle θ to I . Let B = e2iφA . If 2s is the distance, and ψ the rotation

angle, between A and B , then we have, after substituting ψ+π for ψ if necessary,

(22) sin2 φ sinh2(2r + iθ) = sinh2
(
s+ 1

2
iψ

)
.
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Proof. By applying a scale change if necessary, we may assume that the
endpoints of A are 1 and w . Using (16) and (17)

sinh2
(
s+ 1

2 iψ
)

= −[1, w, e2iφ, e2iφw] = − (1 − e2iφ)
2
w

(1 − w)
2
e2iφ

= 4w sin2 φ/(1 − w)
2

(23)

= 4 sin2 φ sinh2
(
r + 1

2
iθ

)
cosh2

(
r + 1

2
iθ

)
(24)

= sin2 φ sinh2(2r + iθ),(25)

which is what we wanted to prove.

6. Figure of eight packings

Let Γn denote the fundamental group of the orbifold obtained by perform-
ing (n, 0) Dehn surgery on the figure of eight knot complement. From [HLM,
Propositions 6.2 and 6.3], 1 the volume of the orbifold H3/Γn is

Vn =

∫ 2π/3

2π/n

arccosh (2 + cos t− 2cos2t) dt,

and length of its singular set is

τn = 2arccosh
(
2 + cos(2π/n)− 2cos2(2π/n)

)
.

From [HLM] we also calculate that the minimum distance between axes of
elliptics of order n (which is the distance between the midpoints of the top and
bottom diagonals in Figure 11 of [HLM]) is 2rn , where

sinh2 rn =
−1 + 2 cos(2π/n) +

√
3 − 2 cos(2π/n)

4
(
1 − cos(2π/n)

) .

We thus have a formula for the packing density %n of the cylinders of radius rn

around the elliptic axes, which is

%n =
πτn sinh2 rn

nVn
.

In the limit as rn → ∞ this density is
√

3 /(2V ) = 0.853276 . . ., where V =
1.0149 . . . is the volume of a regular ideal tetrahedron. This is the density %∞ of
the optimal horoball packing [F].

Some values for Vn , τn , rn and %n are given in Table 1.

1 the formulae in [HLM] are given in terms of x =
√

3 − 2 cos(2π/n) /(2+
√

3 − 2 cos(2π/n) ) .
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n Vn τn rn %n

7 1.4118 2.4462 0.8964 0.8112

8 1.5439 2.2568 1.0129 0.8197

9 1.6386 2.0817 1.1175 0.8263

10 1.7086 1.9248 1.2125 0.8310

11 1.7616 1.7858 1.3000 0.8346

12 1.8026 1.6629 1.3802 0.8373

∞ 2.02988 0 ∞ 0.8533

Table 1. Data for Γn .

In order to investigate the local structure of the packings associated with
these groups, we obtain an explicit matrix representation. The figure of eight knot
complement has fundamental group Γ with presentation,

〈a, b | aba−1b−1ab−1a−1bab−1〉,

in which both a and b are parabolic. Adding the relations an = bn = 1 gives a
presentation for Γn . The mappings

(26) a→
(
α+ i

√
(γ + β2)/2

√
(γ − β2)/2√

(γ − β2)/2 α− i
√

(γ + β2)/2

)
,

(27) b→
(
α− i

√
(γ + β2)/2

√
(γ − β2)/2√

(γ − β2)/2 α+ i
√

(γ + β2)/2

)
,

where α = cos(π/n), β = sin(π/n) and γ = 1
4

(
1 +

√
(1 − 4α2)(5 − 4α2)

)
, give a

representation of this group in SL(2,C) [BH].
Interpreted as a Möbius transformation, the matrix for a has fixed points

i

√
2(γ + β2) ± 2β√

2(γ − β2)
.

By conjugation we may shift the fixed points of a to 0 and ∞ , to get matrix
representatives for a and b respectively

A =

(
eiπ/n 0

0 e−iπ/n

)
,(28)

B =

(
α− iγ/β −y + iβ + iγ/β

−y − iβ + iγ/β α+ iγ/β

)
,(29)
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where y =
√

2(γ + β2) . A calculation shows that

L = BA−1B−1A2B−1A−1B

has the same axis as A , and is hyperbolic with translation length τn .

Let f and g be the Möbius transformations corresponding to the matrices
A and B respectively. From the above, f and gf−1g−1f2g−1f−1g generate the
stabilizer of I . Let C = B(rn), the cylinder with axis I and radius rn . A series
of tedious but routine calculations establish the following facts. The geodesic g(I)
is distance 2rn and rotation angle θn to I , where

(30) sin2 θn =
cosh2 rn

(
1 − 4 sin2(π/n) cosh2 rn

)

sin2(π/n)(1− 4 cosh2 rn)
.

Since sin(π/n) sinh(2rn + iθn) lies on the ellipse parameterized by sinh(rn + it)
(t ∈ R), Lemma 5.4 shows that %

(
fg(I), g(I)

)
= 2rn , whence the cylinders

fkg(C) (0 ≤ k < n) form a tier around C , with f kg(C) touching fk−1g(C),
fk+1g(C) and C . Next, gfg−1(∞)/gfg−1(0), and g(∞)/g(0) are conjugate, so
that gfg−1(I) also has distance 2rn and rotation angle θn to I , but is rotated in
the opposite direction to I . The cylinders with axes f kgfg−1(C) form a second
tier around C and, since %

(
gfg−1(I), g(I)

)
= %

(
fgfg−1(I), g(I)

)
= 2rn , each

cylinder in this second tier touches two in the first (and vice versa).

Since also f2g−1f(I) = φ
(
g(I)

)
and fg−1fg(I) = φ

(
gfg−1(I)

)
, where

φ(z) = e−τ/2z , the cylinders g−1f(C) and g−1fg(C) generate a third and fourth
tier, which touch in the same way.

Finally, since gfg−1(∞)/fg−1f(0) and g(∞)/gfg−1(0) are conjugate, this is
also true of the second and third tiers.

Consequently the set S of cylinders touching C contains at least four orbits
under the stabilizer of I , and the cylinders with axes g(I), gfg−1 , g−1f(I) and
g−1fg(I) are representatives of each of these orbits. Presumably these are the
only orbits in S . For large n this is readily proved. First we show that the
number of orbits must in any case be even.

Lemma 6.1. Let P be a cylinder packing of H3 , upon which a finite-

covolume Kleinian group without elliptics of order two acts transitively. Let B ∈
P , ΓB be the stabilizer of B in Γ and S be the set of cylinders in P which

touch B . There are an even number of ΓB -orbits in S .

Proof. For C ∈ S let [C] denote the ΓB -orbit containing C . Let φ mapping
the set of ΓB -orbits to itself be defined by φ([C]) = [g2(C)] , where g ∈ Γ maps
C to B . We show that φ is well defined and has no fixed points. Since φ is then
clearly involutive as well, it effects a pairing of the orbits and the lemma follows.
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If C ∈ S and g(C) = B , then clearly g2(C) ∈ S . Suppose that [C1] = [C]
and g1(C1) = B . Then, for some τ ∈ ΓB , τ(C1) = C . Now g1τ

−1g−1 fixes B so
that, for some τ1 ∈ ΓB , g1 = τ1gτ . It follows that

(31) g2
1(C1) = (τ1gτ)

2
(C1) = τ1g(B) = τ1g

2(C) ∈ [g2(C)],

so that φ is well defined. Now suppose that fixes some ΓB -orbit O . By composing
g with a member of ΓB if necessary, we may assume that, for some g ∈ Γ, and
C ∈ O , g2(C) = C . But, since g must fix the point of intersection of C and
B , g2 must be the identity, whence g is elliptic of order two, contrary to our
assumption.

Thus, in the figure of 8 case, it will follow that S contains four orbits provided
that it has fewer than six. Suppose that S comprises k orbits. Each cylinder
in S contains a ball of radius rn , tangent to B(rn) at the same point as the
cylinder. We take a set of k such balls—one representing each orbit—and apply
Theorem 3.27 of [GM2], to obtain the inequality

kV (rn) ≤ Vol.
(
B(rn)/Γn

)
≤ Vol.(H3/Γn),

where

V (t) =

√
3

2
tanh(t) cosh(2t)arcsinh2

(
sinh(t)

cosh(2t)

)
.

Thus k ≤ Vn/V (rn) and calculation shows that k < 6, hence k ≤ 4 for n ≥ 10.
Presumably this can be slightly improved using the bounds of [P1].

The cylinders in S consist of alternating nested tiers of n , each obtained
from the last by reflection through a plane containing I and dilation by a factor of
eτ/4 . Moreover each cylinder in S touches six others in S . We conjecture that
the figure of eight packings are the only cylinder packings with this last property
that are completely invariant under a finite covolume Kleinian group. In the limit
as n → ∞ , these packings become the familiar hexagonal packing of horoballs
associated with the original figure of eight group.

7. Horoball packings

When dealing with horoball packings in Hn , it is natural to make the normal-
izing assumption that one of the horoballs in the packing is B(∞). The remaining
horoballs in the packing must touch the boundary at points of Rn−1 . If B is such a
horoball, then bp(B) comprises exactly the points equidistant from B and B(∞)
and it is easy to show that the diameter of B is the square of the radius of bp(B)
(Figure 4).

If every B 6= B(∞) has diameter 1, then their projections into the boundary
give a packing of Rn−1 , by equal balls of diameter 1, and this correspondence is
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obviously bijective. Thus, in some sense, horoball packings can be seen as gener-
alizations of Euclidean ball packings. Moreover, k -dimensional faces of d

(
B(∞)

)

project into k -dimensional faces of Dirichlet cells in the Euclidean packing. The
main result of this section generalizes the inequality of Blichfeldt [Ro], which states
that, given any k + 1 disjoint unit balls in Rn , any point which is equidistant
from their centres (in the context of a packing, any point in a (n−k)-dimensional
face of a Dirichlet polyhedron) is distance at least

√
2k/(k + 1) from each cen-

tre. In view of the above discussion, this gives the result that, for any k + 1 unit
spheres in Rn+1 with centres in Rn , which are all distance at least 1 apart from
each other, the projection to Rn of the points of intersection of these spheres are
distance at least

√
k/2(k + 1) from each centre (each sphere in Rn+1 has a cor-

responding disk in Rn with the same centre and half the radius. These disks are
mutually disjoint so that Blichfeldt’s inequality can be applied). The next lemma
is essentially a generalization of Blichfeldt’s inequality from Euclidean packings to
horoball packings.

x
n

= 0

x
n

= 1

Figure 4. Horoball packing.

Let Bi (i = 1, 2) be horoball with (Euclidean) radius ri , tangent to the

boundary at xi . A simple calculation shows that B1 and B2 touch when |x1 − x2|2
= 4r1r2 , that is when the product of the radii of their bisecting planes is equal to
the distance between their centres. This motivates the constraint in Lemma 7.1.

Lemma 7.1. Let C1, C2, . . . , Ck be k ≤ n spheres in Rn . Let Ci have

centre ci and radius ri and suppose that

(32) ri ≤ 1 (∀i)

and

(33) |ci − cj| ≥ rirj (∀i 6= j).

Let P denote the space spanned by the ci . If
⋂n

i=1Ci is nonempty, then let z1

and z2 (with possibly z1 = z2 ) denote the points of this intersection most distant

from P . (Since the intersection of spheres is either a sphere, a point or empty,
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it is clear that there are at most two such points and that these have the same

projection to P .)
For given r1, . . . , rk , satisfying (32) , let h = h(r1, r2, . . . , rk) be the supre-

mum of dist (z1, P ) taken over all values of ci subject to (33) .

(1) h is a monotone increasing function of each ri .

(2) If equality holds in (33) for each i 6= j and
⋂n

i=1Ci 6= ∅ , then

h = dist (z1, P )

if and only if the projection of z1 to P lies in the convex hull of the ci .

Proof. Let π denote projection onto P .
If k < n , then, by restricting everything to intersections with any k -dimen-

sional plane containing the ci , we are reduced to the case k = n , which we assume
henceforth.

We also assume that P = Rn−1 and that z1 , z2 are the points (0, . . . , 0,±z),
(z ≥ 0).

Let xi = |ci| . We thus have

(34) r2i = x2
i + z2.

When ci 6= 0 let ĉi be the unit vector ci/xi . If ci = 0 let ĉi be an arbitrary unit
vector. We may assume that these ĉi are chosen to be at angle at least 1

2
π to the

other ĉj .
Let θij be the angle between the vectors ĉi and ĉj (Figure 5).

x1

r1

θ13

c1

c2

r2

z

r3

x3

θ12

c3

x2

θ23

Figure 5.

The following is equivalent to (33).

(35) r2i r
2
j ≤ x2

i + x2
j − 2xixj cos θij (∀i 6= j).
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To prove the first part of the theorem we show that, if rj < 1, it is possible to
change the vectors ci , while fixing z1 , z2 and all the ri (i 6= j ) and incrementally
increasing rj (in view of (34), this means that the xi (i 6= j ) are also fixed, while
xj increases), in such away that the inequalities (32) and (35) still hold. We may
assume that j = 1.

If the angle between ĉ1 and each other ĉi is at least 1
2
π , then we may increase

the length of c1 , while leaving z1 and z2 fixed, without violating (35).
Otherwise c1 6= 0 and some θ1i is acute. The vectors ĉi lie on the sphere

Sn−2 . We let α(ĉi) ∈
[
− 1

2π,
1
2π

]
,—the azimuthal angle of ĉi—be defined by the

condition that sin
(
α(ĉi)

)
is the (n− 1)th component of ĉi .

We may assume that ĉ2, ĉ3, . . . , ĉn lie on the sphere {x ∈ Sn−2 | α(x) = ν}
for some ν ≥ 0. If α(ĉ1) ≥ ν , then all the ĉi (i ≥ 2) can be projected onto the
“equator”({x ∈ Sn−2 | α(x) = 0}), without reducing any of the θij . Hence we
may assume that α(ĉ1) = µ ≤ ν . Thus there are unit vectors ui in Sn−3 for
which ĉ1 =

(
(cosµ)u1, (sinµ)

)
and ĉi =

(
(cos ν)ui, (sin ν)

)
(i ≥ 2). Since the

angle between ĉ1 and some other ĉi is acute, we have ν − µ < 1
2π , whence, for

all i 6= 1
cos θi1 = ĉi·ĉ1 = ai cosµ cos ν + sinµ sin ν

where ai ≤ 1. Now continuously decrease µ , holding u1 fixed and letting x1 =
A sec(ν − µ), where A is determined by the initial values of µ and x1 .

Since z is fixed we have dx2
1 = dr21 > 0, so that, to ensure that (35) is

preserved, it suffices to show that

(36)
d(x1 cos θi1)

dµ
≥ 0.

We have

d(x1 cos θi1)/dµ = −A sec(ν − µ)
[
ai sinµ cos ν − sin ν cosµ

+ tan(ν − µ)(ai cosµ cos ν + sinµ sin ν)
]

= A sec(ν − µ)(1 − ai) cos ν
[
tan(ν − µ) cosµ+ sinµ

]
.

Since ν − µ < 1
2
π , we have tan(ν − µ) ≥ − tanµ , so that the expression above is

non-negative. This proves the first part of the theorem.
To prove the second part of the theorem, we now assume that equality holds

in (33) for each i 6= j and
⋂n

i=1 Ci 6= ∅ . If π(z1) = 0 does not lie in the convex
hull of the ci , then all the ĉi lie in some open hemisphere of Sn−2 (Figure 5),
which we assume to be the hemisphere {x ∈ Sn−2 | α(x) > 0} . It is easily seen
that, by reducing each α(ĉi) by the same positive decrement, and a further small
perturbation in the case where two or more of the ci project to the same point
on the equator, all the θij can be strictly increased. Consequently each (35) holds
strictly, and it is thus possible to increase z , leaving the ri fixed and reducing
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each xi , while preserving (35). We have thus shown that, when π(z1) does not
lie in the convex hull of the ci , h > dist (z1, P ).

For the converse, let the ci vary subject to (33), with the ri remaining fixed.
Let d = dist (z1, P ). Suppose equality holds in (33) with ci = c′i and that
π(z1) = 0 lies in the convex hull of the c′i , then there are non-negative numbers
βi whose sum is 1, such that 0 = π(z1) =

∑n
i=1 βic

′
i . We have

(37) 0 ≤
∣∣∣∣

n∑

i=1

βici

∣∣∣∣
2

=

n∑

i=1

βi
2(r2i − d2) + 2

∑

1≤i<j

βiβjci · cj.

Since, by (33),

|ci|2 + |cj|2 − 2ci · cj ≥ rirj (∀i 6= j),

we have

(38) ci · cj ≤ 1
2 (r2i + r2j − 2d2 − rirj).

Hence

(39) 0 ≤
n∑

i=1

βi
2(r2i − d2) +

∑

1≤i<j

βiβj(r
2
i + r2j − 2d2 − rirj),

and so

(40) d2 ≤
n∑

i=1

βi
2r2i +

∑

1≤i<j

βiβj(r
2
i + r2j − rirj).

Now observe that equality holds throughout when ci = c′i . Hence d is maximized
in this case. This completes the proof.

For applications we use the following.

Corollary 7.1. In the preceding lemma let r1 be fixed, and the other ri

allowed to vary, subject to (32) . Let d be the distance between c1 and π(z1) .
Then

(41) d ≥ (2r21 − 1)
√

2(k − 1)

2
√

|2(k − 1)r21 − k + 2|
.

Proof. We may assume that r = r1 > 1/
√

2 , since the bound (41) is trivial
otherwise. By (1) of the preceding theorem, h is maximized, and hence d =√
r2 − h2 is minimized, when ri = 1 for every i ≥ 2. Suppose that this is so.
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We recall that the distance dn between the centroid and vertex of a regular

Euclidean n -dimensional simplex with edge length 1 is dn =
√
n/

(
2(n+ 1)

)
<

1/
√

2 , so that, since we are assuming r > 1/
√

2 , it is possible to place the ci so
that equality holds in each of (33). In this case the ci are the vertices of a simplex
Σ whose “base”B , spanned by c2, . . . , ck , is regular with edge lengths of 1, and
c1 is joined to each other ci by an edge of length r . By symmetry it is clear that
π(z1) must lie on the line segment joining c1 and the centroid of B . Let l be the
length of this segment, then

l2 = r2 − d2
k−2.

Let z be the distance from z1 to π(z1). Recall that ±z is the nth component
of z1 . We have

(42) d2 + z2 = r2

and
z2 + (l − d)

2
+ d2

k−2 = 1,

whence, eliminating z ,

d = (2r2 − 1)/(2l),

and the corollary follows.

Blichfeldt’s inequality is this result with r1 = 1.

Theorem 7.1. There exists a packing of horoballs in Hn with local density

at least 21−n at each horoball.

Proof. Let φ(n) =
(
φ1(n), φ2(n)

)
be any bijection from N to N2 ∪ {(0, 0)}

with the property that φ1(n) < n . Let P0 be the packing in Hn comprising the
single horoball B(0,0) = B(∞).

We define inductively a sequence of packings Pn , each comprising B(0,0) ,
and disjoint horoballs B(j,m) (1 ≤ j ≤ n, 1 ≤ m ≤ ∞), with the property that
every horoball in Pn other than B(0,0) lies within (hyperbolic) distance log 2 of
at least one of the horoballs Bφ(j) (1 ≤ j ≤ n), and the local density of Pn at
each of these Bφ(j) is at least 21−n .

We have already defined P0 , which satisfies these conditions vacuously. For
the induction step suppose that horoballs B(j,m) have been defined and that Pn ,
comprising this collection of horoballs together with B(0,0) is a packing with the
required properties.

To construct Pn+1 , let ψ be an isometry mapping Bφ(n+1) to B(0,0) . To the
packing ψ(Pn)(= {ψ(B) | B ∈ Pn}), successively add horoballs B′

n+1,1 , B′
n+1,2 ,

B′
n+1,3 . . ., each of Euclidean diameter 1

2 , and chosen so that the absolute value
of tg(B′

n+1,m) is minimized subject to the interior of B′
n+1,m being disjoint from
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all the horoballs of ψ(Pn) and all the B′
n+1,i with i < m . Let P ′

n denote this
extended packing. Each B′

n+1,m is hyperbolic distance log 2 from ψ(Bφ(n)) =
B(0,0) .

For x ∈ ∂Hn\{∞} = Rn−1 define the “height” function h(x) to be the
Euclidean length of the vertical line segment from x to the boundary of the poly-
hedral region p(B(0,0)) defined relative to the packing P ′

n . We prove that h(x) is

at least 1
2 on all but a compact subset of Rn−1 and is always positive. For suppose

some h(x) is zero. Then, if B in P ′
n has Euclidean diameter d , |x−tg(B)| ≥

√
d ,

and so a new horoball (of any Euclidean diameter up to 1) can be added to P ′
n ,

tangent to the boundary at x , without overlapping any of the existing horoballs
but, in view of the way P ′

n was constructed, this is impossible.
Let K be the set of points in Rn−1 within distance

(
3
4

)
+ log 2 of any

tg
(
ψ(Bφ(m))

)
(m ≤ n), then K is compact. By the induction hypothesis, if

B is a horoball of diameter 1
2 , with tg(B) /∈ K , then B is disjoint from all of

the horoballs in ψ(Pn). If h(x) < 1
2 , it is also disjoint from all of the B′

n+1,i ,

because bp(B′
n+1,i) has radius 1/

√
2 , and so we must have | tg(B′

n+1,i − x)|2 ≥
(
1/

√
2

)2 −
(

1
2

)2
= 1

4 . Again this contradicts the minimality assumption in the
construction of P

′
n , so that we must have h(x) ≥ 1

2 for all x /∈ K .
The local density of P ′

n at B(0,0) is thus at least 21−n .
Now define B(n+1,i) = ψ−1(B′

n+1,i) and Pn+1 = ψ−1(P ′
n). Clearly Pn+1

satisfies the induction hypotheses, and Pn ⊆ Pn+1 .
Finally let P = ∪Pn . Since φ(n) is a bijection, P has local density at least

21−n at each horoball, as required.

8. Packing cylinders of large radius

In this section we prove Theorem 7. We first prove that, for large r , the
polyhedral region is a good approximation to the Dirichlet region, and then we
work with the polyhedral region for the remainder of the proof.

The following lemma shows that after slightly shrinking p(B∞) it lies inside
d(B∞).

Lemma 8.1. Let P be a packing of H3 by cylinders of radius

r > arcsinh

(
1√
2

)
,

including the cylinder B(r) . Suppose that the polyhedral region p
(
B(r)

)
of B(r)

lies in B(r0) for some r0 > r . Let

p̃(B∞) = {(x, y, kz) | (x, y, z) ∈ p(B∞)}

where k = 1+(1+sech r) sinh2 r0/
(
2(2 sinh2 r−1)(cosh r − 1)

2)
. Then p̃

(
B(r)

)
⊆

d
(
B(r)

)
.
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Proof. Let B 6= B(r) be in P . We have %
(
ax(B), I

)
= 2s ≥ 2r . By scaling

we may assume that the centre of bp(B) is 1, whence, by Lemma 5.3, its radius
is sech s . By Pythagoras, it follows that the geodesic g perpendicular to bp(B)
and to I has endpoints ± tanh s .

Let t = s′ be the (unique) solution of

cosh2(2s− t) − cosh2(t) = 1.

Since cosh2 is convex we also have

(43) cosh2 s− cosh2 s′ ≤ 1
2 .

Let P̃ (B) be the hemisphere which is perpendicular to g at a distance s′ from I .

By Lemma 5.1 all points on or above P̃ (B) are closer to I than to ax(B). Let

C and P denote respectively the centre of P̃ (B) and its point of intersection
with g . The (Euclidean) right triangle OPC has angle θ at the origin where

cos θ = tanh s′ , whence C =
(
tanh(s)

)
/
(
tanh(s′)

)
and the radius of P̃ (B) is(

tanh(s)
)
/
(
sinh(s′)

)
. Since p

(
B(r)

)
⊆ B(r0), every point of bp(B) ∩ ∂p

(
B(r)

)

has vertical component at least

(44) h0 = (1 − sech s)cosech r0.

If q ∈ ∂H3 lies underneath bp(B) let ν−1({q}) meet bp(B) and P̃ (B) in
points y and z respectively, then z is maximized for given y by choosing q to be
real and greater than 1.

In this case we have,

q = 1 +

√
sech2 s− y2 ,

z2 =
tanh2 s

sinh2 s′
−

(
1 +

√
sech2 s− y2 − tanh s

tanh s′

)2

.

By (43)
tanh2 s

tanh2 s′
− 1 = tanh2 s

(
1 +

1

sinh2 s′

)
− 1

≤ tanh2 s

(
1 +

2

2 sinh2s− 1

)
− 1

=
1

cosh2 s(2 sinh2 s− 1)
,

whence

(45)
tanh s

tanh s′
− 1 ≤ 1

2 cosh2 s(2 sinh2 s− 1)
.
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We therefore have

z2 ≤ 2 tanh2 s

2 sinh2 s− 1
− (sech2 s− y2) + 2

(
tanh s

tanh s′
− 1

)√
sech2 s− y2

≤ 2 tanh2 s

2 sinh2 s− 1
− (sech2 s− y2) +

√
sech2 s− y2

cosh2 s(2 sinh2 s− 1)

= y2 +
1 +

√
sech2 s− y2

cosh2 s(2 sinh2 s− 1)

≤ y2 +
1 + sech s

cosh2 s(2 sinh2 s− 1)

= y2

(
1 +

1 + sech s

y2 cosh2 s(2 sinh2 s− 1)

)
.

By (44), if q ∈ ν−1
(
bp(B) ∩ ∂p

(
B(r)

))
, then

z

y
≤ 1 +

(1 + sech s) sinh2 r0

2(2 sinh2 s− 1)(cosh s− 1)
2 ,

and since the right-hand side above is decreasing in s , the theorem follows.

Lemma 8.2. Let H1 and H2 be the bisecting planes of axes A1 and A2

respectively, which are distance 2s and 2t , respectively from I , with s, t ≥ r . Let

the centres of H1 and H2 be z and w respectively.

If %(A1, A2) ≥ 2r and

(46) 2e−2r + 4e2(|s−t|−r) ≤ 1,

then

(47)

|z − w| ≥ 2|z|er−s−t
[
[(1 − 2e−2r)(1 − 2e−2r − 4e2(|s−t|−r))]

1/2 − e|s−t|−r − e−r
]
.

If r ≥ log 20 and

|z − w| ≥ 2|z|er−s−t,

(48)
[
1 + e−r + 2.62e−2r + (3 + 3.04e−2r)e|s−t|−r + 4(1 − e−4r)−2e2|s−t|−r−s−t],

then %(A1, A2) ≥ 2r . The right-hand side above does not exceed the simpler

bound

(49) |z|(sech u)[1.06er−v + 0.16]

where u and v are respectively the smaller and greater of s and t .
If r ≥ log 20 and |s − t| ≥ log 2.68 , then either one of the bisecting planes

H1 , H2 lies underneath the other or else %(A1, A2) ≥ 2r .
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Proof. We assume s ≤ t . Let A1 and A2 have endpoints z1, z2 and w1, w2

respectively. If I , A1 and A2 are oriented from 0 to ∞ , z1 to z2 and w1 to w2

respectively, let θ and φ denote the rotation angles of A1 and A2 respectively
to I .

By Lemma 5.3,
z1 = z tanh

(
s+ 1

2 iθ
)
tanh s,

z2 = z coth
(
s+ 1

2
iθ

)
tanh s,

w1 = w tanh
(
t+ 1

2 iφ
)
tanh t,

w2 = w coth
(
t+ 1

2
iφ

)
tanh t,

so that

(z1 − w1)(z2 − w2) = (z tanh s− w tanh t)2

+ zw tanh s tanh t
[
2 − coth

(
t+ 1

2
iφ

)
tanh

(
s+ 1

2
iθ

)

− tanh
(
t+ 1

2 iφ
)
coth

(
s+ 1

2 iθ
)]

= (z tanh s− w tanh t)2

− 4zw sinh2
(
(s− t) + 1

2 i(θ − φ)
)

sinh(2s+ iθ) sinh(2t+ iφ)
tanh s tanh t,

whence

(z1 − w1)(z2 − w2)

(z1 − z2)(w1 − w2)
=

(z tanh s− w tanh t)2 sinh(2t+ iφ) sinh(2s+ iθ)

4zw tanh s tanh t

+ sinh2
(
(s− t) + 1

2 i(θ − φ)
)
.

Setting 2x = %(A1, A2), (16) now gives

sinh2 x− cosh2(s− t) ≤
∣∣∣∣
(z tanh s− w tanh t)2 sinh(2t+ iθ) sinh(2s+ iθ)

4zw tanh s tanh t

∣∣∣∣

≤ cosh2 x+ cosh2(s− t).

By a change of scale, we now assume that z = 1.
Setting d = |z − w| and a = (tanh t− tanh s) we have

(50) M |w| ≤ |(z − w) tanh t− a|2 ≤ N(1 + d),

and so

(51) M(1 − d) − 2ad tanh t ≤ d2 tanh2 t+ a2 ≤ N(1 + d) + 2ad tanh t,
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where

M =
4
(
sinh2 x− cosh2(s− t)

)
tanh s tanh t

cosh 2s cosh 2t
,

N =
4
(
cosh2 x+ cosh2(s− t)

)
tanh s tanh t

sinh 2s sinh 2t
=

cosh2 x+ cosh2(s− t)

cosh2 s cosh2 t
.

Observe that the condition (46) ensures that M > 0.
Solving (51) gives

− a coth t− 1
2M(coth2 t) +M1/2 coth t

(
1 + a coth t+ 1

4M coth2 t
)1/2

≤ d ≤ a coth t+ 1
2N(coth2 t) +N1/2 coth t

(
1 + a coth t+ 1

4N coth2 t
)1/2

.

Now suppose that x ≥ r , then the first inequality in (50), and hence the lower
bound for d above remains true if we set x = r . With this substitution we have

M coth2 t ≥ 4 tanh r
(
e2r(1 − e−2r)2 − e2|s−t|(1 + e−2|s−t|)2

)

e2se2t(1 + e−4r)2

≥ 4(1 − 2e−2r)e2(r−s−t)
[
1 − 2e−2r − 4e2(|s−t|−r)

]
,

M1/2 coth t ≥ 2(1 − 2e−2r)1/2er−s−t
[
1 − 2e−2r − 4e2(|s−t|−r)

]1/2
.

Similarly
M coth2 t ≤ 4e2(r−s−t).

Also, since s ≤ t , we have

0 ≤ a < a coth t = 1 − tanh s

tanh t
≤ 1 − tanh s ≤ 2e−2s = 2er−s−t(e|s−t|−r).

Combining these inequalities gives

d ≥ −2er−s−te|s−t|−r − 2er−s−te−r

+ 2(1 − 2e−2r)
1/2
er−s−t

[
1 − 2e−2r − 4e2(|s−t|−r)

]1/2

≥ 2er−s−t
[
[(1 − 2e−2r)(1 − 2e−2r − 4e2(|s−t|−r))]

1/2 − e|s−t|−r − e−r
]
,

which gives (47).
On the other hand, if x ≤ r , then

N coth2 t ≤
[
4(1 + e−2t)

2

(1 − e−2t)
2

][
e2r(1 + e−2r)2 + e2|s−t|(1 + e−2|s−t|)2

e2se2t(1 + e−2t)2(1 + e−2s)2

]

≤ 4(1 − e−4t)−2e2(r−s−t)
[
(1 + e−2r)2 + 4e2(|s−t|−r)

]

≤ 2er−s−t(1 − e−4t)−2(2e−r)
[
(1 + e−2r)2 + 4e2(|s−t|−r)

]
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whence, from the second inequality.

N1/2 coth t ≤ 2(1 − e−4t)−1er−s−t
[
1 + e−2r + 2e|s−t|−r

]

and
N coth2 t ≤ 4(1 − e−4t)−2

[
(1 + e−2r)

2
e−2r + 4e−4r

]

= 4e−2r(1 − e−4t)−2(1 + 6e−2r + e−4r).

Using these bounds we have, for x ≤ r ,

d ≤ 2er−s−te|s−t|−r

+ 2er−s−t(1 − e−4t)−2e−r
[
(1 + e−2r)2 + 4e2|s−t|−s−t

]

+ 2er−s−t(1 − e−4t)−1
[
1 + e−2r + 2e|s−t|−r

]

×
(
1 + 2e−2r + e−2r(1 − e−4t)−2(1 + 6e−2r + e−4r)

)1/2

≤ 2er−s−t(1 − e−4t)−2
[
e|s−t|−r + e−r[(1 + e−2r)2 + 4e2|s−t|−s−t]

+ (1 + e−2r + 2e|s−t|−r)
(
1 + 2e−2r + e−2r(1 + 6e−2r + e−4r)

)1/2]
.

The assumption that r ≥ log 20 now gives

d ≤ 2er−s−t(1 − e−4t)−2
[
e|s−t|−r + e−r + 0.100125e−2r + 4e−re2|s−t|−s−t

+
(
1 + e−2r + 2e|s−t|−r)(1 + (3.01500625/2)e−2r

)]

≤ 2er−s−t(1 − e−4t)−2
[
1 + e−r + 2.612e−2r + (3 + 3.02e−2r)e|s−t|−r

+ 4e−re2|s−t|−s−t
]

≤ 2er−s−t
[
1 + e−r + 2.62e−2r + (3 + 3.04e−2r)e|s−t|−r

+ 4(1 − e−4t)−2e2|s−t|−r−s−t
]
,

which gives (48).
Recalling that s ≤ t we also get,

d ≤ 2er−s−t
[
1 + e−r + 2.62e−2r + (3 + 3.04e−2r)et−s−r

+ 4(1 − e−4t)−2et−3s−r
]

≤ 2e−s
[
1.057er−t + 3.01e−r + 4.00006e−3r

]

≤ (sech s)[1.06er−t + 0.16],

which gives (49).
We now prove the last statement of the theorem. We suppose that |s− t| ≥

2.68. Using Lemma 5.3, the bisecting plane H2 lies under H1 exactly when

|w| sech t+ |z − w| ≤ |z| sech s,
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which follows if
(|z − w| + |z|) sech t+ |z − w| ≤ |z| sech s

or equivalently

(52) |z − w| ≤ sech s− sech t

1 + sech t
.

If, on the other hand, if (52) fails, then, since s ≤ t , (49) shows that %(A1, A2) ≥ 2r
if

(53)
sech s− sech t

1 + sech t
≥ sech s[1.06er−t + 0.16].

Since 2.68 > (1 + 1.17)/0.81, we have, in turn,

et−s ≥ (1 + 1.17)/0.81,

es−t ≤ 0.81 − 1.17es−t ≤ 0.81 − 1.17er−t,

e−t ≤ e−s(0.82 − 1.17er−t)/1.0025,

sech t ≤ sech s(0.82− 1.17er−t),

sech s− sech t ≥ sech s(1.17er−t + 0.18),

sech s− sech t ≥ sech s(1.06er−t + 0.16)(1 + 2/20.05).

Thus (53) follows and the proof of the theorem is complete.

Lemma 8.3. Let P be a packing of H3 by cylinders of radius r ≥ log 20 ,

B a cylinder in P and p(B) the polyhedral region of B in P . Then there exists

a packing P1 of H3 by radius r cylinders, which also contains B and such that

the polyhedral region of B in P1 lies in the intersection of p(B) and the cylinder

of radius r0 about ax(B) , where r0 is defined by

(54)
cosh2 r

cosh2 r0
= g5E−2 −

(√
2

(√
5 + 1

)
sech r +

(√
5 + 2

)
sech2 r

)
,

where g = 1
2

(√
5 − 1

)
is the golden mean and

(55) E = E(r) = (1 + e−2r)(1 + 9.27e−r).

Proof. Suppose that we have r0 > r1 > r , such that for any packing P ′ of
cylinders of radius r , and B ∈ P

′ , with axis I , the following holds: if z ∈ p(B)
is distance r0 from I , g is the geodesic through z which is perpendicular to I
and x the point on g which lies between z and g ∩ I at distance r1 from I , and
if B1 is a cylinder of radius r , whose axis meets g perpendicularly at distance
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θ0θ1

x

z

1

Figure 6.

2r1 from I (so that x ∈ bp(B1)), then the bisecting planes of any cylinder in P ′

which intersects B1 lies under bp(B1).
Given that such r0 and r1 exist, we can construct a new packing by adding

in the cylinder B1 and discarding those cylinders of P which meet it. The
polyhedral region of B in the new packing clearly lies in the corresponding region
of the original packing.

By an obvious modification of the induction step in Theorem 7.1 we can, by
iterating this process, construct a packing P1 which has the property that p(B),
(defined relative to P1 ) lies in the cylinder with axis I , radius r0 , as required by
the theorem.

It remains to show that r0 and r1 with the required properties exist and that
r0 can take the value given in (54). For the moment we let any r0 > r1 > r be
chosen subject to the lower bound

(56) cosh r1 ≥ E cosh r,

where E is defined by (55). We find under what conditions they have the required
property. We define θi (i = 0, 1) by cos θi = tanh ri (sin θi = sech ri ), so that
the cylinder of radius ri about I is at angle θi to ∂H3 .

Let B1 ∈ P be chosen as above. We may suppose by scaling that the centre
of bp(B1) is 1, whence z = cos θ1(cos θ0, 0, sin θ0). Let B2 ∈ P have bisecting
plane with radius % and centre y , and let %(ax(B2), I) = 2s ≥ 2r .

We distinguish two cases. First we show that, whatever the value of r1 , if
|r1−s| is sufficiently large, then either bp(B2) lies under bp(B1) or B1 and B2 are
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disjoint. For smaller s , we show that the same conclusion still holds, provided that
either % is less than some lower bound %0 or greater than some upper bound %1 .
When we choose r0 and r1 appropriately, we get %0 = %1 , in which case r0 and
r1 have the required properties.

If |s− r1| ≥ log 2.68, then, by the last assertion of Lemma 8.2, either bp(B2)
lies under bp(B1) or B1 and B2 are disjoint (from the definition of B1 it is clearly
impossible for bp(B1) to lie under bp(B2)). We may therefore assume that

(57) |s− r1| ≤ log 2.68.

If

(58) |y| < 1 − sech r

1 + sech r
,

then

(59) |y| sech s+ sech r1 < |y − 1|,

whence bp(B2) is disjoint from and not underneath bp(B1), so that B1 and B2

are disjoint. We may thus assume that (58) fails. In this case, by Theorem 5.3,

sech s =
%

|y| ≤
(1 + sech r)%

1 − sech r

and so, by Lemma 8.2 and (57), B1 and B2 are disjoint, when

(60) |y − 1| ≥ 2|y|er−r1−s(1 + 9.27e−r).

(The right-hand side in (60) is an upper bound for the right-hand side of (48) with
|s− t| = log 2.68.) Since z cannot lie under bp(B2), we have, when %2 ≥ cos2 θ1

|y − cos θ0 cos θ1| ≥
√
%2 − cos2 θ1 sin2 θ0 ,

whence

|y − 1| ≥ cos θ0 cos θ1 − 1 +

√
%2 − cos2 θ1 sin2 θ0 .

Therefore if

%2 − cos2 θ1 sin2 θ0 ≥
[
E% cosh r sin θ1 + 1 − cos θ0 cos θ1

]2
,

where E = E(r) is defined in (55), then, by (60), B1 and B2 are disjoint.
This rearranges to the quadratic

(1 −A2)%2 − 2AB%− (cos2 θ1 sin2 θ0 +B2) ≥ 0,
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where A = E cosh r sin θ1 , B = 1 − cos θ0 cos θ1 . Since, by (56), A < 1, this has
solution

%2 ≥
2A2B2 + (1 − A2)(cos2 θ1 sin2 θ0 +B2) + 2AB

√
cos2 θ1 sin2 θ0(1 − A2) + B2

(1 − A2)2
.

We have B ≤ sech2 r so that above follows from

(61)

%2 ≥ 2 sech4 r + (1 −A2)(sin2 θ0 + sech4 r) + 2
√

2 sech3 r

(1 − A2)2

=
sech2 r

(1 − A2)

[
cosh2 r

cosh2 r0
+

2
√

2

1 −A2
sech r +

3 −A2

1 −A2
sech2 r

]
.

Suppose now that B1 and B2 meet, and let d = |y − 1| be the distance between
the centres of their bisecting planes, then, by Lemma 8.2

d ≤ E% cosh r sin θ1 = A%,

whence
d+ % ≤ (A+ 1)%.

The bisecting plane bp(B2) lies beneath bp(B1) if d + % ≤ sin θ1 , so for this it
suffices to have

(62) % ≤ sin θ1
A+ 1

.

Combining (61) and (62), r0 and r1 have the required property if

sin2 θ1
(A+ 1)2

=
sech2 r

(1 −A2)
[h2

0 +K],

where

K =
2
√

2

1 − A2
sech r +

3 − A2

1 − A2
sech2 r

and hi = cosh r/ cosh ri (i = 0, 1).
Simplifying gives

h2
1

1 +A
=
h2

0 +K

1 − A
,

or

(63) h2
0 =

(1 − Eh1)(Eh1)
2

E2(1 +Eh1)
−K.

The first and main term on the right-hand side can be maximized by setting Eh1 =
g = 1

2

(√
5 − 1

)
(which complies with the inequality (56)). This approximately

maximizes h0 .
This value of Eh1 gives

K =
√

2
(√

5 + 1) sech r +
(√

5 + 2
)
sech2 r

and the right-hand side of (63) is g5E−2 −K .
The lemma follows.



Cylinder and horoball packing in hyperbolic space 37

Lemma 8.4. Let α ≤ β < 1 and let H1 and H2 be the upper hemispheres

in H3 with centre 1 radius α and centre k radius kβ respectively. Let 0 < τ < 1 .

If

k ≥ (1 − β2)
−1

[
1 +

β√
1 − τ2

+
(2τ + 1)β2

2τ

]
,

then, if ν(H1 ∩H2) is nonempty, it is distance at least τα from the centre of H1 .

Proof. An elementary calculation shows that ν(H1∩H2) crosses the real axis
at 1 + τα when d = k − 1 is the positive root of

(1 − β2)d2 − 2(τα+ β2)d+ (α2 − β2)

and that if d is greater than this root, then ν(H1 ∩ H2) crosses real axis at a
number greater than 1 + τα . Explicitly, this root is

d = (1 − β2)
−1

[
β2 + τα+

(
β2 − (1 − τ2)α2

)1/2
(

1 +
β2α2 + 2ταβ2

β2 − (1 − τ2)α2

)1/2]

≤ (1 − β2)
−1

[
β2 + τα+

(
β2 − (1 − τ2)α2

)1/2
+

β2α2 + 2ταβ2

2
(
β2 − (1 − τ2)α2

)1/2

]

≤ (1 − β2)
−1

[
β2 + τα+

(
β2 − (1 − τ2)α2

)1/2
+
β2(β + 2τ)

2τ

]
(64)

= (1 − β2)
−1[(

τα+
(
β2 − (1 − τ2)α2

)1/2)
+ 2β2 + β3/(2τ)

]

≤ (1 − β2)
−1

[
β√

1 − τ2
+ 2β2 + β3/(2τ)

]
,

the last inequality following from elementary calculus. The lemma follows.

Lemma 8.5. Let A(r) be the lesser of

(65) tanh2 r
[
1 +

(
4
3

)1/2
sech r + 2 sech2 r

]−1

and

(66)

[
(1 − 2e−2r)

[
1 − 2e−2r − 16

3
(1 + e−2r)

2
coth4 r

(
1 +

(
4
3)1/2 sech r + 2 sech2 r

)2
e−2r

]]1/2

− 2√
3

(1 + e−2r) coth2 r
[
1 +

(
4
3

)1/2
sech r + 2 sech2 r

]
e−r − e−r

and suppose that r > 0 is large enough to make A(r) > 0 .
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Let H1 and H2 be as in Lemma 8.2 , centred at w1 and w2 respectively.

Suppose that the cylinders of radius r corresponding to H1 and H2 are disjoint

but that H1 and H2 themselves intersect. Suppose also that er−s ≥ 1
2

√
3 . If d

denotes the distance from the centre of H1 to ν(H1 ∩H2) , then

(67) d ≥ C1(r)|w1|2e−s

(
1 − 1

2e2(r−s)

)

where

(68) C1(r) = (1 + e−2r)
−1(

3 − 2(1 + e−2r)
2
A(r)

−2)
.

Proof. By scaling we may assume that w1 = 1 By Lemma 5.3, H1 and H2

have radii r1 = sech s and r2 = |w2| sech t , respectively.
In view of Lemma 8.4 (with α = sech s , β = sech r and τ = 1

2 ) we may
assume that

(69) |w2| ≤ coth2 r
[
1 +

(
4
3

)1/2
sech r + 2 sech2 r

]
.

If r2/r1 = |w2|(sech t)/(sech s) ≤ 1
2

√
3 , then an application of Pythagoras

gives d ≥ 1
2r1 = 1

2 (sech s), and again (67) holds. We therefore assume that

|w2|(sech t)/(sech s) ≥ 1
2

√
3 . Using (69)

(70)

et−s =
(1 + e−2s) cosh t

(1 + e−2t) cosh s
≤ (1 + e−2r)

(
2/

√
3
)
|w2|

≤ 2√
3

(1 + e−2r) coth2 r

[
1 +

(
4

3

)1/2

sech r + 2 sech2 r

]
.

Since also es−t ≤ es−r ≤
(
2/

√
3
)
, by hypothesis, Lemma 8.2 gives

(71) |w1 − w2| ≥ 2|w2|er−s−tA(r).

Define

η = η(r) = 1
2e

rA(r).

After multiplying by a scale factor of η(r), the hemisphere Hi has centre
w′

i = η(r)wi and radius r′i = η(r)ri . By (69), and the definition of A(r), we have
r′i ≤ 1 and

(72)
r′1r

′
2 = η2|w1| |w2| sech s sech t

≤ 2ηer−s−t|w2|A(r) ≤ η|w1 − w2|.
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Hence Corollary 7.1 (with n = 3, k = 2) applies to the two hemispheres
scaled by η , to give, using the fact that s ≤ s0 = r + log

(
2/

√
3

)
,

(73)

d ≥ (2η2r21 − 1)
√

2

2η
√

2η2r21
= r1

(
1 − 1

2(ηr1)
2

)

≥ (1 + e−2s)
−1

2e−s

(
1 − e2r(1 + e−2r)

2

4η2

1

2e2(r−s)

)

≥ (1 + e−2r)
−1

2e−s

(
1 − 1

2e2(r−s)

)(
1 − e2r(1 + e−2r)

2

4η2

1

2e2(r−s0)

)

×
(

1 − 1

2e2(r−s0)

)−1

= 2e−s

(
1 − 1

2e2(r−s)

)[
(1 + e−2r)

−1
(

3 − e2r(1 + e−2r)
2

2η2

)]
,

which is (67).

Lemma 8.6. Let c ≥ 1
2

√
3 . Let A1(r) be the product of

(74) tanh2 r
[
1 +

(
3
2

)1/2
sech r +

(
1 + 1

2

√
3
)
sech2 r

]−1

and

(75)
[[

(1 − 2e−2r)(1 − 2e−2r − 6c−2e−2r)
]1/2 −

√
1.5 c−1e−r − e−r

]
.

Let

C3(r) = (1 + e−2r)
−1
A1(r)

and let r > 0 be large enough to make C3(r) > 0 .

For 1 ≤ i ≤ 3 , let Ai be geodesics at distance 2si ≥ 2r from I , and distance

at least 2r from each other. Let Hi = bp(Ai) , and let wi be the centre of Hi . Let

d denote the distance between w1 and ν(H1 ∩ H2 ∩ H3) , when this intersection

is nonempty. If er−s1 ≥ c , then

(76) d ≥ C2(r)|w1|(2e−s1)
2e2r − e2s1

er
√

4e2r − e2s1

,

where

(77) C2(r) =
(
C3(r)

)−1
(1 + e−2r)

−1 3
(
C3(r)

)2 − 2√∣∣( 3
2

)(
C3(r)

)2 −
(

1
2

)∣∣
.
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Proof. The result is trivial unless C3(r) >
√

2/3 , so we assume this inequality
does hold. By scaling we may also assume w1 = 1. Let

η1(r) = 1
2e

rA1(r).

In view of Lemma 8.4 (with α = sech s , β = sech r and τ = 1/
√

3 ) we may
assume for i = 2, 3, that

(78) |wi| ≤ coth2 r
[
1 +

(
3
2

)1/2
sech r +

(
1 + 1

2

√
3

)
sech2 r

]
.

If, for some i ≥ 2,

(79) esi ≥ es1

√
(3/2)

then, by (78), the radius of Hi

(80)

≤ coth2 r
[
1 +

(
3
2

)1/2
sech r +

(
1 + 1

2

√
3

)
sech2 r

]
sech si

≤ (1 + e−2r)
(

2
3

)1/2
coth2 r

×
[
1 +

(
3
2

)1/2
sech r +

(
1 + 1

2

√
3
)
sech2 r

]
sech s1,

in which case, by Pythagoras,
(81)

d ≥ sech s1

√
1 − 2

3
(1 + e−2r)

2
coth4 r

[
1 +

(
3
2

)1/2
sech r +

(
1 + 1

2

√
3

)
sech2 r

]2

=
sech s1√

3

√
3 − 2(1 + e−2r)

2
coth4 r

[
1 +

(
3
2

)1/2
sech r +

(
1 + 1

2

√
3

)
sech2 r

]2

≥
(
2/

√
3
)
e−s1(1 + e−2r)

−1
√

3 − 2C3(r)
−2
,

so that (76) follows from the fact that C3(r) ≤ 1 and the elementary inequality

√
3 − 2x−2 ≥ x−1 3x2 − 2√

(3/2)x2 − (1/2)
,

which is true for
√

2/3 < x ≤ 1.
We may thus assume that (79) does not hold for either i = 2, 3. Since, by

assumption, er−s1 ≥ c , we have e|si−sj | ≤ c−1
√

(3/2) , whence, by Lemma 8.2,

(82)
|wi − wj | ≥ 2|wi|er−si−sj

[[
(1 − 2e−2r)(1 − 2e−2r − 6c−2e−2r)

]1/2

−
√

1.5 c−1e−r − e−r
]
.
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After multiplying by a scale factor of η1(r), Hi has radius r′i = η1(r)|wi| sech ri ,
and, using (78),

(83)
r′ir

′
j = η1(r)

2|wi| |wj| sech si sech sj ≤ 2η1(r)e
r−si−sj |wi| |wj|A1(r)

≤ η1(r)|wi − wj |.

Since also, from the definition of A1(r), each r′i ≤ 1, Corollary 7.1 (with
k = n = 3) applies to the three hemispheres scaled by η1(r). Scaling back again
gives

(84)

d ≥ η1(r)
−1 2η1

2(r) sech2 s1 − 1√
4η12(r) sech2 s1 − 1

≥
(
C3(r)

)−1
(1 + e−2r)

−1
(2e−r)

2C2
3 (r)e2(r−s1) − 1√

4C2
3(r)e2(r−s1) − 1

≥
(
C3(r)

)−1
(1 + e−2r)

−1
(2e−r)

× 2e2(r−s1) − 1√
4e2(r−s1) − 1

2c2
(
C3(r)

)2 − 1
√

4c2
(
C3(r)

)2 − 1

√
4c2 − 1

2c2 − 1
,

using the assumption, er−s1 ≥ c ≥ 1
2

√
3 , and the convexity of the function

− log
2ex − 1√
4ex − 1

for x > − log 2. Now (76) readily follows.

Proof of Theorem 4.1. Let P be packing of H3 by cylinders of radius r .
We may assume that r ≥ 4.8, since the bound of the theorem is greater than
one for smaller values of r . Let B be a cylinder in P . We may assume that
B = B(r) with axis I . Now, by applying Lemma 8.3, we may also assume that
p(B) ⊆ B(r0) with r0 defined by (54).

Let F be a face of the boundary of p(B). The projection of F onto ∂H3

is a polygon P . We may assume that F lies on a hemisphere with centre 1 and
radius sech s for some s ≥ r . Let

Q = ν−1(P ) ∩ p(B), D = ν−1(P ) ∩ d(B).

We associate with each face F a “local” density

% = %F (B) = Vol (B ∩D)/Vol (D).
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(Since both volumes in the quotient are finite this definition is straightforward.)
The proof has two main steps. First we show that

(85) %̄(B) ≤ sup %F (B),

where the supremum above is taken over all faces F of ∂p(B). We complete the
proof by showing that each %F (B), satisfies the bound (7) of the theorem.

For 0 < a < b , let A′(a, b) be the union of the projections of faces of
∂p(B) which lie wholly in the annulus A(a, b). Each such face lies on a bi-
secting plane and, by Theorem 5.3 a bisecting plane with centre z has radius
at most |z| sech r . Therefore, if P is a bisecting plane, ν(P ) ⊆ A(a, b) if its cen-
tre is in A

(
a/(1 − sech r), b/(1 + sech r)

)
, and this in turn occurs if any point of

ν(P ) lies in A
(
(1 + sech r)a/(1 − sech r)

)
,
(
(1 − sech r)b/(1 + sech r)

)
; that is we

have A′(a, b) ⊇ A
(
a(1 − 2 sech r)

−1
, b(1 − 2 sech r)

)
. Hence, by (5), the volume

of B ∩ ν−1
(
A(a, b)\A′(a, b)

)
is bounded by a constant which is independent of a

and b .
We now have

(86)

vol
(
B ∩ C(a, b)

)

vol
(
d(B) ∩ C(a, b)

) ≤ vol
(
B ∩ C(a, b)

)

vol
(
d(B) ∩ ν−1

(
A′(a, b)

))

≤ vol
(
B ∩ ν−1

(
A′(a, b)

))

vol
(
d(B) ∩ ν−1

(
A′(a, b)

))

+
Constant

vol
(
d(B) ∩ ν−1

(
A′(a, b)

))

≤ {sup %F (B)}

+
Constant

vol
(
d(B) ∩ ν−1

(
A′(a, b)

)) .

Now (85) follows by taking limits, and applying Lemma 4.1.
We now prove the required bound for the %F (B).
By Lemma 8.1, we have

Vol (D) ≥ δ(r)
−2

Vol (Q),

where, using Lemma 8.3,

(87) δ(r) = 1 +
(1 + sech r) sinh2 r0

2(2 sinh2 r − 1)(cosh r − 1)
2

where r0 is as defined in (54).
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Also

Vol (B ∩D) = µ(P )(sinh2 r)/2 ≤ Area (P )(sinh2 r)(1 − sech r)
−2
/2.

The above estimates now give (setting, for brevity, % = %F (B)),

(88) %−1 ≥ 2(1 − sech r)
2
Vol (Q)

δ(r)
2
Area (P ) sinh2 r

.

If e2s ≥ %−1
∞ e2r , then sech s ≤ 2e−r√%∞ , in which case

Vol (Q) ≥ Area (P )

2 sech2 s
≥ Area (P )

8%∞e−2r
,

so that

%(Q) ≤ (1 − e−2r)
2
%∞

(1 − sech r)
2 δ(r)

2
.

A straightforward calculation shows that Theorem 4.1 holds in this case. Therefore
we assume henceforth that e2s ≤ %−1

∞ e2r .
Let h(t) be the vertical distance from t ∈ P to the boundary of p(B). From

(88), %−1 is at least 2δ(r)
−2

(1 − sech r)
2
/ sinh2 r of the mean value of 1/

(
2h(t)

2)

over the polygon P .

Explicitly, for (x, y) ∈ P , we have h
(
(x, y)

)
=

√
sech2 s− (x− 1)

2 − y2 . If

1 /∈ ν(P ), then we clearly decrease the mean of h−2 by extending P to the convex
hull of P and 1. We may thus assume that 1 ∈ P . We next subdivide P into
triangles as shown in Figure 7(a). If such a triangle has an obtuse angle other than
at 1, then it can be extended as shown in Figure 7(b) to a right angled triangle

without increasing the mean value of 1/
(
2h(t)

2)
. Otherwise it can be subdivided

into two right angled triangles.

1

(a) (b) (c)

e

c

1

P

1

Figure 7.
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Thus, in any case, a lower bound for the mean value of 1/
(
2h(t)

2)
over P

is obtained by minimizing the mean of the same function over T , where T is the
triangle in Figure 7(c), where the lengths e and c are bounded below by Lemmas
8.5 and 8.6, respectively (setting c =

√
%∞ in the latter).

Specifically, if we let ξ = e2(r−s) , and set

e0 = 2e−s

(
1 − e2s

2e2r

)
= 2e−s

(
1 − 1

2ξ

)

and

c0 = 2e−r 2e2(r−s) − 1√
4e2(r−s) − 1

= 2e−s 2ξ − 1√
ξ(4ξ − 1)

,

then we have

(89) e ≥ C(r)e0

and

(90) c ≥ C(r)c0

where C(r) is the lesser of C1(r) and C2(r), defined in (68) and (77) respectively

(in fact C(r) = C2(r) for r ≥ 4.8). Since the mean value of 1/
(
2h(t)

2)
over T is

evidently an increasing function of both c and e (the latter is clear if two triangles
with different values of e are drawn on the same hypotenuse), we minimize this
mean by taking equality in (89) and (90).

The integral of 1/
(
2h(t)

2)
over T is the volume of the tetrahedron Sα,β ,

with three dihedral right angles and three other dihedral angles (Figure 8), where
α and β are the acute angles given by cosα =

(
C(r)e0

)
/
(
C(r)c0

)
= e0/c0 ,

cos β = C(r)e0/ sech s . This volume is given by

vol (Sα,β) = 1
4

[
Π(α+ β) + Π(α− β) + 2Π

(
1
2
π − α

)]

(see e.g. [Ra, Section 10.4]) where Π(θ) is the Lobachevsky function defined by

(91) Π(θ) = −
∫ θ

0

log |2 sin(t)| dt.

Set β0 = 2α . We have

cosα =

√
ξ(4ξ − 1)

2ξ
, cos β0 =

2ξ − 1

2ξ
.



Cylinder and horoball packing in hyperbolic space 45

π/2 β

π/2

π/2
π/2− αα

Figure 8.

Clearly 1
6
π ≤ α < β0 < β < 1

2
π , the third inequality holding because C(r) <

es 1
2 (sech s). Now, since Π(−θ) = Π(π − θ) = −Π(θ) [Ra],

Π(α+ β) + Π(α− β) + 2Π
(

1
2π − α

)
= Π

(
3α+ (β − β0)

)

− Π
(
α+ (β − β0)

)
+ 2Π

(
1
2π − α

)

= −Π(π − 3α) − Π(α) + 2Π
(

1
2
π − α

)

−
∫ α+β

α+β0

log |2 sin t| dt

+

∫ α+(β−β0)

α

log |2 sin t| dt(92)

≥ −Π(π − 3α) − Π(α)

+ 2Π
(

1
2π − α

)
− (β − β0) log(2).

We have

(93)

β − β0 ≤ cos β0 − cos β

sin β0
=

2ξ − 1√
4ξ − 1

(
1 − (1 + e−2s)C(r)

)

≤ 2ξ − 1√
4ξ − 1

(
1 − C(r)

)
,

whence

(94)

vol (Sα,β) ≥ 1

4

[
−Π(π − 3α) − Π(α) + 2Π

(
1
2π − α

)]

− 1

4
log(2)

2ξ − 1√
4ξ − 1

(
1 − C(r)

)
.
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A change of variable gives

Π(θ) = −
∫ sin θ

0

log(2t)√
1 − t2

dt

for θ ∈
[
0, 1

2π
]
.

Define

(95)

I(ξ) = 4vol (Sα,β0
)

=

∫ sin 3α

0

log(2t)√
1 − t2

dt+

∫ sin α

0

log(2t)√
1 − t2

dt

− 2

∫ cos α

0

log(2t)√
1 − t2

dt.

Recall from Section 6 that we have used V to denote the volume of the
regular ideal tetrahedron, and that %∞ =

√
3 /(2V ). Since this tetrahedron can

be subdivided into 24 copies of Sπ/6,π/3 [M], we have, in particular,

I(1) = V/6 =
√

3 /(12%∞).

Since we are taking equality to hold in (89) and (90), the area of the triangle
in Figure 8 is

(96)
1

2
e(c2 − e2)

1/2
=

1

2
C(r)2e0(c

2
0 − e20)

1/2
=
e−2r(2ξ − 1)

3

2ξ
√

4ξ − 1
C(r)2,

whence

(97)

%−1 ≥ e2rC(r)−2δ(r)
−2

cosech2r(1 − sech r)
2

×
(
I(ξ)− log(2)

2ξ − 1√
4ξ − 1

(
1 − C(r)

))(
ξ
√

4ξ − 1

(2ξ − 1)
3

)
.

Differentiating the above function with respect to ξ , gives a positive constant
(with respect to ξ ) multiple of

(2ξ − 1)−4(4ξ − 1)
−1

[[
(4ξ − 1)

3/2
I ′(ξ) − 4ξ

(
1 − C(r)

)
log(2)

]
(2ξ − 1)ξ

+
[
(4ξ − 1)1/2I(ξ) − (2ξ − 1)

(
1 − C(r)

)
log(2)

]
(−12ξ2 − 2ξ + 1)

]
,(98)

where in turn

I ′(ξ) =
1

4ξ5/2

[
3(ξ − 1)

log(2 sin 3α)

cos 3α
− ξ

log(2 sinα)

cosα
− 2ξ√

4ξ − 1

log(2 cosα)

sinα

]
.
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Calculation shows that the derivative (98) is negative throughout [%∞, 1] when
C(r) = 0.7, and hence when C(r) ≥ 0.7. Further calculation shows that this holds
when r ≥ 4.8.

Hence an upper bound for % may be obtained by setting ξ = 1 in (97), giving

% ≤ C(r)
2
δ(r)

2
(1 − e−2r)

2
%∞

(1 − sech r)
2(

1 − 4%∞ log(2)
(
1 − C(r)

)) .

Finally, more calculations show that

% ≤ (1 + 23e−r)%∞.

In view of (85), Theorem 4.1 follows.
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