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Abstract. Space BMO-quasiconformal mappings satisfy a special modulus inequality that
is used to define the class of Q -homeomorphisms. In this class we study distortion theorems,
boundary behavior, removability and mapping problems. Our proofs are based on extremal length
methods and properties of BMO functions.

1. Introduction

Let D be a domain in Rn , n ≥ 2, and let Q: D → [1,∞] be a measurable
function.

Definition 1.1. We say that a homeomorphism f : D → Rn is a Q -homeo-

morphism if

(1.2) M(fΓ) ≤

∫

D

Q(x)%n(x) dm(x)

for every family Γ of paths in D and every admissible function % for Γ.

Here we use only open paths γ: (a, b) → Rn . We say that γ joins sets E
and F in a domain D if γ(

(
(a, b)

)
⊂ D and γ is a restriction of a closed path

γ: [a, b] → Rn such that γ(a) ∈ E and γ(b) ∈ F . The family of all paths which
join E and F in D will be denoted by Γ(E,F ;D). Recall that, given a family of
paths Γ in a domain D , a Borel function %: Rn → [0,∞] is called admissible for
Γ, abbreviated % ∈ adm Γ, if

(1.3)

∫

γ

%(x) |dx| ≥ 1
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for each γ ∈ Γ. The (conformal) modulus M(Γ) of Γ is defined as

(1.4) M(Γ) = inf
%∈adm Γ

∫

D

%n(x) dm(x).

An example of Q(x)-homeomorphisms is provided by a class of homeomor-
phisms f ∈ W1,n

loc (D) whose dilatation majorant Q is in Ln−1
loc (D), see Theo-

rem 2.19 below.
For f : D → Rn with partial derivatives a.e. and x ∈ D , we let f ′(x) denote

the Jacobian matrix of f at x or the differential operator of f at x , if it exists, by
J(x) = J(x, f) = det f ′(x) the Jacobian of f at x , and by |f ′(x)| the operator
norm of f ′(x), i.e., |f ′(x)| = max

{
|f ′(x)h| : h ∈ Rn, |h| = 1

}
. We also let

l
(
f ′(x)

)
= min

{
|f ′(x)h| : h ∈ Rn, |h| = 1

}
. The outer dilatation of f at x is

defined by

(1.5) KO(x) = KO(x, f) =





|f ′(x)|n

|J(x, f)|
, if J(x, f) 6= 0,

1, if f ′(x) = 0,
∞, otherwise,

the inner dilatation of f at x by

(1.6) KI(x) = KI(x, f) =






|J(x, f)|

l
(
f ′(x)

)n , if J(x, f) 6= 0,

1, if f ′(x) = 0,
∞, otherwise,

and the maximal dilatation, or in short the dilatation, of f at x by

(1.7) K(x) = K(x, f) = max
(
KO(x), KI(x)

)
,

cf. [MRV] and [Re1 ]. Note, that KI(x) ≤ KO(x)n−1 and KO(x) ≤ KI(x)
n−1 , see

e.g. 1.2.1 in [Re1 ], and, in particular, KO(x), KI(x) and K(x) are simultaneously
finite or infinite. K(x, f) < ∞ a.e. is equivalent to the condition that a.e. either
det f ′(x) ≥ 0 or f ′(x) = 0, cf. [GI] and [IŠ].

Definition 1.8. Given a function Q: D → [1,∞] , we say that a sense-
preserving homeomorphism f : D → Rn is Q(x)-quasiconformal, abbr. Q(x)-qc,
if f ∈W1,n

loc (D) and

(1.9) K(x, f) ≤ Q(x) a.e.

Definition 1.10. We say that f : D → Rn is BMO-quasiconformal, abbr.
BMO-qc, if f is Q(x)-qc for some BMO function Q: D → [1,∞] .
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Here BMO stands for the function space introduced by John and Niren-
berg [JN], see also [RR]. Recall that a real-valued function ϕ ∈ L1

loc(D) is said to
be of bounded mean oscillation in D , abbr. ϕ ∈ BMO(D), if

(1.11) ‖ϕ‖∗ = sup
B⊂D

1

|B|

∫

B

|ϕ(x) − ϕB | dx < ∞,

where the supremum is taken over all balls B in D and

(1.12) ϕB =
1

|B|

∫

B

ϕ(x) dx

is the mean value of the function ϕ over B . It is well known thatL∞(D) ⊂
BMO(D) ⊂ Lp

loc(D) for all 1 ≤ p <∞ .

Since L∞(D) ⊂ BMO, the class of BMO-qc mappings obviously contains all
qc mappings. We show that many properties of qc mappings hold for BMO-qc
mappings. Note that Q -homeomorphisms, Q(x)-qc and BMO-qc mappings are
Möbius invariants and hence the concepts extend to mappings f : D → Rn =
Rn ∪ {∞} as in the qc theory.

The subject of Q -homeomorphisms is interesting on its own right and has
applications to much wider classes of mappings which we plan to investigate else-
where. In this paper we study various properties as distortion, removability,
boundary behavior and mapping properties of Q -homeomorphisms under vari-
ous conditions on Q . Then the corresponding properties of Q(x)-qc mappings
f : D → Rn , n ≥ 2, with Q ∈ Ln−1

loc are obtained as simple consequences of
Theorem 2.19 below. A special attention is paid to BMO-qc mappings in Rn ,
n ≥ 3.

The study of related maps for n = 2 started by David [Da] and Tukia [Tu].
Recently Astala, Iwaniec, Koskela and Martin considered mappings with dilatation
controlled by BMO functions for n ≥ 3, see e.g. [IKM] and [AIKM]. It is necessary
to note the activity of the related investigations of mappings of finite distortion, see
e.g. [KKM1 ], [KKM2 ], [IKO], [IKMS], [KR], [KO], [MV1 ] and [MV2 ]. The present
paper is a continuation of our study of BMO-qc mappings in the plane [RSY 1−3 ],
cf. [IM], see also [Sa], and a similar geometric approach is used throughout.

For a, b ∈ Rn and E,F ⊂ Rn we let q(a, b), q(E) and q(E,F ) denote the
spherical (chordal) distance between the points a and b , the spherical diameter
of E and the spherical distance between E and F , respectively. We denote
by Bn(a, r) the Euclidean ball |x − a| < r in Rn with center a and radius r ,
Sn(a, r) = ∂Bn(a, r). We also let Bn(r) = Bn(0, r) and Bn = Bn(1), Sn = ∂Bn .
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2. Preliminaries

2.1. Proposition. Let f : D → Rn be a Q(x) -qc mapping. Then

(i) f is differentiable a.e.,

(ii) f satisfies Lusin’s property (N) ,
(iii) Jf (x) ≥ 0 a.e.

If, in addition, Q ∈ BMO(D) , or if more generally Q ∈ Ln−1
loc , then f−1 ∈

W1,n
loc

(
f(D)

)
, and

(iv) f−1 is differentiable a.e.,

(v) f−1 has the property (N) ,
(vi) Jf (x) > 0 a.e.

Proof. (i) and (ii) follow from the corresponding results for W1,n
loc homeomor-

phisms, see [Re2 ] and [Re3 ]. In view of (i) and the fact that f is sense-preserving,
(iii) follows by Rado–Reichelderfer [RR∗ , p. 333].

Now, if Q ∈ BMO, then Q and hence K(x, f) belongs to Lp
loc for all p <∞

and, in particular, to Ln−1
loc . Hence, by Theorem 6.1 in [HK], f−1 ∈ W1,n

loc

(
f(D)

)

and thus (iv)–(vi) follow.

2.2. Lemma. Let Q be a positive BMO function in Bn, n ≥ 3 , and let

A(t) = {x ∈ Rn : t < |x| < e−1} . Then for all t ∈ (0, e−2) ,

(2.3)

∫

A(t)

Q(x) dm(x)

(|x| log 1/|x|)n
≤ c

where c = c1‖Q‖∗ + c2Q1 , and c1 and c2 are positive constants which depend

only on n . Here ‖Q‖∗ is the BMO norm of Q and Q1 is the average of Q
over Bn(1/e) .

Proof. Fix t ∈ (0, e−2), and set

(2.4) η(t) =

∫

A(t)

Q(x) dm(x)

(|x| log 1/|x|)n
.

For k = 1, 2, . . ., write tk = e−k , Ak = {x ∈ Rn : tk+1 < |x| < tk} ,
Bk = Bn(tk) and let Qk be the mean value of Q(x) in Bk . Choose an integer

N , such that tN+1 ≤ t < tN . Then A(t) ⊂ A(tN+1) =
⋃N+1

k=1 Ak , and

(2.5) η(t) ≤

∫

A(tN+1)

Q(x)

|x|n logn 1/|x|
dx = S1 + S2

where

(2.6) S1 =
N+1∑

k=1

∫

Ak

Q(x) −Qk

|x|n logn 1/|x|
dx
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and

(2.7) S2 =
N+1∑

k=1

Qk

∫

Ak

dx

|x|n logn 1/|x|
.

Since Ak ⊂ Bk and for x ∈ Ak , |x|−n ≤ Ωne
n/|Bk| , where Ωn = |Bn| and

since log 1/|x| > k , it follows that

|S1| ≤ Ωn

N+1∑

k=1

1

kn

en

|Bk|

∫

Bk

|Q(x) −Qk| dx ≤ Ωne
n‖Q‖∗

N+1∑

k=1

1

kn

and, thus,

(2.8) |S1| ≤ 2Ωne
n‖Q‖∗

because, for p ≥ 2,

(2.9)
∞∑

k=1

1

kp
< 2.

To estimate S2 , we first obtain from the triangle inequality that

(2.10) Qk = |Qk| ≤
k∑

l=2

|Ql −Ql−1| +Q1.

Next we show that, for l ≥ 2,

(2.11) |Ql −Ql−1| ≤ en‖Q‖∗.

Indeed,

|Ql −Ql−1| =
1

|Bl|

∣∣∣∣
∫

Bl

(Q(x) −Ql−1) dx

∣∣∣∣

≤
en

|Bl−1|

∫

Bl−1

|Q(x) −Ql−1| dx ≤ en‖Q‖∗.

Thus, by (2.10) and (2.11),

(2.12) Qk ≤ Q1 +
k∑

l=2

en‖Q‖∗ ≤ Q1 + ken‖Q‖∗,
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and, since

(2.13)

∫

Ak

dx

|x|n logn 1/|x|
≤

1

kn

∫

Ak

dx

|x|n
= ωn−1

1

kn
,

where ωn−1 is the (n− 1)-measure of Sn−1 , it follows that

S2 ≤ ωn−1

N+1∑

k=1

Qk

kn
≤ ωn−1Q1

N+1∑

k=1

1

kn
+ ωn−1e

n‖Q‖∗

N+1∑

k=1

1

k(n−1)
.

Thus, for n ≥ 3, we have by (2.9) that

(2.14) S2 ≤ 2ωn−1Q1 + 2ωn−1e
n‖Q‖∗.

Finally, from (2.8) and (2.14) we obtain (2.3), where c = c1Q1 + c2‖Q‖∗ , and
c1 and c2 are constants which depend only on n .

2.15. Remark. For n ≥ 2, 0 < t < e−2 , and A(t) as in Lemma 2.2, let Γt

denote the family of all paths joining the spheres |x| = t and |x| = e−1 in A(t).
Then the function % given by

(2.16) %(x) =
1

(log log 1/t)|x| log 1/|x|

for x ∈ A(t) and %(x) = 0 otherwise, belongs to admΓt .

The following lemma provides the standard lower bound for the modulus of
all paths joining two continua in Rn , see [Ge1 ], [Vu, 7.37]. The lemma involves
the constant λn which depends only on n and which appears in the asymptotic
estimates of the modulus of the Teichmüller ring Rn(t) = Rn \

(
[−∞, 0]∪ [t,∞]

)
.

2.17. Lemma. Let E and F be two continua in Rn , n ≥ 2 , with q(E) ≥
δ1 > 0 and q(F ) ≥ δ2 > 0 , and let Γ be the family of paths joining E and F .

Then

(2.18) M(Γ) ≥
ωn−1(

log
2λn

δ1δ2

)n−1

where ωn−1 is the (n− 1) -measure of Sn−1 .

2.19. Theorem. Let f : D → Rn be a Q(x) -qc mapping with Q ∈ Ln−1
loc (D) .

Then, for every family Γ of paths in D and every % ∈ adm Γ ,

(2.20) M(fΓ) ≤

∫

D

Q(x)%n(x) dm(x),

i.e., f is a Q -homeomorphism.
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Proof. Since Q ∈ Ln−1
loc , we may apply Proposition 2.1. Thus f−1 ∈

W1,n
loc

(
f(D)

)
and hence f−1 ∈ ACLn

loc

(
f(D)

)
, see e.g. [Maz, p. 8]. Therefore,

by Fuglede’s theorem, see [Fu] and [Vä1 , p. 95], if Γ̃ is the family of all paths
γ ∈ fΓ for which f−1 is absolutely continuous on all closed subpaths of γ , then
M(fΓ) = M(Γ̃) . Also, by Proposition 2.1, f−1 is differentiable a.e. Hence,
as in the qc case, see [Vä, p. 110], given a function % ∈ adm Γ, we let %̃(y) =
%
(
f−1(y)

)
|(f−1)′(y)| for y ∈ f(D) and %̃(y) = 0 otherwise. Then we obtain that

for γ̃ ∈ Γ̃ ∫

γ̃

%̃ ds ≥

∫

f−1◦γ̃

% ds ≥ 1,

and consequently %̃ ∈ adm Γ̃.
By Proposition 2.1, both f and f−1 are differentiable a.e. and have (N)-

property and J(x, f) > 0 a.e., and since f−1 is a homeomorphism in W1,n
loc (D),

we can use the integral transformation formula and obtain

M(fΓ) = M(Γ̃) ≤

∫

f(D)

%̃n dm(y)

=

∫

f(D)

%
(
f−1(y)

)n
|(f−1)′(y)|n dm(y)

=

∫

f(D)

%
(
f−1(y)

)n

l
(
f ′(f−1(y)

)n dm(y)

=

∫

f(D)

%
(
f−1(y)

)n
KI

(
f−1(y), f

)
J(y, f−1) dm(y)

≤

∫

f(D)

%
(
f−1(y)

)n
Q

(
f−1(y)

)
J(y, f−1) dm(y)

=

∫

D

Q(x)%(x)n dm(x).

The proof follows.

2.21. Corollary. Every BMO-qc mapping is a Q -homeomorphism with

some Q ∈ BMO .

3. Distortion theorems

3.1. Theorem. Let f : Bn → Rn be a Q -homeomorphism with Q ∈
BMO(Bn) . If q

(
Rn \ f

(
Bn(1/e)

))
≥ δ > 0 , then for all |x| < e−2

(3.2) q
(
f(x), f(0)

)
≤

C

(log 1/|x|)α

where C and α are positive constants which depend only on n , δ , the BMO norm

‖Q‖∗ of Q and the average Q1 of Q over the ball |x| < 1/e .
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Proof. Fix t ∈ (0, e−2). Let A(t), Γt and % be as in Remark 2.15 and let
δt = q

(
f
(
Bn(t)

))
. Then, by Remark 2.15, % ∈ adm Γt , and

(3.3) M(fΓt) ≤

∫

Rn

Q%n dm.

In view of (2.3),

(3.4)

∫

Rn

Q%n dm =

∫

A(t)

Q%n dm ≤
c

(log log 1/t)n−1

where c is the constant which appears in Lemma 2.2, see also Lemma 3.2 in
[RSY2 ] for n = 2. On the other hand, Lemma 2.17 applied to M(fΓt) with
E = f

(
Bn(t)

)
and F = Rn \ f

(
Bn(1/e)

)
yields

(3.5) M(fΓt) ≥
ωn−1(

log
2λn

δδt

)n−1 ,

and the result follows by (3.3)–(3.5) and the fact that q
(
f(x), f(0)

)
≤ δt for

|x| = t .

3.6. Corollary. Let F be a family of Q -homeomorphisms f : D → Rn,
with Q ∈ BMO(D) , and let δ > 0 . If every f ∈ F omits two points af and bf
in Rn with q(af , bf) ≥ δ , then F is equicontinuous.

3.7. Theorem. Let f : Bn → Rn be a Q -homeomorphism with Q ∈
L1(Bn) , f(0) = 0 , q

(
Rn \ f(Bn)

)
≥ δ > 0 and q

(
f(x0), f(0)

)
≥ δ for some

x0 ∈ Bn . Then, for all |x| < r = min(|x0|/2, 1− |x0|) ,

(3.8) |f(x)| ≥ ψ(|x|)

where ψ(t) is a strictly increasing function with ψ(0) = 0 which depends only on

the L1 -norm of Q in Bn , n and δ .

Proof. Given y0 with |y0| < r choose a continuum E1 which contains the
points 0 and x0 and a continuum E2 which contains the point y0 and ∂Bn ,
so that dist(E1, E2 ∪ ∂Bn) = |y0| . More precisely, denote by L the straight
line generated by the pair of points 0 and x0 and by P the plane defined by
the triple of the points 0, x0 and y0 (if y0 ∈ L , then P is an arbitrary plane
passing through L). Let C be the circle under intersection of P and the sphere
Sn(y0, |y0|) ⊂ Bn(|x0|). Let t0 is the tangency point to C of the ray starting
from x0 which is opposite to y0 with respect to L (an arbitrary one of the two
possible if y0 ∈ L). Then E1 = [x0, t0]∪ γ(0, t0) where γ(0, t0) is the shortest arc
of C joining 0 and t0 , and E2 = [y0, i0]∪S

n where Sn = ∂Bn is the unit sphere
and i0 is the point (opposite to t0 with respect to L) of the intersection of Sn

with the straight line in P which is perpendicular to L and passing through y0 .
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Let Γ denote the family of paths which join E1 and E2 . Then

%(x) = |y0|
−1χBn(x) ∈ admΓ

and hence,

(3.9) M(fΓ) ≤

∫
%n(x)Q(x) dm(x) ≤ |y0|

−n

∫

Bn

Q(x) dm(x) =
‖Q‖1

|y0|n
.

The ring domain A′ = f
(
Bn\(E1 ∪E2)

)
separates the continua E ′

1 = f(E1) and

E′
2 = Rn\f(Bn\E2), and since

q(E′
1) ≥ q

(
f(x0), f(0)

)
≥ δ, q(E′

2) ≥ q
(
Rn\f(Bn)

)
≥ δ

and
q(E′

1, E
′
2) ≤ q

(
f(y0), f(0)

)

it follows that

(3.10) M
(
f(Γ)

)
≥ λ

(
q
(
f(y0), f(0)

))

where λ(t) = λn(δ, t) is a strictly decreasing positive function with λ(t) → ∞ as
t→ 0, see [Vä1 , 12.7]. Hence, by (3.9) and (3.10),

|f(y0)| > q
(
f(y0), f(0)

)
≥ ψ(|y0|)

where

ψ(t) = λ−1

(
‖Q‖1

tn

)

has the required properties.

3.11. Remark. In view of Theorem 2.19 and Corollary 2.21, Theorem 3.7
is valid for Q(x)-qc mappings with Q ∈ Ln−1(Bn), and Theorem 3.1 and Corol-
lary 3.6 are valid for Q(x)-qc mappings with Q ∈ BMO(Bn).

4. Removability of isolated singularities

Here and in Theorems 4.1 and 4.5, we describe two different and unrelated
cases where isolated singularities are removable.

4.1. Theorem. Let f : Bn \ {0} → Rn be a Q -homeomorphism. If

(4.2) lim sup
r→0

1

|Bn(r)|

∫

Bn(r)

Q(x) dm(x) <∞,

then f has an extension to Bn which is a Q -homeomorphism.



58 O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov

Proof. As the modulus of a family of paths which pass through the origin
vanishes, it suffices to show that f has a continuous extension on Bn . Suppose
that this is not the case. Since f is a homeomorphism, Rn \ f(Bn \ {0}) consists
of two connected compact sets F1 and F2 in Rn where F1 contains the cluster
set E = C(0, f) of f at 0. Here F1 is a nondegenerate continuum and using
an arbitrary Möbius transformation we may assume that F1 ⊂ Rn . Now U =
F1 ∪ f(Bn \ {0}) is a neighborhood of E . Thus there exists δ > 0 such that all
balls Bz = Bn(z, δ), z ∈ F1 , are contained in U . Let V = ∪Bz .

Now, choose a point y ∈ F1 such that dist(y, ∂V ) = δ , and a point z ∈
By \ F1 . Next, choose a path β: [0, 1] → By with β(0) = y , β(1) = z and
β(t) ∈ By \F1 for t ∈ (0, 1]. Let α = f−1 ◦β . For r ∈

(
0, |f−1(z)|

)
, let αr denote

the connected component of the curve α(I)\Bn(r), I = [0, 1], which contains the
point f−1(z) = α(1), and let Γr denote the family of all paths joining αr and the
point 0 in Bn \ {0} . Then the function %(x) = 1/r if x ∈ Bn(r) \ {0} and % = 0
otherwise is in adm Γr , and by (4.2),

lim sup
r→0

∫

Bn(r)\{0}

Q(x)%n(x) dm(x) = Ωn lim sup
r→0

1

|Bn(r)|

∫

Bn(r)\{0}

Q(x) dm(x)

<∞.(4.3)

On the other hand, if we let Γ′
r denote the family of all paths joining two continua

f(αr) and E in By \E , then Γ′
r ⊂ f(Γr), and thus

(4.4) M(Γ′
r) ≤ M(fΓr).

Evidently, dist(f(αr), E) → 0, and the diameter of f(αr) increases as r → 0,
and as both f(αr) and E are subsets of a ball, M(fΓr) → ∞ as r → 0. This
together with (4.3) and (4.4) contradicts the modulus inequality (2.20).

4.5. Theorem. Let f : Bn \ {0} → Rn be a Q -homeomorphism with Q ∈
BMO(Bn \ {0}) . Then f has a Q(x) -homeomorphic extension to Bn .

Proof. Fix t ∈ (0, e−2) and let A(t), Γt and % be as in Remark 2.15. Then,
by Lemma 2.17,

(4.6)
ωn−1(

log
2λn

δδt

)n−1 ≤M(fΓt) ≤

∫

A(t)

Q%n dm,

where δ = q
(
f
(
∂Bn(e−1)

))
and δt = q

(
f
(
∂Bn(t)

))
. Since isolated singularities

are removable for BMO functions, see [RR], we may assume that Q is defined in
Bn and that Q ∈ BMO(Bn). Thus, by Lemma 3.2 in [RSY2 ] for n = 2 and
Lemma 2.2 for n ≥ 3

(4.7)

∫

A(t)

Q(x)%n dm ≤
c

(log log 1/t)n−1
.

Since here c depends only on n , ‖Q‖∗ and Q1 = QBn(1/e) , we obtain by (4.6)–
(4.7) that δt → 0 as t→ 0, and hence that limx→0 f(x) exists.
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4.8. Corollary. If f : Rn → Rn is a BMO-qc mapping, then f has a

homeomorphic extension to Rn and, in particular, f(Rn) = Rn .

5. Boundary behavior

For the boundary behavior some regularity of the boundary is needed for
which the following notation is used.

We say that a domain D in Rn is a BMO extension domain if every u ∈
BMO(D) has an extension to Rn which belongs to BMO(Rn). It was shown in
[GO] and [Jo] that a domain D is a BMO extension domain if and only if D is a
uniform domain, i.e., for some a and b > 0, each pair of points x1, x2 ∈ D can
be joined by a rectifiable arc γ ⊂ D such that

(5.1) l(γ) ≤ a · |x1 − x2|

and, for all x ∈ γ ,

(5.2) min
i=1,2

l
(
γ(xi, x)

)
≤ b · dist(x, ∂D)

where l(γ) is the Euclidean length of γ , γ(xi, x) is the part of γ between xi

and x .
The uniform domains were introduced in [MS] and their various characteriza-

tions can be found in [Ge2 ], [Ma], [Mar], [Vä2 ] and [Vu]. It was shown in [MS],
p. 387, that uniform domains are invariant under quasiconformal mappings of Rn .
In particular, every domain which is bounded by a quasisphere, i.e., the image of
∂Bn under a qc automorphism of Rn , is uniform. Note that a bounded convex
domain is uniform. We also write u ∈ BMO(D ) if u has a BMO extension to
an open set U ⊂ Rn such that D ⊂ U . Domains D in Rn for which every
u ∈ BMO(D) admits such extension can be characterized as relatively uniform
domains, see e.g. [Go2 ].

A domain D ⊂ Rn is called a quasiextremal distance domain or a QED

domain if there is K ≥ 1 such that, for each pair of disjoint continua E and F
in D ,

(5.3) M
(
Γ(E,F ;Rn)

)
≤ K ·M

(
Γ(E,F ;D)

)
.

It is known that every uniform domain D is a QED domain and there exist QED
domains which are not uniform, see [GM], pp. 189 and 194. Every QED domain
D is quasiconvex, i.e., (5.1) holds for all x1 and x2 ∈ D \ {∞} , see Lemma 2.7
in [GM], p. 184. Hence every QED domain D is locally connected at ∂D , i.e.,
every point x ∈ ∂D has an arbitrarily small neighborhood U such that U ∩ D
is connected, cf. also Lemma 2.11 in [GM], p. 187, and [HK1 ], p. 190. Note that
every Jordan domain D in Rn is locally connected at ∂D , see [Wi], p. 66.
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We say that ∂D is strongly accessible if, for nondegenerate continua E and
F in D ,

(5.4) M
(
Γ(E,F ;D)

)
> 0,

and that ∂D is weakly flat if, for nondegenerate continua E and F in D with
E ∩ F 6= ∅ ,

(5.5) M
(
Γ(E,F ;D)

)
= ∞.

These properties are clearly invariant under qc mappings of Rn and they are
closely related to properties P1 and P2 by Väisälä in [Vä1 , 17.5] as well as to
the notions of quasiconformal flatness and quasiconformal accessibility by Näkki
in [Nä] and by Herron and Koskela in [HK1 ].

We shall show below that weak flatness implies strong accessibility. The
converse does not hold as in the example of a disk minus a cut. Note that the
conditions (5.4) and (5.5) automatically hold if E and F are inside D , see e.g.
Lemma 1.15 in [Nä], p. 16, and [Vä1 , 10.12], but not if E and F are in ∂D . It is
known that for a QED domain the inequality (5.3) holds for each pair of disjoint
continua E and F in D , see Theorem 2.8 in [HK2 ], p. 173, cf. Lemma 6.11 in
[MV], p. 35. The latter property of QED domains also implies (5.3) for nondegener-
ate intersecting continua E and F in D . Hence QED domains and, consequently,
uniform domains have weakly flat boundaries, cf. Lemma 3.1 in [HK 1 ], p. 196.

5.6. Lemma. If the boundary of a domain D in Rn , n ≥ 2 , is weakly flat,

then it is strongly accessible.

Proof. Let E and F be nondegenerate continua in D . Without loss of
generality we may assume that E ∩ F = ∅ , that ∞ lies outside of E ∪ F and
that E ⊂ ∂D , see Lemma 1.15 in [Nä], p. 16. Take 0 < ε < 1

2 dist(E,F ).
Then Eε ∩ Fε = ∅ where Eε = {x ∈ D : dist(x,E) < ε} and Fε = {x ∈ D :
dist(x, F ) < ε}. Since each path in Γ(E,E;D) contains a subpath which belongs to
Γ(E,Eε;D), it follows, see e.g. [Fu], p. 178, cf. [AB], p. 115, that M

(
Γ(E,E;D)

)
≤

M
(
Γ(E,Eε;D)

)
. In view of the weak flatness of ∂D , M

(
Γ(E,E;D)

)
= ∞ .

Therefore M
(
Γ(E,Eε;D)

)
= ∞ . By the Lindelöf principle, see e.g. [Ku], p. 54,

the open subsets Eε and Fε of D can be covered by countable collections of
open and, consequently, closed balls B inside Eε and Fε , respectively. Thus,
by countable subadditivity of the modulus we can find a couple of closed balls,
B0 ⊂ Eε and B∗

0 ⊂ Fε , B0 ∩ B
∗
0 = ∅ , such that

(5.7) M
(
Γ(E,B0;D)

)
> 0

and

(5.8) M
(
Γ(F,B∗

0 ;D)
)
> 0,
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see Theorem 1 in [Fu], p. 176. Also

(5.9) M
(
Γ(B0, B

∗
0 ;D)

)
> 0,

see e.g. Lemma 1.15 in [Nä].
Now, we use the idea of Näkki which appears in the proof of Theorem 1.16 in

[Nä]. Let % ∈ admΓ(E,B∗
0 ;D). If

(5.10)

∫

γ

% ds ≥
1

3
or

∫

γ′

% ds ≥
1

3

for all rectifiable paths γ ∈ Γ(E,B0;D) and γ′ ∈ Γ(B0, B
∗
0 ;D), respectively, then

3% ∈ adm Γ(E,B0;D) or 3% ∈ adm Γ(B0, B
∗
0 ;D), and hence by (5.7) and (5.9)

(5.11)

∫

D

%n dm ≥ 3−n min
(
M

(
Γ(E,B0;D)

)
,M

(
Γ(B0, B

∗
0 ;D)

))
> 0.

If (5.11) does not hold for a couple of such paths γ and γ ′ , then

(5.12)

∫

α

% ds >
1

3

for every rectifiable path α ∈ Γ(γ, γ ′;R0) where R0 is a ring r0 < |x−c0| < r′0 , c0
and r0 are the center and the radius of B0 , respectively, and r′0 = r0+dist(B0, B

∗
0∪

∂D), i.e., 3% ∈ admΓ(γ, γ′;R0), and hence

(5.13)

∫

D

%n dm ≥ 3−ncn log
r′0
r0
> 0,

see [Vä1 , 10.12]. Thus, by (5.11) and (5.13)

(5.14) M
(
Γ(E,B∗

0 ;D)
)
> 0.

If I = IntB∗
0 ∩ F 6= ∅ , then by Lemma 1.15 in [Nä] M

(
Γ(B0, Ī;D)

)
> 0, and

arguing as above (take Ī = B∗
0 ∩ F instead of B∗

0 ) we obtain M
(
Γ(E, Ī;D)

)
> 0

and hence by monotonicity of the modulus

(5.15) M
(
Γ(E,F ;D)

)
> 0.

If B∗
0 ∩ F = ∂B∗

0 ∩ F 6= ∅ , then by subadditivity of the modulus we obtain
(5.8), (5.9) and (5.14) for another ball B′

0 ⊂ IntB∗
0 with B′

0 ∩ F = ∅ . Finally,
if B∗

0 ∩ F = ∅ , then repeating the above arguments (as in the proof of (5.14),
replace B0 and B∗

0 by B∗
0 and F , respectively) we again obtain (5.15) by (5.8)

and (5.14).
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5.16. Lemma. Let D be a domain in Rn , n ≥ 2 , which is locally con-

nected at ∂D and let f : D → D′ ⊂ Rn be a Q -homeomorphism onto D′ with

Q ∈ BMO(D ) . If ∂D′ is strongly accessible, then f has a continuous extension

f̃ : D → D ′ .

Proof. Let x0 ∈ ∂D . As BMO functions and Q -homeomorphisms are Möbius
invariant, we may assume that x0 = 0 and that ∂Bn ∩D 6= ∅ . We will show that
the cluster set E = C(0, f) of f at 0 is a point, which will prove that f(x) has
a limit at x0 .

Since D is locally connected at 0, E is a continuum. Suppose that E is
nondegenerate. For t ∈ (0, 1/e), let Dt denote the component of Bn(t) ∩ D for
which 0 ∈ D t . Note, that Dt is well defined, since D is locally connected at 0,
and that Dt ⊂ Dt′ for t < t′ . For t ∈ (0, e−2] , let Γt denote the family of path
joining Dt and the set S = D ∩ ∂Bn(1/e) in D1/e \ D t . As in Lemma 2.2, we
let A(t) denote the spherical ring t < |x| < 1/e . Then the function %(x) defined
in Remark 2.15 is admissible for Γt , and hence

(5.17) M(fΓt) ≤

∫

D

Q(x)%n(x) dm(x).

If Q ∈ BMO(D ), we may apply (3.3) in [RSY2 ] for n = 2 and (2.3) for n ≥ 3,
and get

(5.18)

∫

D

Q(x)%n(x) dm(x) ≤

∫

A(t)

Q(x)%n(x) dm(x) → 0

as t→ 0. On the other hand

(5.19) M(fΓt) ≥ M
(
Γ(f(S), E;D′)

)
.

Now, ∂D′ is strongly accessible, f(S) contains a nondegenerate continuum and E
is nondegenerate. Therefore, the right-hand side in (5.19) is positive contradicting
(5.17) and (5.18). This shows that the cluster set of f at every point of ∂D is
degenerate and thus f has a continuous extension on D .

5.20. Lemma. Let D be a domain in Rn and f a Q -homeomorphism of D
onto a domain D′ in Rn with Q ∈ L1(D) . Suppose that D is locally connected

at ∂D . If ∂D′ is weakly flat, then C(x1, f) ∩ C(x2, f) = ∅ for every two distinct

points x1 and x2 in ∂D .

Proof. With no loss of generality we may assume that the domain D is
bounded. For i = 1, 2, let Ei denote the cluster sets C(xi, f) and suppose that
E1 ∩E2 6= ∅ . Write d = |x1 − x2| . Since D is locally connected in ∂D , there are
neighborhoods Ui of xi , such that Wi = D∩Ui is connected and Ui ⊂ Bn(xi, d/3),
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i = 1, 2. Then the function %(x) = 3/d if x ∈ D∩Bn
(
(x1+x2)/2, d

)
and %(x) = 0

elsewhere is admissible for the family Γ = Γ(W 1,W 2;D). Thus,

(5.21) M(fΓ) ≤

∫

D

Q(x)%n(x) dm(x) ≤
3n

dn

∫

D

Q(x) dm(x) <∞.

On the other hand

(5.22) M = M
(
Γ(E1, E2;D)

)
≤ M(fΓ).

But as ∂D′ is weakly flat, and Ei , i = 1, 2, are nondegenerate continua in D′

with non-empty intersection, M = ∞ , contradicting (5.21). The assertion follows.

5.23. Corollary. Let D , D′ , f and Q be as in Lemma 5.20. Then f−1

has a continuous extension to D′ .

5.24. Corollary. Let E be a nondegenerate continuum in Bn and Q ∈
L1(Bn \ E) . Then there exists no Q -homeomorphism of Bn \ E onto Bn \ {0} .

If Q ∈ Ln−1(Bn \ E) , then there exists no Q(x) -qc mapping of Bn \ E onto

Bn \ {0} .

5.25. Corollary. Let f : D → D′ ⊂ Rn be a Q -homeomorphism onto D′

with Q ∈ BMO(D ) . If D locally connected at ∂D and ∂D′ is weakly flat, then

f has a homeomorphic extension f̃ : D → D′ .

5.26. Theorem. Let f : D → D′ be a Q -homeomorphism between QED

domains D and D′ with Q ∈ BMO(D ) . Then f has a homeomorphic extension

f̃ : D → D′ .

This and the next theorem extend the known Gehring–Martio results, see
[GM], p. 196, and [MV], p. 36, from qc mappings to Q -homeomorphisms with
Q ∈ BMO(D ) and to BMO-qc mappings, respectively.

5.27. Theorem. Let f : D → D′ be a BMO-qc mapping between uniform

domains D and D′ . Then f has a homeomorphic extension f̃ : D → D′ .

5.28. Corollary. Let f : D → D′ be a BMO-qc mapping between bounded

convex domains D and D′ . Then f has a homeomorphic extension f̃ : D → D′ .

5.29. Corollary. If D is a domain in Rn which is locally connected at

∂D and if D is not a Jordan domain, then D cannot be mapped onto Bn by a

Q -homeomorphism with Q ∈ BMO(D ) .

5.30. Corollary. If a domain D in Rn is uniform but not Jordan, then

there is no BMO-qc mapping of D onto Bn .

In 7.2 below we show that for every n ≥ 3 there is a bounded uniform domain
in Rn which is a topological ball and not Jordan.
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6. Mapping problems

In Section 4, we showed that there are no BMO-qc mappings of Rn onto a
proper subset of Rn , nor BMO-qc mappings of a punctured ball onto a domain
that has two nondegenerate boundary components. We may consider the following
two questions.

(a) Are there any proper subsets of Rn that can be mapped BMO-quasicon-
formally onto Rn ?

(b) Are there any nondegenerate continua E in Bn such that Bn \E can be
mapped BMO-quasiconformally onto Bn \ {0}?

In [RSY2 ] we showed that the answer to these questions is negative if n = 2.
The proofs were based on the Riemann Mapping Theorem and on the existence of
a homeomorphic solution to the Beltrami equation

wz̄ = µ(z)wz

for measurable functions µ with ‖µ‖∞ ≤ 1 which satisfy
(
1 + |µ(z)|

)
(
1 − |µ(z)|

) ≤ Q(z)

a.e. for some BMO function Q . One may modify Questions (a) and (b) by replac-
ing the words “BMO-quasiconformally” by ”by a Q -homeomorphism”. Below, we
provide a negative answer to Questions (a) and (b) in some special cases when
n > 2.

We say that a proper subdomain D of Rn is an L1 -BMO domain if u ∈
L1(D) whenever u ∈ BMO(D). Evidently, D is an L1 -BMO domain, if D is a
bounded uniform domain. By [Sta], pp. 106–107, cf. [Go1 ], p. 69, D is an L1 -
BMO domain if and only if kD( · , x0) ∈ L1(D) where kD is the quasihyperbolic

metric on D ,

(6.1) kD(x, x0) = inf
γ

∫

γ

ds

d(y, ∂D)

where ds denotes the Euclidean length element, d(y, ∂D) the Euclidean distance
from y ∈ D to ∂D , and the infimum is taken over all rectifiable paths γ joining x
to x0 in D . L1 -BMO domains are not invariant under quasiconformal mappings of
Rn , however, they are invariant under quasi-isometries, see [Sta], pp. 119 and 112.

In particular, every John domain is an L1 -BMO domain, see Theorem 3.14
in [Sta], p. 115. A domain D ⊂ Rn is called a John domain if there exist 0 < α ≤
β < ∞ and a point x0 ∈ D such that, for every x ∈ D , there is a rectifiable path
γ: [0, l] → D parametrized by arclength such that γ(0) = x , γ(l) = x0 , l ≤ β and

(6.2) d
(
γ(t), ∂D

)
≥
α

l
· t
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for all t ∈ [0, l] . A John domain need not be uniform but a bounded uniform
domain is a John domain, see [MS], p. 387. Note also that John domains are
invariant under qc mappings of Rn , see [MS], p. 388. A convex domain D is a
John domain if and only if D is bounded. For characterizations of John domains,
see [He], [MS] and [NV].

Hölder domains are also L1 -BMO domains. A domain D ⊂ Rn is said to be
a Hölder domain if there exist x0 ∈ D , δ ≥ 1 and C > 0 such that

(6.3) kD(x, x0) ≤ C + δ · log
d(x0, ∂D)

d(x, ∂D)

for all x ∈ D . It is known that D is a Hölder domain if and only if the quasi-
hyperbolic metric kD(x, x0) is exponentially integrable in D , see [SS]. Thus, a
Hölder domain is also an L1 -BMO domain.

6.4. Theorem. Let D be a domain in Rn, D 6= Rn, n ≥ 2 , and f : D → Rn

a Q -homeomorphism. If there exist a point b ∈ ∂D and a neighborhood U of b
such that Q|D∩U ∈ L1 , then f(D) 6= Rn .

Proof. The statement is trivial if D is not a topological ball. Suppose that
D is a topological ball. By the Möbius invariance, we may assume that b = 0
and that ∞ ∈ ∂D . Let r > 0 be such that Bn(r) ⊂ U . Then Q is integrable in
Bn(r) ∩D . Choose two arcs E and F in Bn(r/2) ∩D each having exactly one
end point in ∂D such that 0 < dist(E,F ) < r/2. Such arcs exist. Indeed, since
∂D is connected and 0 and ∞ belong to ∂D , the sphere ∂Bn(r/2) meets ∂D
and contains a point x0 which belongs to D . Then one can take E as a maximal
line segment in (0, x0] ∩ D with one end point at x0 and the other one in ∂D ,
and F as a circular arc in the maximal spherical cap in ∂Bn(r/2) ∩ D which is
centered at x0 , so that F has one end point in ∂D and the other one in D .

Now, let Γ denote the family of all paths which join E and F in D . Then
%(x) = dist(E,F )−1 if x ∈ Bn(r)∩D and %(x) = 0 otherwise is admissible for Γ.
Then by (1.2)

(6.5) M(fΓ) ≤

∫

D

Q%n dm ≤
1

dist(E,F )n

∫

Bn(r)∩D

Qdm <∞.

On the other hand, if f(D) = Rn , then f(E) and f(F ) meet at ∞ and fΓ is the
family of paths joining f(E) and f(F ) in Rn . Thus M(fΓ) = ∞ . Contradiction
showing that f(D) 6= Rn .

As a consequence of Theorem 6.4, we have the following corollaries which say
that a proper subdomain D of Rn having a nice boundary at least at one point
of ∂D cannot be mapped BMO-quasiconformally onto Rn .
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6.6. Corollary. Let D be a domain in Rn, D 6= Rn , n ≥ 2 , and let

f : D → Rn be a Q -homeomorphism with Q ∈ BMO(D) . If there exists a point

b ∈ ∂D and a neighborhood U of b such that D ∩ U is an L1- BMO domain or,

in particular, if ∂(D ∩ U) is a quasisphere, then f(D) 6= Rn .

6.7. Remark. Theorem 6.4 implies in particular that, if a BMO-qc mapping
f of D is onto Rn , then either D = Rn or the domain D cannot be (even locally
at any boundary point) convex, uniform, John or Hölder.

By the techniques which are used in the proof of Theorem 6.4, one can estab-
lish the following theorem which gives partial answers to (b).

6.8. Theorem. Let E be a nondegenerate continuum in Bn , D = Bn \E ,

and f : D → Rn a Q -homeomorphism. If there exist a point x0 ∈ ∂D ∩ Bn and

a neighborhood U of x0 such that Q|D∩U ∈ L1 , then f(D) is not a punctured

topological ball.

6.9. Corollary. Let E be a nondegenerate continuum in Bn and D =
Bn \ E . If there exist a point x0 ∈ ∂D ∩ Bn and a neighborhood U of x0 such

that U \E is an L1- BMO domain or, in particular, if ∂(U \E) is a quasisphere,

then D cannot be mapped BMO-quasiconformally onto Bn \ {0} .

6.10. Remark. The condition Q|D∩U ∈ L1 which appears in Theorems 6.4
and 6.8 holds for Q ∈ BMO(D) if kD∩U ∈ L1 and |∂D ∩ U | > 0, see [Sta]. Note
that the latter property is impossible for convex, uniform, QED as well as for John
domains, see [Ma], p. 204, [GM], p. 189, and [MV], p. 33.

7. Some examples

We say that a domain D in Rn , n ≥ 2, is a quasiball, respectively, BMO-

quasiball if there exists a homeomorphism of D onto Bn which is qc, respec-
tively, BMO-qc. We say that a set S in Rn is a quasisphere, respectively, BMO-

quasisphere if there exists a qc mapping, respectively, BMO-qc mapping f of Rn

onto itself such that f(S) = ∂Bn .

The following example shows that there is a BMO-quasicircle γ which is not
a quasicircle.

7.1. Example. Consider the curve γ = γ1 ∪ γ2 ∪ γ3 where γ1 = [0,∞] ,
γ2 = [−∞,−1/e] and

γ3 =
{
teiπ/ log 1/t : 0 < t < 1/e

}
.

Clearly, γ does not satisfy Ahlfors’s three points condition, and hence it is not a
quasicircle. However, γ is a BMO-quasicircle. Indeed, the map f : C → C which
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is identity in C \ B2 and is given for |z| < 1 by

f(reiθ) =






r exp i(θ log 1/r), if 0 ≤ θ ≤
π

log 1/r
,

r exp iπ

(
1 +

1 − θ/π log 1/r

1 − 2 log 1/r

)
, if

π

log 1/r
≤ θ < 2π

is Q(z)-qc with Q(reiθ) = max(1, log 1/r) which is BMO-qc in C and maps γ

onto R .

Note that Rn is a topological ball which cannot be mapped by a BMO-qc
mapping onto Bn , see Corollary 4.8. In view of Corollary 5.30, the following
example shows that, for every n ≥ 3, there exists a proper subdomain of Bn

which is a topological ball but not a BMO-quasiball.

7.2. Example. Let B = Bn \ Cn(ε) where Cn(ε) is a cone in Bn with
vertex v = ∂Bn∩{xn = 1} and base Bn(ε)∩{xn = 0} , 0 < ε < 1. For n ≥ 3, the
domain B is uniform. Evidently B is a topological ball. However, the boundary
of B is not homeomorphic to the sphere Sn−1 because the point v splits ∂B into
two components.
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[IŠ] Iwaniec, T., and V. Šverák: On mappings with integrable dilatation. - Proc. Amer.
Math. Soc. 118, 1993, 181–188.

[Jo] Jones, P.M.: Extension theorems for BMO. - Indiana Univ. Math. J. 29, 1980, 41–66.

[Jo∗] John, F.: Rotation and strain. - Comm. Pure Appl. Math. 14, 1961, 391–413.

[JN] John, F., and L. Nirenberg: On functions of bounded mean oscillation. - Comm. Pure
Appl. Math. 14, 1961, 415–426.

[KKM1]Kauhanen, J., P. Koskela, and J. Maly: Mappings of finite distortion: discreteness
and openness. - Arch. Rational Mech. Anal. 160, 2001, 135–151.

[KKM2]Kauhanen, J., P. Koskela, and J. Maly: Mappings of finite distortion: condition N .
- Michigan Math. J. 49, 2001, 169–181.

[KO] Koskela, P., and J. Onninen: Mappings of finite distortion: the sharp modulus of
continuity. - Trans. Amer. Math. Soc. 355, 2003, 1905–1920.

[KR] Koskela, P., and K. Rajala: Mappings of finite distortion: removable singularities. -
Israel J. Math. 136, 2003, 269–283.

[Ku] Kuratowski, K.: Topology, 1. - Academic Press, New York–London, 1966.

[Ma] Martio, O.: Definitions for uniform domains. - Ann. Acad. Sci. Fenn. Ser. A I Math. 5,
1980, 197–205.

[Mar] Martin, G. J.: Quasiconformal and bi-lipschitz homeomorphisms, uniform domains and
the quasihyperbolic metric. - Trans. Amer. Math. Soc. 292, 1985, 169–191.

[Maz] Maz′ya, V.: Sobolev Spaces. - Springer-Verlag, Berlin–New York, 1985.
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