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Abstract. Space BMO-quasiconformal mappings satisfy a special modulus inequality that
is used to define the class of Q-homeomorphisms. In this class we study distortion theorems,
boundary behavior, removability and mapping problems. Our proofs are based on extremal length
methods and properties of BMO functions.

1. Introduction

Let D be a domain in R™, n > 2, and let Q: D — [1,00] be a measurable
function.

Definition 1.1. We say that a homeomorphism f: D — R™ is a Q-homeo-
morphism if

(1.2) M(fT) < /D Q(x)0" (x) dm(x)

for every family I' of paths in D and every admissible function o for I'.

Here we use only open paths v: (a,b) — R™. We say that 7 joins sets E
and F in a domain D if v(((a,b)) C D and v is a restriction of a closed path
7: [a,b] — R™ such that 7(a) € E and 7(b) € F. The family of all paths which
join E and F in D will be denoted by I'(E, F'; D). Recall that, given a family of
paths I' in a domain D, a Borel function g: R™ — [0, 00| is called admissible for
I', abbreviated o € adm T, if

(1.3) [ @iz =1
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for each v € I'. The (conformal) modulus M(I") of I' is defined as

(1.4) M) = inf /D 0" (z) dm(z).

o€adm T’

An example of @Q(z)-homeomorphisms is provided by a class of homeomor-
phisms f € Wll(;Z(D) whose dilatation majorant @ is in Li"_*(D), see Theo-
rem 2.19 below.

For f: D — R"™ with partial derivatives a.e. and x € D, we let f’(x) denote
the Jacobian matrix of f at x or the differential operator of f at x, if it exists, by
J(x) = J(x, f) = det f'(x) the Jacobian of f at x, and by |f’(x)| the operator
norm of f/(z), ie., |f/(z)] = max{|f'(z)h| : h € R", |h| = 1}. We also let
[(f'(z)) = min{|f'(z)h| : h € R™, || = 1}. The outer dilatation of f at w is
defined by

POt (e, ) #0,

00, otherwise,
the inner dilatation of f at x by

Lt (e £0,
(1.6) Ki(z) = Ki(, f) = 1(f <x)) if f'(z) =0

00, otherwise,

and the mazimal dilatation, or in short the dilatation, of f at x by
(1.7) K(z) = K(z, ) = max(Ko(z), K(z)),

cf. [MRV] and [Re;]. Note, that K;(z) < Ko(z)" ! and Ko(z) < K;(z)" 1, see
e.g. 1.2.1in [Req ], and, in particular, Ko(z), K;(x) and K (z) are simultaneously
finite or infinite. K(z, f) < oo a.e. is equivalent to the condition that a.e. either
det f/(z) >0 or f'(z) =0, cf. [GI] and [IS].

Definition 1.8. Given a function @: D — [1,00], we say that a sense-
preserving homeomorphism f: D — R" is Q(z)-quasiconformal, abbr. Q(x)-qc,
if feW_"(D) and

loc

(1.9) K(z, f) <Q(x) ae.

Definition 1.10. We say that f: D — R" is BMO-quasiconformal, abbr.
BMO-qc, if f is Q(x)-qc for some BMO function Q: D — [1, o0].
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Here BMO stands for the function space introduced by John and Niren-
berg [JN], see also [RR]. Recall that a real-valued function ¢ € L{ (D) is said to
be of bounded mean oscillation in D, abbr. ¢ € BMO(D), if

1
(1.11) ]|« = sup Vel / lo(z) — pB|dr < oo,
Bco |B| Jp

where the supremum is taken over all balls B in D and

1
(1.12) vp = E/Bso(w) d

is the mean value of the function ¢ over B. It is well known thatL>°(D) C
BMO(D) c L} (D) for all 1 <p < co.

Since L*>°(D) € BMO, the class of BMO-qc mappings obviously contains all
qc mappings. We show that many properties of qc mappings hold for BMO-qc
mappings. Note that ()-homeomorphisms, Q(x)-qc and BMO-qc mappings are
Mobius invariants and hence the concepts extend to mappings f: D — R» =
R"™ U {oo} as in the qc theory.

The subject of @Q-homeomorphisms is interesting on its own right and has
applications to much wider classes of mappings which we plan to investigate else-
where. In this paper we study various properties as distortion, removability,
boundary behavior and mapping properties of )-homeomorphisms under vari-
ous conditions on . Then the corresponding properties of Q(z)-qc mappings
f:D— R" n >2, with Q € Lﬁ;l are obtained as simple consequences of
Theorem 2.19 below. A special attention is paid to BMO-qc mappings in R",
n>3.

The study of related maps for n = 2 started by David [Da] and Tukia [Tu].
Recently Astala, Iwaniec, Koskela and Martin considered mappings with dilatation
controlled by BMO functions for n > 3, see e.g. [[KM] and [AIKM]. It is necessary
to note the activity of the related investigations of mappings of finite distortion, see
e.g. [KKM ], [KKM], [IKO], [IKMS], [KR], [KO], [MV ;] and [MV 3]. The present
paper is a continuation of our study of BMO-qc¢c mappings in the plane [RSY ;_3],
cf. [IM], see also [Sa], and a similar geometric approach is used throughout.

For a,b € R™ and E,F C R" we let q(a,b), ¢(E) and q(E, F) denote the
spherical (chordal) distance between the points a and b, the spherical diameter
of E and the spherical distance between E and F', respectively. We denote
by B"(a,r) the Euclidean ball |z —a| < r in R™ with center a and radius r,
S™(a,r) =0B™(a,r). We also let B"(r) = B"(0,r) and B” = B"(1), S™ = 0B".
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2. Preliminaries

2.1. Proposition. Let f: D — R"™ be a Q(z)-qc mapping. Then

(i) f is differentiable a.e.,

(ii) f satisfies Lusin’s property (N),

(iii) Jf(x) >0 a.e.
If, in addition, Q@ € BMO(D), or if more generally Q) € Lﬁ)cl, then f~! €
W (f(D)), and

(iv) f~! is differentiable a.e.,

(v) f~! has the property (N),

(vi) J¢(x) >0 ae.

Proof. (i) and (ii) follow from the corresponding results for W """ homeomor-
phisms, see [Rez] and [Res]. In view of (i) and the fact that f is sense- preserving,
(iii) follows by Rado—Reichelderfer [RR*, p. 333].

Now, if @ € BMO, then @ and hence K (z, f) belongs to LT _ for all p < oo
and, in particular, to L{"_'. Hence, by Theorem 6.1 in [HK], f~ r € Wlloz (f(D))
and thus (iv)—(vi) follow.

2.2. Lemma. Let () be a positive BMO function in B",n > 3, and let
At)={x e R":t < |x| < e 1}. Then for all t € (0,e7?),

Q(z) dm(z)
(2.3) /A@ (Jz|log1/]z[)™ —

where ¢ = c1||Q||« + c2Q1, and ¢ and cy are positive constants which depend
only on n. Here ||Q|. is the BMO norm of ) and )1 is the average of @
over B™(1/e).

Proof. Fix t € (0,e72), and set

Q) dm()
(24) () = /Am (Tl log 1/]])"

For k = 1,2,..., write t, = e ™%, A, = {z € R" : tpy1 < |2] < t1},
By, = B"(ty) and let Q) be the mean value of Q(z) in Bj. Choose an integer
N, such that ty11 <t <ty. Then A(t) C A(tn41) = Ufcvjll Ay, and

Q(z)
2.5 ¢ g/ _2W =5+ 8
( ) 77( ) Altxan) |.’17‘n10g 1/|.’17‘ 1 2

where

N+1

(2:6) Z/A |:c|nlog 1/|x| o
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and
N+1 d([‘
(21) 2 9 |, Lo 1/

Since Ay C By and for = € Ay, |z|™" < Q,e"/|Bg|, where Q,, = |B"| and
since log1/|z| > k, it follows that

N+1 N+1
1 e 1

< — — < n -
$i1< %) gy ), 10@ - Qulde < QuenllQ1L 3 4
k=1 By k=1

and, thus,
(2.8) 51| < 2Qe™ [ Q.

because, for p > 2,

(2.9) Z ki

To estimate Ss, we first obtain from the triangle inequality that

k
(2.10) Qr = Qx| <D Q1 — Q1| + Q1.
1=2
Next we show that, for [ > 2,
(2.11) Q1 — Qi1] < e™[|Q]].
Indeed,
Q1 — Qu-1] = (Q(m) — Q1) dx
e” n
< Q(z) — Qu—1|dz < " Q..
|Bl—1| B;_1

Thus, by (2.10) and (2.11),

k
(2.12) Qr < Qi+ Y e"[Qll < Qi+ ke Q.
=2
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and, since

d 1 d 1
(2.13) / < / = = Wm0
Ay, |z log™ 1/]x] A, 2" kn

where w,,_1 is the (n — 1)-measure of S"~1, it follows that

N—|—1 N+1 N+1 1

1
Sz < wp—1 Z = < wp-1Q1 Z n + wn—1"[|Q]| Z L(n—1)"
k=1 k=1

Thus, for n > 3, we have by (2.9) that
(2.14) So < 2wn—1Q1 + 2wp—1€"[|Q||+.

Finally, from (2.8) and (2.14) we obtain (2.3), where ¢ = ¢;Q1 + 2| Q||+, and
c1 and cy are constants which depend only on n.

2.15. Remark. For n > 2, 0 <t <e 2, and A(t) as in Lemma 2.2, let T

denote the family of all paths joining the spheres |z| =t and || = e™! in A(t).
Then the function p given by

1
(loglog1/t)|x|log1/|z|
for z € A(t) and p(z) = 0 otherwise, belongs to admT';.

The following lemma provides the standard lower bound for the modulus of
all paths joining two continua in R™, see [Ge1], [Vu, 7.37]. The lemma involves
the constant )\, which depends only on n and Wthh appears in the asymptotic
estimates of the modulus of the Teichmiiller ring R, (t) = R™\ ([—o0, 0] U [t, <]).

(2.16) o(x) =

2.17. Lemma. Let E and F be two continua in R, n > 2, with ¢(E) >
91 > 0 and q(F) > 63 > 0, and let I be the family of paths joining FE and F'.
Then

(2.18) M) > — =t
) 2\,
0
5510,
where w,,_1 is the (n — 1)-measure of S"~ .

2.19. Theorem. Let f: D — R"™ be a Q(x)-qc mapping with @ € L{"_
Then, for every family I" of paths in D and every p € admT,

(D).

loc

(2.20) M(fT) < /D Q(z)o"(z) dm(z),

ie., f is a Q-homeomorphism.
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Proof. Since Q € L"~'  we may apply Proposition 2.1. Thus f~' €

loc

Wy (f(D)) and hence f~!' € ACLL (f(D)), see e.g. [Maz, p. 8]. Therefore,

loc loc
by Fuglede’s theorem, see [Fu] and [Va;, p. 95], if T is the family of all paths
v € fT for which f ~! is absolutely continuous on all closed subpaths of v, then
M(fT) = M(T). Also, by Proposition 2.1, f~! is differentiable a.e. Hence,
as in the qc case, see [V&, p. 110], given a function ¢ € admT', we let o(y) =
o(f7 W))I(f~Y ()| for y € f(D) and 4(y) = 0 otherwise. Then we obtain that

for &ef
/édSZ/ Qd8217
5 f1oy

and consequently ¢ € adm r.

By Proposition 2.1, both f and f~! are differentiable a.e. and have (N)-
property and J(z, f) > 0 a.e., and since f~! is a homeomorphism in Wll(;g(D),
we can use the integral transformation formula and obtain

M(fT) = M(T) < /f ,, Fm

- / o))" 1 )" dm(y)
f(D)

B o(f ()" -
- /f(D) L' (f(y)" amiy)

- /f L, U)K ) A) 5 dmty)

< / o(F )" QU () I (. £1) dim(y)
f(D)

_ /D Q(2)o(z)" dm(z).

The proof follows.
2.21. Corollary. Every BMO-qc mapping is a Q-homeomorphism with
some ) € BMO.
3. Distortion theorems

3.1. Theorem. Let f:B" — R" be a Q-homeomorphism with Q €
BMO(B™). If g¢(R™ \ f(B"(1/e))) =6 > 0, then for all |z| < e™?
¢
(log 1/]x[)

where C' and « are positive constants which depend only on n, §, the BMO norm
Q||+« of Q and the average Q1 of Q) over the ball |x| < 1/e.

(3.2) q(f(x), £(0)) <
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Proof. Fix t € (0,e72). Let A(t), 'y and ¢ be as in Remark 2.15 and let
& =q(f(B™(t))). Then, by Remark 2.15, ¢ € admT;, and

(3.3) MUY < [ Qo dm.
R”
In view of (2.3)
c
3.4 / Qo" dm = Qo" dm <
(34) n At) (loglog1/t)"~1

where c¢ is the constant which appears in Lemma 2.2, see also Lemma 3.2 in
[RSY 2] for n = 2. On_the other hand, Lemma 2.17 applied to M(fT';) with
E = f(B"(t)) and F =R"\ f(B"(1/e)) yields

Wn—1

22\
log 6—515

and the result follows by (3.3)-(3.5) and the fact that ¢(f(z), f(0)) < & for
lz| =t.

3.6. Corollary. Let % be a family of Q-homeomorphisms f: D — R,
with @ € BMO(D), and let § > 0. If every f € .# omits two points ay and by
in R™ with q(as,by) > &, then F is equicontinuous.

3.7. Theorem. Let f:B" — R" be a Q-homeomorphism with Q €
LY(B™), f(0) =0, ¢(R*\ f(B") > & > 0 and q(f(z0), f(0)) > & for some
xg € B™. Then, for all |z| < r = min(|zo|/2,1 — |z0|),

(3.8) |f(@)] = ¥(|z])

where 1)(t) is a strictly increasing function with ¢ (0) = 0 which depends only on
the L'-norm of Q in B™, n and §.

(3.5) M(fTy) >

Proof. Given yo with |yg| < r choose a continuum FE; which contains the
points 0 and xy and a continuum FE5 which contains the point yo and 0B",
so that dist(Fq, Fa U OB™) = |yo|. More precisely, denote by L the straight
line generated by the pair of points 0 and xy and by P the plane defined by
the triple of the points 0, x¢ and yo (if yo € L, then P is an arbitrary plane
passing through L). Let C' be the circle under intersection of P and the sphere
S™(yo, |lyol) € B™(|xo|). Let to is the tangency point to C' of the ray starting
from xy which is opposite to yo with respect to L (an arbitrary one of the two
possible if yg € L). Then E; = [zg,t0] Uv(0,t9) where v(0,to) is the shortest arc
of C joining 0 and to, and Ey = [yo, i9] US™ where S™ = 0B™ is the unit sphere
and i is the point (opposite to ty, with respect to L) of the intersection of S™
with the straight line in P which is perpendicular to L and passing through yg.
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Let I' denote the family of paths which join E; and Fs. Then
o(x) = [yo| "*xmn(z) € admT

and hence,

QI
[y0|™

39) MU [ L @Qw) @) < ™ [ Q) dm(a)
The ring domain A’ = f(B™\(E; U E>)) separates the continua E{ = f(E) and

E) = R"\ f(B"\FE,), and since

q(E7) > q(f(zo), f(0)) > 6, q(E3) > q(R™\f(B")) >4
and
q(E1, Ey) < q(f (o), £(0))
it follows that
(3.10) M(f(T)) = Aq(f(wo), £(0)))

where A(t) = A\, (6,t) is a strictly decreasing positive function with A(f) — oo as
t — 0, see [Vay, 12.7]. Hence, by (3.9) and (3.10),

|F (o)l > a(f (wo), £(0)) =¥ (|yol)

w(t) = A" (@)

t’I’L

where

has the required properties.

3.11. Remark. In view of Theorem 2.19 and Corollary 2.21, Theorem 3.7
is valid for Q(x)-qc mappings with Q € L™ 1(B"), and Theorem 3.1 and Corol-
lary 3.6 are valid for Q(x)-qc mappings with Q € BMO(B™).

4. Removability of isolated singularities

Here and in Theorems 4.1 and 4.5, we describe two different and unrelated
cases where isolated singularities are removable.

4.1. Theorem. Let f: B"\ {0} — R™ be a Q-homeomorphism. If

1
(4.2) limsup ——— Q(x)dm(x) < oo,
r—0 |B™(r)] Jpn ()

then f has an extension to B™ which is a ()-homeomorphism.
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Proof. As the modulus of a family of paths which pass through the origin
vanishes, it suffices to show that f has a continuous extension on B". Suppose
that this is not the case. Since f is a homeomorphism, R™\ f(B™ \ {0}) consists
of two connected compact sets F; and F» in R™ where F; contains the cluster
set £ = C(0,f) of f at 0. Here F} is a nondegenerate continuum and using
an arbitrary Mobius transformation we may assume that F; € R™. Now U =
Fy U f(B™\ {0}) is a neighborhood of E. Thus there exists ¢ > 0 such that all
balls B, = B"(z,6), z € Fy, are contained in U. Let V = UB,.

Now, choose a point y € F; such that dist(y,0V) = §, and a point z €
By, \ Fi. Next, choose a path g:[0,1] — B, with §(0) = y, (1) = z and
B(t) € By\ F; for t € (0,1]. Let « = f~*o3. For r € (0,|f~!(2)]), let a, denote
the connected component of the curve «(I)\ B™(r), I = [0, 1], which contains the
point f71(z) = (1), and let T, denote the family of all paths joining «, and the
point 0 in B™ \ {0}. Then the function o(x) =1/r if z € B"(r)\ {0} and o =0
otherwise is in admT',., and by (4.2),

lim Sup/ Q(x)o"(x) dm(x) = Q, limsup 1 Q(x)dm(x)
r=0 JBn(r)\{0} r=0 [B™(r)[ JBn(r\(0}
(4.3) < 0.

On the other hand, if we let T\, denote the family of all paths joining two continua
f(ar) and E in By \ E, then I}, C f(I';), and thus

(4.4) M(TL) < M(JT,).

Evidently, dist(f(«a;),F) — 0, and the diameter of f(a,.) increases as r — 0,
and as both f(«a,) and E are subsets of a ball, M(fT',) — oo as r — 0. This
together with (4.3) and (4.4) contradicts the modulus inequality (2.20).

4.5. Theorem. Let f: B" \ {0} — R" be a Q-homeomorphism with @) €
BMO(B™\ {0}). Then f has a Q(x)-homeomorphic extension to B™.

Proof. Fix t € (0,e2) and let A(t), I'; and g be as in Remark 2.15. Then,
by Lemma 2.17,

Wn—1

(4.6) <M(fr)< [ Qo dm,

22, \" ! —Jaw
loga—(st

where 6 = ¢(f(0B™(e™'))) and & = q(f(0B™(t))). Since isolated singularities
are removable for BMO functions, see [RR], we may assume that @ is defined in
B" and that @ € BMO(B™). Thus, by Lemma 3.2 in [RSY2] for n = 2 and
Lemma 2.2 for n > 3

c
4.7 Q(x)o" dm < .
(4.7 A(t) (@) (loglog 1/t)"~1
Since here ¢ depends only on n, ||Q[« and Q1 = Qpn(1/c), We obtain by (4.6)-
(4.7) that 6 — 0 as t — 0, and hence that lim,_,o f(x) exists.
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4.8. Corollary. If f: R" — R" is a BMO-qc mapping, then f has a
homeomorphic extension to R™ and, in particular, f(R™) =R".

5. Boundary behavior

For the boundary behavior some regularity of the boundary is needed for
which the following notation is used.

We say that a domain D in R™ is a BMO extension domain if every u €
BMO(D) has an extension to R™ which belongs to BMO(R™). It was shown in
[GO] and [Jo] that a domain D is a BMO extension domain if and only if D is a
uniform domain, i.e., for some a and b > 0, each pair of points x1,x2 € D can
be joined by a rectifiable arc v C D such that

(5.1) I(v) Sa- |z — x|
and, for all x € v,

(5.2) mian(’y(xi, z)) < b-dist(z,dD)

i=1,

where [() is the Euclidean length of v, ~(z;,x) is the part of v between x;
and x.

The uniform domains were introduced in [MS] and their various characteriza-
tions can be found in [Ges]|, [Mal], [Mar], [Va3] and [Vu]. It was shown in [MS],
p- 387, that uniform domains are invariant under quasiconformal mappings of R".
In particular, every domain which is bounded by a quasisphere, i.e., the image of
0B" under a qc automorphism of R"™, is uniform. Note that a bounded convex
domain is uniform. We also write v € BMO( D) if v has a BMO extension to
an open set U C R™ such that D C U. Domains D in R"™ for which every
u € BMO(D) admits such extension can be characterized as relatively uniform
domains, see e.g. [Goz].

A domain D C R" is called a quasiextremal distance domain or a QED
domaan if there is K > 1 such that, for each pair of disjoint continua F and F
in D,

(5.3) M(I(E,F;R")) < K - M(T'(E, F; D)).

It is known that every uniform domain D is a QED domain and there exist QED
domains which are not uniform, see [GM], pp. 189 and 194. Every QED domain
D is quasiconver, i.e., (5.1) holds for all z; and x5 € D\ {0}, see Lemma 2.7
in [GM], p. 184. Hence every QED domain D is locally connected at 9D, i.e.,
every point x € 9D has an arbitrarily small neighborhood U such that U N D
is connected, cf. also Lemma 2.11 in [GM], p. 187, and [HK ], p. 190. Note that
every Jordan domain D in R" is locally connected at 0D, see [Wi], p. 66.
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We say that 0D is strongly accessible if, for nondegenerate continua E and
Fin D

(5.4) M (T(E, F; D)) > 0,

and that 0D is weakly flat if, for nondegenerate continua E and F in D with
ENF #0,

(5.5) M (T(E, F; D)) = oco.

These properties are clearly invariant under qc mappings of R™ and they are
closely related to properties P; and P, by Vaisila in [Va1, 17.5] as well as to
the notions of quasiconformal flatness and quasiconformal accessibility by Nékki
in [N&] and by Herron and Koskela in [HK ].

We shall show below that weak flatness implies strong accessibility. The
converse does not hold as in the example of a disk minus a cut. Note that the
conditions (5.4) and (5.5) automatically hold if E and F' are inside D, see e.g.
Lemma 1.15 in [N&], p. 16, and [V&, 10.12], but not if E and F are in 9D. It is
known that for a QED domain the inequality (5.3) holds for each pair of disjoint
continua £ and F in D, see Theorem 2.8 in [HK,], p. 173, cf. Lemma 6.11 in
[MV], p. 35. The latter property of QED domains also implies (5.3) for nondegener-
ate intersecting continua E and F in D . Hence QED domains and, consequently,
uniform domains have weakly flat boundaries, cf. Lemma 3.1 in [HK], p. 196.

5.6. Lemma. If the boundary of a domain D in R™, n > 2, is weakly flat,
then it is strongly accessible.

Proof. Let E and F be nondegenerate continua in D . Without loss of
generality we may assume that E N F = (), that oo lies outside of F U F and
that £ C 0D, see Lemma 1.15 in [N&]|, p. 16. Take 0 < e < 1 dist(E, F).
Then E. N F. = () where E. = {z € D : dist(z,E) < ¢} and F. = {z € D :
dist(x, F') < €}. Since each path in I'(E, E; D) contains a subpath which belongs to
['(E, E.; D), it follows, see e.g. [Fu], p. 178, cf. [AB], p. 115, that M(F(E, E; D)) <
M(F(E,EE;D)). In view of the weak flatness of 9D, M(F(E,E;D)) = 0.
Therefore M (T'(E, E.; D)) = co. By the Lindeldf principle, see e.g. [Ku], p. 54,
the open subsets E. and F. of D can be covered by countable collections of
open and, consequently, closed balls B inside E. and F., respectively. Thus,

by countable subadditivity of the modulus we can find a couple of closed balls,
By C E. and Bf C F., Bon B =0, such that

(5.7) M(T'(E,By; D)) >0
and

(5.8) M (T(F, Bg; D)) > 0,
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see Theorem 1 in [Ful, p. 176. Also
(5.9) M (T'(By, By; D)) > 0,

see e.g. Lemma 1.15 in [N4].
Now, we use the idea of Nakki which appears in the proof of Theorem 1.16 in
[N&]. Let o € admI'(E, B§; D). If

1 1
(5.10) /gds > —  or / ods > —
. 3 . 3

for all rectifiable paths v € T'(E, By; D) and ~' € T'(By, Bj; D), respectively, then
30 € admT'(FE, By; D) or 3p € admI'(By, By; D), and hence by (5.7) and (5.9)

(5.11) / 0" dm > 37" min(M (T(E, Bo; D)), M (T'(Bo, B}; D))) > 0.

If (5.11) does not hold for a couple of such paths v and +', then

1
(5.12) / ods > 3

for every rectifiable path a € T'(vy,~’; Rg) where Ry is aring 1o < |x—co| < r{, ¢o
and ro are the center and the radius of By, respectively, and r{, = ro+dist(By, ByU
dD), i.e., 3p € admT'(vy,7'; Rpy), and hence

/
(5.13) / o dm > 3 "cn log L2 > 0,
D To

see [Va1, 10.12]. Thus, by (5.11) and (5.13)
(5.14) M (T'(E, B§; D)) > 0.

If I =IntBjNF # 0, then by Lemma 1.15 in [N&] M (T'(Bo, I; D)) > 0, and
arguing as above (take I = Bj N F instead of Bj) we obtain M (I'(E,I; D)) >0
and hence by monotonicity of the modulus

(5.15) M(T'(E,F; D)) > 0.

If BN F = 0B NF # (, then by subadditivity of the modulus we obtain
(5.8), (5.9) and (5.14) for another ball B C IntB§ with B N F = (). Finally,
if BN F = (0, then repeating the above arguments (as in the proof of (5.14),
replace By and B§ by Bj and F, respectively) we again obtain (5.15) by (5.8)
and (5.14).
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5.16. Lemma. Let D be a domain in R™, n > 2, which is locally con-
nected at 0D and let f: D — D" C R™ be a QQ-homeomorphism onto D’ with
Q € BMO(D). If D" is strongly accessible, then f has a continuous extension
f: D — D’.

Proof. Let zg € 0D . As BMO functions and @-homeomorphisms are M&bius
invariant, we may assume that o = 0 and that OB™ N D # (). We will show that
the cluster set E = C(0, f) of f at 0 is a point, which will prove that f(z) has
a limit at xq.

Since D is locally connected at 0, F is a continuum. Suppose that F is
nondegenerate. For ¢t € (0,1/e), let D; denote the component of B™(t) N D for
which 0 € D;. Note, that D, is well defined, since D is locally connected at 0,
and that Dy C Dy for t <t'. For t € (0,e7 2], let 'y denote the family of path
joining D; and the set S = DN&B"(1/e) in Dys. \ D;. As in Lemma 2.2, we
let A(t) denote the spherical ring t < |z| < 1/e. Then the function o(z) defined
in Remark 2.15 is admissible for I';, and hence

(5.17) mesé@mw@wmy

If Q@ € BMO(D), we may apply (3.3) in [RSY 3] for n = 2 and (2.3) for n > 3,
and get

(5.18) /D Q(x)o"(x) dm(x) < Q(x)o"(x) dm(x) — 0

A(t)

as t — 0. On the other hand

(5.19) M(fT;) = M(T(f(5), E; D))

Now, 0D’ is strongly accessible, f(S) contains a nondegenerate continuum and E
is nondegenerate. Therefore, the right-hand side in (5.19) is positive contradicting
(5.17) and (5.18). This shows that the cluster set of f at every point of 9D is
degenerate and thus f has a continuous extension on D .

5.20. Lemma. Let D be a domain in R™ and f a (Q-homeomorphism of D
onto a domain D' in R™ with Q € L*(D). Suppose that D is locally connected
at 0D . If 0D’ is weakly flat, then C(z1, f) N C(x2, f) =0 for every two distinct
points x1 and x5 in 0D.

Proof. With no loss of generality we may assume that the domain D is
bounded. For i = 1,2, let E; denote the cluster sets C(x;, f) and suppose that
E1NEs #0. Write d = |z1 — x2|. Since D is locally connected in 9D, there are
neighborhoods U; of z;, such that W; = DNU; is connected and U; C B"(x;,d/3),
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i =1,2. Then the function o(z) = 3/d if x € DNB" ((z1+x2)/2,d) and o(z) =0
elsewhere is admissible for the family T' = I'(W 1, Wo; D). Thus,

(5.21)  M(JT) < /D Q)e" (x) dm(x) < > /D Q(z) din(z) < oo,
On the other hand
(5.22) M = M(T(Es, Ey; D)) < M(JT).

But as 0D’ is weakly flat, and E;, i = 1,2, are nondegenerate continua in D’
with non-empty intersection, M = oo, contradicting (5.21). The assertion follows.

5.23. Corollary. Let D,_D’, f and Q be as in Lemma 5.20. Then f~!
has a continuous extension to D’.

5.24. Corollary. Let E be a nondegenerate continuum in B™ and @ €
LY(B"™\ E). Then there exists no Q-homeomorphism of B™ \ E onto B™ \ {0}.
If Q € L"1(B" \ E), then there exists no Q(z)-qc mapping of B™ \ E onto
B\ {0}.

5.25. Corollary. Let f: D — D' € R"™ be a Q-homeomorphism onto D’

with Q@ € BMO(D). If D Iocally connected at D and 0D’ is weakly flat, then
f has a homeomorphic extension f: D — D’.

5.26. Theorem. Let f: D —>_D’ be a @)-homeomorphism between QED
domains D and D" with @ € BMO(D). Then f has a homeomorphic extension
f: D —D".

This and the next theorem extend the known Gehring—Martio results, see

[GM], p. 196, and [MV], p. 36, from qc mappings to ()-homeomorphisms with
@ € BMO( D) and to BMO-qc mappings, respectively.
5.27. Theorem. Let f: D — D’ be a BMO-qc mapping between uniform

domains D and D’. Then f has a homeomorphic extension f: D — D’.

5.28. Corollary. Let f: D — D’ be a BMO-qc mapping between bounded
convex domains D and D’. Then f has a homeomorphic extension f: D — D’.

5.29. Corollary. If D is a domain in R"™ which is locally connected at
D and if D is not a Jordan domain, then D cannot be mapped onto B™ by a
Q@ -homeomorphism with Q € BMO(D).

5.30. Corollary. If a domain D in R" is uniform but not Jordan, then
there is no BMO-qc mapping of D onto B"™.

In 7.2 below we show that for every n > 3 there is a bounded uniform domain
in R™ which is a topological ball and not Jordan.
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6. Mapping problems

In Section 4, we showed that there are no BMO-qc mappings of R™ onto a
proper subset of R”, nor BMO-qc mappings of a punctured ball onto a domain
that has two nondegenerate boundary components. We may consider the following
two questions.

(a) Are there any proper subsets of R™ that can be mapped BMO-quasicon-
formally onto R"?

(b) Are there any nondegenerate continua F in B™ such that B™ \ E can be
mapped BMO-quasiconformally onto B™ \ {0} 7

In [RSY 2] we showed that the answer to these questions is negative if n = 2.
The proofs were based on the Riemann Mapping Theorem and on the existence of
a homeomorphic solution to the Beltrami equation

wz = p(z)w,

for measurable functions p with |||/ <1 which satisfy

(1+ [u(2)]) .
(=) =9

a.e. for some BMO function ). One may modify Questions (a) and (b) by replac-
ing the words “BMO-quasiconformally” by ”by a ()-homeomorphism”. Below, we
provide a negative answer to Questions (a) and (b) in some special cases when
n>2.

We say that a proper subdomain D of R™ is an L'-BMO domain if u €
LY(D) whenever u € BMO(D). Evidently, D is an L'-BMO domain, if D is a
bounded uniform domain. By [Sta], pp. 106-107, cf. [Go1], p. 69, D is an L-
BMO domain if and only if kp(-,z9) € L1(D) where kp is the quasihyperbolic
metric on D,

(6.1) kp(x,zo) = igf/ %

where ds denotes the Euclidean length element, d(y,dD) the Euclidean distance
from y € D to 0D, and the infimum is taken over all rectifiable paths v joining x
to 2o in D. L'-BMO domains are not invariant under quasiconformal mappings of
R"™, however, they are invariant under quasi-isometries, see [Sta], pp. 119 and 112.

In particular, every John domain is an L!'-BMO domain, see Theorem 3.14
in [Sta], p. 115. A domain D C R" is called a John domain if there exist 0 < a <
[ < oo and a point xg € D such that, for every x € D, there is a rectifiable path
v: [0,1] — D parametrized by arclength such that v(0) =z, v(I) = z¢, I < and

(6.2) d((t),0D) = T -1
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for all ¢t € [0,{]. A John domain need not be uniform but a bounded uniform
domain is a John domain, see [MS], p. 387. Note also that John domains are
invariant under qc mappings of R™, see [MS], p. 388. A convex domain D is a
John domain if and only if D is bounded. For characterizations of John domains,
see [He|, [MS] and [NV].

Holder domains are also L'-BMO domains. A domain D C R” is said to be
a Holder domain if there exist xg € D, § > 1 and C' > 0 such that

d(fL’o, 6D>

: k <C+0-log ———=
(6 3) D(’rax()) = + og d(m,@D)
for all x € D. It is known that D is a Holder domain if and only if the quasi-
hyperbolic metric kp(x,xo) is exponentially integrable in D, see [SS]. Thus, a
Hoélder domain is also an L'-BMO domain.

6.4. Theorem. Let D be a domain in R", D #R"™, n>2,and f: D — R"
a (Q-homeomorphism. If there exist a point b € 0D and a neighborhood U of b
such that Q|pny € L', then f(D) # R™.

Proof. The statement is trivial if D is not a topological ball. Suppose that
D is a topological ball. By the Mobius invariance, we may assume that b = 0
and that oo € 9D. Let r > 0 be such that B"(r) C U. Then @Q is integrable in
B™(r)Nn D. Choose two arcs E and F in B™(r/2) N D each having exactly one
end point in 9D such that 0 < dist(E, F) < r/2. Such arcs exist. Indeed, since
0D 1is connected and 0 and oo belong to dD, the sphere dB™(r/2) meets 0D
and contains a point xy which belongs to D. Then one can take E as a maximal
line segment in (0,z0] N D with one end point at 2y and the other one in 9D,
and F' as a circular arc in the maximal spherical cap in B™(r/2) N D which is
centered at xg, so that F' has one end point in 0D and the other one in D.

Now, let I denote the family of all paths which join ' and F in D. Then
o(x) =dist(E, F)~! if x € B"(r)N D and go(z) = 0 otherwise is admissible for T'.
Then by (1.2)

" 1
(6.5) M(fT) S/DQQ dm < W/Bn(r)m)@dm<oo.

On the other hand, if f(D) = R", then f(F) and f(F) meet at co and fT" is the
family of paths joining f(F) and f(F) in R™. Thus M (fI') = co. Contradiction
showing that f(D)# R"™.

As a consequence of Theorem 6.4, we have the following corollaries which say
that a proper subdomain D of R™ having a nice boundary at least at one point
of 0D cannot be mapped BMO-quasiconformally onto R™.
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6.6. Corollary. Let D be a domain in R™, D # R™, n > 2, and let
f: D — R"™ be a Q-homeomorphism with ) € BMO(D). If there exists a point
b € D and a neighborhood U of b such that DN U is an L'-BMO domain or,
in particular, if (D NU) is a quasisphere, then f(D) # R™.

6.7. Remark. Theorem 6.4 implies in particular that, if a BMO-qc mapping
f of D isonto R", then either D = R" or the domain D cannot be (even locally
at any boundary point) convex, uniform, John or Hélder.

By the techniques which are used in the proof of Theorem 6.4, one can estab-
lish the following theorem which gives partial answers to (b).

6.8. Theorem. Let E be a nondegenerate continuum in B", D = B" \ F,
and f: D — R™ a @Q-homeomorphism. If there exist a point o € 0D N B" and
a neighborhood U of xy such that Q|pny € L', then f(D) is not a punctured
topological ball.

6.9. Corollary. Let E be a nondegenerate continuum in B"™ and D =
B" \ E. If there exist a point xo € 0D N B" and a neighborhood U of xy such
that U\ E is an L'-BMO domain or, in particular, if (U \ E) is a quasisphere,
then D cannot be mapped BMO-quasiconformally onto B™ \ {0}.

6.10. Remark. The condition Q|p~y € L' which appears in Theorems 6.4
and 6.8 holds for Q € BMO(D) if kpny € L' and |0DNU| > 0, see [Sta]. Note
that the latter property is impossible for convex, uniform, QED as well as for John
domains, see [Mal, p. 204, [GM], p. 189, and [MV], p. 33.

7. Some examples

We say that a domain D in R", n > 2, is a quasiball, respectively, BMO-
quastball if there exists a homeomorphism of D onto B™ which is qc, respec-
tively, BMO-qc. We say that a set S in R” is a quasisphere, respectively, BMO-
quasisphere if there exists a qc mapping, respectively, BMO-qc mapping f of R»
onto itself such that f(S) = 0B".

The following example shows that there is a BMO-quasicircle v which is not
a quasicircle.

7.1. Example. Consider the curve 7 = v3 U2 U3 where v = [0,00],
V2 = [—00, —1/e] and

vz = {te™/ 18 0 <t < 1/e}.

Clearly, v does not satisfy Ahlfors’s three points condition, and hence it is not a
quasicircle. However, v is a BMO-quasicircle. Indeed, the map f: C — C which
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is identity in C \ B? and is given for |z| < 1 by

o [rewiisn), f0<6< ﬁ
flre) = (1 A0l T Ty
T expim 1—2logl/r ) logl/r — s

is Q(z)-qc with Q(re?) = max(1,log1/r) which is BMO-qc in C and maps
onto R.

Note that R™ is a topological ball which cannot be mapped by a BMO-qc
mapping onto B™, see Corollary 4.8. In view of Corollary 5.30, the following
example shows that, for every n > 3, there exists a proper subdomain of B"
which is a topological ball but not a BMO-quasiball.

7.2. Example. Let B = B" \ C"(¢) where C"(¢) is a cone in B"™ with
vertex v = 0B"N{x,, = 1} and base B"(e)N{z, =0}, 0 <e < 1. For n > 3, the
domain B is uniform. Evidently B is a topological ball. However, the boundary
of B is not homeomorphic to the sphere S™~! because the point v splits B into
two components.
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