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Abstract. We prove several lower estimates for the Nevanlinna characteristic functions and
the orders of growth of the Painlevé transcendents I, II and IV. In particular it is shown that
(a) lim supr→∞ T (r, w1)/r5/2 > 0 for any first transcendent, (b) %(w2) ≥ 3

2 for most classes of
second transcendents, (c) %(w4) ≥ 2 for several classes of fourth transcendents, and that (d) the
poles with residues ±1 are asymptotically equi-distributed.

1. Introduction

The solutions of Painlevé’s differential equations

(1)





(I) w′′ = z + 6w2,
(II) w′′ = α + zw + 2w3,

(IV) 2ww′′ = w′2 + 3w4 + 8zw3 + 4(z2 − α)w2 + 2β

are meromorphic functions in the plane. For recent proofs see Hinkkanen and
Laine [5] in cases (I) and (II), and the author [16] in all cases. In papers of
Shimomura [13], [14] and the author [17] precise order estimates are proved with
different methods: %(w) ≤ 5

2
, %(w) ≤ 3 and %(w) ≤ 4 in the respective cases.

These results are also presented, at least in parts, in the recent monograph [3] by
Gromak, Laine and Shimomura. The lower estimate % ≥ 5

2 in case (I) is due to
Mues and Redheffer [6].

Shimomura [15] extended his research on the Painlevé transcendents to prove
lower estimates for the Nevanlinna characteristics of the first Painlevé transcen-
dents, and, for particular parameters, also for the second transcendents. The aim
of this paper is to make a comprehensive study of global properties of the Painlevé
transcendents I, II and IV. In the first case we are able to show that every solution
is of regular growth, while for equation (II) the well-known conjecture % ≥ 3

2
is

confirmed—except in one case. We also give independent proofs of known results,
which might be of interest by themselves.
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The estimates of Nevanlinna functions are based on the re-scaling method

developed in [17], which certainly gives not as precise results as are obtained in the
theory of asymptotic integration, but avoids the well-known connection problem
occurring there, and is therefore more suitable to study global aspects. Some of the
problems, however, seem to be out of the range of these methods. Nevertheless,
we also state and prove several results, which may be looked at being incomplete
and preliminary, but point into the right direction.

2. Notation and auxiliary results

(a) Painlevé’s equations I, II and IV. Each equation (1) has a first

integral

(2)





w′2 = 4w3 + 2zw − 2U, U ′ = w,
w′2 = w4 + zw2 + 2αw − U, U ′ = w2,
w′2 = w4 + 4zw3 + 4(z2 − α)w2 − 2β − 4wU, U ′ = w2 + 2zw.

Any transcendental solution has infinitely many poles p with Laurent series ex-
pansions

(3)





w(z) = (z − p)−2 − 1
10

p(z − p)2 − 1
6
(z − p)3 + h(z − p)4 + · · · ,

w(z) = ε(z − p)−1 − 1
6εp(z − p) − 1

4 (α + ε)(z − p)2 + h(z − p)3 + · · · ,
w(z) = ε(z − p)−1 − p + 1

3
ε(p2 + 2α − 4ε)(z − p) + h(z − p)2 + · · ·

and

(4)





U(z) = −(z − p)−1 − 14h − 1
30p(z − p)3 − 1

24 (z − p)4 + · · · ,
U(z) = −(z − p)−1 + 10εh − 7

36
p2 − 1

3
p(z − p) − 1

4
(1 + εα)(z − p)2 + · · · ,

U(z) = −(z − p)−1 + 2h + 2(α − ε)p + 1
3 (4α − p2 − 2ε)(z − p) + · · ·

with ε = ±1; the coefficient h remains undetermined, and free: the pole p , the
sign ε and h may be prescribed to define a unique solution in the same way as do
initial values w(z0) and w′(z0).

(b) Nevanlinna theory. Let f be meromorphic and non-constant in the
complex plane. Then m(r, f), N(r, f) and T (r, f) denote the Nevanlinna prox-

imity function, counting function of poles and characteristic function of f , respec-
tively, while n(r, f) denotes the number of poles of f in |z| ≤ r , see Hayman [4]
or Nevanlinna [7]. In addition we will work with the L1 -norm of f on |z| ≤ r ,

I(r, f) =
1

2π

∫

|z|≤r

|f(z)| d(x, y),
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where d(x, y) denotes area element; the L1 -norm is defined for meromorphic func-
tions f with simple poles. We also make use of the Ahlfors–Shimizu characteristic

T0(r, f) =

∫ r

0

A(t, f)
dt

t
with A(t, f) =

1

π

∫

|z|≤t

(
f#(z)

)2
d(x, y),

f#(z) = |f ′(z)|/
(
1 + |f(z)|2

)
being the spherical derivative of f ; T0(r, f) differs

from T (r, f) by a bounded term.
The following facts are well known, and are only referred to for the convenience

of the reader. Let f be any canonical product with simple zeros cν , and denote
by n(t) the number of zeros contained in |z| ≤ t . The genus of f is defined to be
the least integer h , such that

∞∑

ν=1

|cν |−h−1 =

∫ ∞

0

t−h−1 dn(t) = (h + 1)

∫ ∞

0

n(t)t−h−2 dt < +∞.

The Nevanlinna characteristic of f then satisfies n(r) ≤ T (er, f) and

(5) T (r, f) ≤ Khrh+1

∫ ∞

0

n(t)

th+1(t + r)
dt,

and hence the order of growth

% = %(f) = lim
r→∞

log T (r, f)

log r

coincides with the exponent of convergence inf
{
σ > 0 :

∑∞
ν=1 |cν |−σ < ∞

}
, and

satisfies h ≤ % ≤ h + 1.
The concept of genus may be extended to arbitrary meromorphic functions

f = eQf1/f2 of finite order, where f1 and f2 are canonical products of genus h1

and h2 , respectively, and Q is any polynomial. The genus of f then is defined by
max{h1, h2, deg Q} .

(c) Counting poles of logarithmic derivatives. The logarithmic deriva-

tive L = f ′/f , f entire of finite order with simple zeros, has Nevanlinna functions
m(r, L) = O(log r) and N(r, L) = N(r, 1/f), and hence satisfies

T (r, L) ≤ T (r, f) + O(log r).

Conversely, if Φ is meromorphic in the plane of finite order, with simple non-zero
poles with residues 1 and satisfying m(r, Φ) = O(log r), then there exists some
polynomial Q such that Φ = Q + L , where L = f ′/f and f is the canonical
product with simple zeros exactly at the poles of Φ. If the order % of Φ is not
an integer, then n(r, Φ) = O(r%) and n(r, Φ) = o(r%) imply T (r, f) = O(r%) and
T (r, f) = o(r%), respectively. This is no longer true for % ∈ N . If, however,∫ ∞

0
n(t, Φ)t−%−1 dt converges, then T (r, f) = o(r%) holds.
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Proposition 2.1. Suppose Φ is meromorphic in the plane, having simple

poles with residues 1 only. Then

(6)

∫ R

0

n(r, Φ) dr ≤ I(R, Φ).

Proof. By the Residue Theorem we have, for all but countably many radii
r > 0,

(7) n(r, Φ) =

∣∣∣∣
1

2πi

∫

|z|=r

Φ(z) dz

∣∣∣∣ ≤
1

2π

∫ 2π

0

|Φ(reiθ)|r dθ,

and integrating with respect to r gives the assertion.

For functions Ψ having only simple poles with both residues ±1 we obtain
in the same way

(8)

∫ R

0

|n+(r, Ψ) − n
−
(r, Ψ)| dr ≤ I(R, Ψ),

where n±(r, Ψ) counts those poles of Ψ with residue ±1.
An estimate in the other direction is given by

Proposition 2.2. Let f be any canonical product (or a quotient of canonical

products) with simple zeros (and poles) and counting function of zeros (and poles)
n(r) . Then for L = f ′/f we have

(9) I(R, L) ≤ 8R
[
T (2R, f) + n(2R)

]
.

Proof. Let (cν) be the sequence of zeros (and poles) of f . We recall the
inequality

|L(z)| ≤ 8 T (2|z|, f)|z|−1 +
∑

|cν |≤2|z|

2|z − cν |−1,

which is a simple consequence of the Poisson–Jensen formula, see Hayman [4]; f
may be any meromorphic function with f(0) = 1 and simple zeros and poles cν .
Since

∫

|z|≤R

|z − c|−1 d(x, y) ≤
∫

|z|≤R+|c|

|z|−1 d(x, y) = 2π(R + |c|) ≤ 6πR

for |c| ≤ 2R , integration over the disk |z| ≤ R yields, by monotonicity of T (r, f),

1

2π

∫

|z|≤R

|L(z)| d(x, y) ≤ 8R
[
T (2R, f) + n(2R)

]
,

and hence the assertion.
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We have also to deal with functions L′ = (f ′/f)′ , f a canonical product with
zeros pν . Differentiating the Poisson–Jensen formula twice gives the inequality

(10) |L′(z)| ≤ 16 T (2|z|, f) |z|−2 + 2
∑

|pν |≤2|z|

|z − pν |−2.

Since |z − pν |−2 and |L′(z)| are not integrable, we proceed as follows: for δ > 0
sufficiently small and some κ > 0 we consider the disks ∆ν : |z − pν | < δ|pν |−κ

about the non-zero poles of L , multiply the above inequality by r = |z| and
integrate over

(11) H(R) = {z : 1 ≤ |z| ≤ R} \ ⋃
|pν |<2R

∆ν .

Since

∫

H(R)

|z|
|z − pν |2

d(x, y) ≤ 6πR

∫ R

δ|pν |−κ

dr

r
= 6πR log(R|pν|κ/δ) = O(R log R),

we obtain, keeping δ > 0 and κ > 0 fixed and denoting

(12) IH(R, Φ) =
1

2π

∫

H(R)

|z| |Φ(z)| d(x, y) :

Proposition 2.3. Let f be a canonical product (or a quotient of canonical

products) with zeros (and poles) pν and counting function n(r) . Then for L =
f ′/f and H(R) given by (11),

IH(R, L′) = O
(
R

[
T (2R, f) + n(2R) logR

])

holds.

3. Re-scaling Painlevé’s equations

Some of the mystery of the Painlevé transcendents is hidden in the unknown
coefficient h in the series expansion (3). The re-scaling method was developed
in [17] only for one purpose, to estimate h in terms of p , and hence to obtain
the growth estimates mentioned in the introduction. The method reminds of
Painlevé’s α -method [9], [10], and also the Zalcman method [21] and its refinement
by Pang [11], [12], and is based on Poincaré’s Theorem on analytic dependence on
parameters and initial values, see, e.g., Bieberbach [1, p. 14]. We will describe the
method and its results in case (II) in some detail, for full details in case (I) the
reader is referred to [17].
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(a) Re-scaling equation (II). Let w be any transcendental solution of (II)
and set

r(z0) = min
{
|z0|−1/2, |w(z0)|−1, |w′(z0)|−1/2

}

to re-scale w(z) +
√

z ;
√

z denotes any branch of the complex square-root. Let
(zn) be any sequence (zn not a pole of w ) tending to infinity, set rn = r(zn) and

yn(z) = rn

[
w(zn + rnz) −

√
zn + rnz

]
.

Then the differential equation for yn has a formal limit as n → ∞ , and assuming
that the limits a2 = limn→∞ r2

nzn , y0 = limn→∞ yn(0) = limn→∞ rnw(zn)−a and
y′
0 = limn→∞ y′

n(0) = limn→∞ r2
nw′(zn) exist, we obtain the initial value problem

(13) y′′ = (y + a)(a2 + 2(y + a)2), y(0) = y0, y′(0) = y′
0.

The solution is either a constant, a rational function, a simply periodic function or
else an elliptic function. Constant solutions which may come from the re-scaling
process are y = −a and y = −a ± ia/

√
2 , this being only possible for a 6= 0. As

a consequence of Poincaré’s Theorem, the main conclusion is

(14) y(z) = lim
n→∞

yn(z) = lim
n→∞

rn

[
w(zn + rnz) −

√
zn + rnz

]
,

locally uniformly in C , so that we can easily deduce properties of w(zn + rnz)
from properties of y(z).

We denote by (pν) and (qν) the sequences of non-zero poles and zeros of
w2(z) − z , respectively, and set, for δ > 0 fixed,

∆δ(c) = {z : |z − c| < δr(c)}.

Lemma 3.1. Let (zn) be any sequence such that |zn − q′n| = o
(
r(zn)

)
and

|zn − q′n| = o
(
r(q′n)

)
as n → ∞ , respectively, where (q′n) is some infinite sub-

sequence of the sequence (qn) of zeros of w2 − z . Then r(q′n) = O
(
r(zn)

)
and

r(zn) = O
(
r(q′n)

)
, respectively.

Proof. We will give the proof in the first case leaving the details in the second
case to the reader. We set rn = r(zn) and yn(z) = rn

[
w(zn + rnz)−√

zn + rnz
]
,

and assume that r2
nzn → a2 and yn(z) → y(z), locally uniformly in C . On

the other hand we consider un(z) = rn

[
w(q′n + rnz) −

√
q′n + rnz

]
. Noting that

εn = (q′n − zn)/rn → 0 we obtain by uniform convergence un(z) = yn(z + εn) →
y(z), u′

n(z) → y′(z) and also r2
nq′n → a2 . From this, r(q′n)/rn → 1 and hence

r(q′n) = O(rn) follows.
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Proposition 3.2. As z → ∞ outside Q(δ) =
⋃

ν ∆δ(qν) the following hold,

for any choice of
√

z :

(a) |z|1/2 = O
(∣∣w(z) −√

z
∣∣) = O(|w2(z) − z|1/2) ,

(b) |w′(z)| = O
(∣∣w(z) −√

z
∣∣2) = O(|w2(z) − z|) ,

(c) F#(z) = O(|z|−1/2) for F (z) = w2(z) − z .

Proof. Suppose that (zn) is any sequence tending to infinity such that∣∣w(zn) − √
zn

∣∣ = o(|zn|1/2) or else
∣∣w(zn) − √

zn

∣∣ = o
(
|w′(zn)|1/2

)
holds. As-

suming, as above, that the limits a2 = limn→∞ r2
nzn , y0 = limn→∞ rnw(zn) − a

and y′
0 = limn→∞ r2

nw′(zn) exist, we obtain (13) by re-scaling w(z) − √
z (any

branch of the square-root), with y0 = 0. Hence, y is non-constant, and from
(14) and Hurwitz’ Theorem it follows that w2(zn + rnz) − (zn + rnz) has a zero
z′n with (z′n) tending to zero. Hence zn + rnz′n = q′n is a zero of w2 − z , and
|zn − q′n| = |z′n|rn = o(rn) = o

(
r(q′n)

)
by Lemma 3.1. This proves (a) and (b).

Assertion (c) then follows from

F#(z) =
|2w(z)w′(z) − 1|
1 + |w2(z) − z|2 = O

(
|w2(z) − z|−1/2

)

and (a) and (b).

Remark. Assertion (c) says that the value distribution of w2− z takes place
in very small neighbourhoods of the zeros of this function.

Proposition 3.3. For δ sufficiently small, the set Q(δ) =
⋃

ν ∆δ(qν) may

be covered by the union of disjoint disks {z : |z − q′ν | < θνδr(q′ν)} , 1 ≤ θν ≤ 3 ,

where (q′ν) is a subsequence of (qν) .

The proof is the same as the proof of the corresponding Lemma 2 in [17], see
also [3]. It relies on the following fact, which says that, for δ sufficiently small,
any disk ∆δ(qν) meets at most one disk ∆δ(qµ):

If (q′n) , (q′′n) and (q′′′n ) are disjoint sub-sequences of (qn) , then

|q′n − q′′n| + |q′n − q′′′n | ≥ cr(q′n)

for some c > 0 , depending only on w .

Assuming |q′n − q′′n| + |q′n − q′′′n | = o
(
r(q′n)

)
, the re-scaling process

vn(z) = r2
n

[
w2(q′n + rnz) − (q′n + rnz)

]
, rn = r(q′n),

for w2 − z leads to the differential equation

(v + a2)v′′ = 1
2v′2 + 4(v + a2)3, a2 = lim

n→∞
r2
nq′n,

with v(0) = v′(0) = v′′(0) = 0, this following from Hurwitz’ Theorem, and this
implies v(z) ≡ 0 and a = 0. On the other hand we have v(z) = y+(z) · y

−
(z),

where y± is the result of re-scaling w(z) ± √
z , and neither y+ nor y

−
vanishes

identically. This contradiction proves the assertion.
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Remark. In particular Proposition 3.3 says that Q(δ) is porous in the
following sense: there exists some constant K0 > 1, such that any two points
a, b ∈ C \ Q(δ) may be joined by a path of integration in C \ Q(δ) of length
≤ K0|a − b| .

Still now all results have been of local nature. To solve the connection problem

we consider the function

V (z) = U(z) − w(z)w′(z)/
(
w2(z) − z

)
,

which has the remarkable property that

V (p) = 10εh − 7p2/36

at every pole p of w with residue ε . Furthermore, V satisfies the linear differential
equation

V ′ =
w(w2 + 3z)(zw + α)

(w2 − z)2
− 2w3

(w2 − z)3
w′ − z + w2

(w2 − z)2
V.

To proceed further we need the following

Lemma 3.4. Given σ > 0 , there exists K > 0 such that

∣∣∣∣
z + w2(z)

(w2(z) − z)2
V (z)

∣∣∣∣ ≤ σ
|V (z)|
|z| + K|z|,

and hence |V ′(z)| ≤ σ
(
|V (z)|/|z|

)
+ K1|z| holds outside Q(δ) .

Proof. Let (zn) be any sequence tending to infinity outside Q(δ). If |zn| =
o
(
|w(zn)|2

)
, then obviously

∣∣∣∣
zn + w2(zn)

(w2(zn) − zn)2
V (zn)

∣∣∣∣ = o

( |V (zn)|
|zn|

)
.

If, however, |w2(zn)− zn| = O(|zn|), then from (2) and Proposition 3.2(b) follows
|U(zn)| = O

(
|w2(zn) − zn|2

)
= O(|zn|2). From the same proposition and our

assumption follows ∣∣∣∣
w(zn)w′(zn)

w2(zn) − zn

∣∣∣∣ = O(|zn|1/2),

and hence

∣∣∣∣
zn + w2(zn)

(
w2(zn) − zn

)2 V (zn)

∣∣∣∣ =

∣∣∣∣
zn + w2(zn)

(
w2(zn) − zn

)2

∣∣∣∣
∣∣∣∣U(zn) − w(zn)w′(zn)

w2(zn) − zn

∣∣∣∣ = O(|zn|).



Global properties of the Painlevé transcendents 79

This proves the lemma.
Using Propositions 3.2, 3.3 and Lemma 3.4, it is not hard to show, using a

Gronwall-like argument, see also [17] and [3] in case (I), that

V (z) = O(|z|2) as z → ∞ outside Q(δ);

in particular, from εh = V (p) + 7p2/36 at every pole of w it follows that |h| =
O(|p|2) as p → ∞ .

We now need some good a priori lower bound for the radius of convergence
r(p, h) of the Laurent series (3). It is not hard to show that, in our case (II),
r(p, h) ≥ K min{1, |p|−1/2, |h|−1/4} holds with K an absolute constant. Hence,
for a fixed solution w and any pole pν , this radius is at least K1|pν |−1/2 , K1 only
depending on w . The proof is left to the reader, the corresponding estimate for
the solutions of (IV) is proved in the appendix. This estimate also enables to re-
scale w about poles p with re-scaling factor or local unit of length r(p) = |p|−1/2 .
From these considerations follows

Proposition 3.5. For any transcendental solution of (II), with sequence of

poles (pν) and associated sequence (hν) , the following is true:

(a) hν = O(|pν |2) as ν → ∞ .

(b)
∑

0<|pν |≤r |pν |−1 = O(r2) as r → ∞ .

(c) w′(z) = O(|z|) and U(z) = O(|z|2) as z → ∞ outside P(δ) =
⋃

ν ∆δ(pν) .
(d)

∣∣w(z) − √
z

∣∣ � |z|1/2 (any branch) outside P(δ) ∪ Q(δ) , which means that∣∣w(z) −√
z

∣∣ = O(|z|1/2) and |z|1/2 = O
(∣∣w(z) −√

z
∣∣) .

(e) r(z) � |z|−1/2 for z outside P(δ) .

The main application of (b), of course, is the estimate

T (r, w) = O(r3).

(b) Re-scaling equation (IV). We will briefly describe the procedure in
case (IV), which is quite similar to its counterpart in case (II). We set

r(z0) = min
{
|z0|−1, |w(z0)|−1, |w′(z0)|−1/2

}

to re-scale w(z) + z rather than w itself. Let (zn) tend to infinity, set
rn = r(zn) and yn(z) = rn[w(zn + rnz) + zn + rnz] . Again, assuming the
limits a = limn→∞ rnzn , y0 = limn→∞ yn(0) = limn→∞ rnw(zn) + a and
y′
0 = limn→∞ y′

n(0) = limn→∞ r2
nw′(zn) to exist, we obtain the limit differential

equation

2(y − a)y′′ = y′2 + 3(y − a)4 + 8a(y − a)3 + 4a2(y − a)2.
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Again we have y 6≡ 0, this following from |a|+ |y0|+ |y′
0| > 0. Constant solutions

are y = ±a and y = 1
3
a .

We denote by (pν) and (qν) the sequence of non-zero poles and zeros of
w(z) + z , respectively, and set Q(δ) =

⋃
ν ∆δ(qν), where again ∆δ(c) = {z :

|z − c| < δr(c)} , δ > 0 arbitrarily small, but fixed. Then we obtain, similarly to
case (II), but now using the key auxiliary function

V (z) = U(z) − w(z)w′(z)/
(
w(z) + z

)2
with V (p) = −3εp + 2αp + 2h :

Proposition 3.6. t For any solution of (IV) the following holds:

(a) z = O
(
|w(z) + z|

)
and w′(z) = O

(
|w(z) + z|2

)
as z → ∞ outside Q(δ) .

(b) V (z) = O(|z|3) as z → ∞ outside Q(δ); in particular, hν = O(|pν |3) .
Again the proof is based on asymptotic integration of the linear differential

equation

V ′ = Q(z, w) +
2zw(z + 5w)

(w + z)5
w′ +

2w(3z − w)

(w + z)3
V

with

Q(z, w) = −z2 +
8αz + 2z3

w + z
− 2β + 16αz2 − z4

(w + z)2
+

4βz + 8αz3 − 2z5

(w + z)3
.

Similarly to Lemma 3.4 one can show that given σ > 0 there exists K > 0 such
that ∣∣∣∣

2w(z)
(
3z − w(z)

)
(
w(z) + z

)3 V (z)

∣∣∣∣ ≤ σ
|V (z)|
|z| + K|z|2

outside Q(δ); since the set Q(δ) is porous, the same technique as was used in
case (II) yields V (z) = O(|z|3), and, in particular, |h| = O(|p|2). From this result
and the appropriate lower estimate for the radius of convergence r(p, h), see the
appendix, it follows that we may re-scale about any pole p 6= 0 with local unit of

scale r(p) = |p|−1 . Again by setting P(δ) =
⋃

ν ∆δ(pν) we obtain

Proposition 3.7. For any solution of (IV) the following holds:

(a) |w(z) + z| � |z| as z → ∞ outside P(δ) ∪ Q(δ) .
(b) w′(z) = O(|z|2) and U(z) = O(|z|3) as z → ∞ outside P(δ); in particular it

is allowed to replace rn = r(zn) by |zn|−1 for (zn) outside P(δ) .

In this case, too, the main application is the estimate

T (r, w) = O(r4).
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Final remark. To each equation (I), (II) and (IV) there corresponds in a
canonical way a Riemannian metric ds = |z|λ/4|dz| , λ = 1, 2, 4; distances are
denoted by d(a, b) = dλ(a, b). The euclidian disk ∆δ(c) = {z : |z − c| < δ|c|−λ/4}
obviously may be replaced by {z : dλ(z, c) < δ} , for |c| large compared with δ .
Hence, for any fixed solution the corresponding Laurent series (3) converges in
dλ(z, p) ≤ Kλ(w), λ = 1, 2, 4, where Kλ(w) > 0 is a constant not depending on
the pole p .

4. Value distribution of the second transcendents

Let w be any transcendental solution of equation (II), with non-zero poles pν

and Res pν
w = εν , and let gε be the canonical product with simple zeros exactly

at the non-zero poles of w with residue ε = ±1. We set g(z) = z|ε0|g1(z)g−1(z)
and f(z) = zε0g1(z)/g−1(z), with ε0 = Res 0 w . Then g and f have genus h ≥ 0,
and from m(r, w) = O(log r) and m(r, U) = O(log r) it follows that there exist
unique polynomials Qw and QU such that

(15) w(z) = Qw(z) +
f ′(z)

f(z)
and U(z) = QU (z) − g′(z)

g(z)
.

In the sequel we will discuss how the polynomials Qw and QU associated
with w are related to h and to each other. Clearly, for ε0 = 0, Qw and QU

are the Taylor polynomials of w and U , respectively, of degree h− 1, plus higher

terms!
Before proceeding further we prove a surprising result, which at first glance

seems to show that each second Painlevé transcendent has order of growth % ≤ 2.

Theorem 4.1. Any transcendental solution of equation (II) with w(0) 6= ∞
may be represented in the form

(16) w(z) − w(0) = lim
r→∞

∑

0<|pν |≤r

ενz

(z − pν)pν
=

∑

(pν)

? ενz

(z − pν)pν
.

If w has a pole at z = 0 with residue ε0 , then w(0) has to be replaced by ε0/z .

Remark. We note that convergence is locally uniform, but
∑?

(pν) , being

defined by (16), has to be understood as (Cauchy) principal value, obtained by
exhausting the plane, and hence the sequence (pν), by disks |z| ≤ r .

Proof. Let r > 0 be sufficiently large; we construct a closed path of integration
Γr of length O(r) with the following properties: the interior of Γr contains exactly
those poles of w which are contained in |z| ≤ r , and Γr ∩ ∆ν = ∅ for each ν ,
where ∆ν = {z : |z − pν | < δ|pν |−1/2} ; δ > 0 is chosen in such a way that
∆ν ∩ ∆µ = ∅ for µ 6= ν . We start with the positively oriented circle Cr : |z| = r .
If cν = Cr ∩ ∆ν 6= ∅ , we replace this sub-arc of Cr by the corresponding sub-arc
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dν of ∂∆ν inside |z| = r if |pν | > r , and outside |z| = r if |pν | ≤ r , to obtain
Γr after finitely many steps. Since length(dν) ≤ π× length(cν), the length of Γr

is at most 2π2r .
We assume w(0) 6= ∞ for simplicity. Then for z inside Γr , the Residue

Theorem gives

S(z, r) =
1

2πi

∫

Γr

w(ζ)

ζ(ζ − z)
dζ =

w(z) − w(0)

z
+

∑

0<|pν |≤r

εν

pν(pν − z)
,

and from |w(ζ)| = O(|ζ|1/2) = O(r1/2) on Γr follows S(z, r) = O(r−1/2) as
r → ∞ , uniformly with respect to |z| ≤ 1

2
r , say.

Remark. This result is surprising insofar as it is supposed that, in general,∑∞
ν=1 |pν |−3 diverges. We note that w′(0) = −∑?

(pν) ενp−2
ν in the first case, and∑?

(pν) ενp−2
ν = 0 if w has a pole at z = 0.

We may also consider

S(2)(z, r) =
1

2πi

∫

Γr

w2(ζ)

ζ(ζ − z)
dζ

to obtain

Theorem 4.2. For any transcendental solution of (II) with w(0) 6= ∞

(17)

w2(z) = w2(0) + bz + lim
k→∞

∑

|pν |≤rk

[
(z − pν)−2 − p−2

ν

]

= w2(0) + bz +
∑

(pν)

??[
(z − pν)−2 − p−2

ν

]

holds for some sequence rk → ∞ , with

b = lim
k→∞

S(2)(z, rk) = 2w(0)w′(0) − 2
∑

(pν)

??
p−3

ν ;

if w has a pole at z = 0 with residue ε0 , then the terms w2(0) and 2w(0)w′(0)
have to be replaced by z−2 and − 1

2
(1 + ε0α) , respectively.

Remark. We call
∑??

(pν) principal value of the second kind, obtained by the

exhaustion |pν | ≤ rk → ∞ ; again convergence is locally uniform with respect to z .
Considering the integral

1

2πi

∫

Γr

w2(ζ)

ζ2(ζ − z)
dζ
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instead of S(2)(z, r) yields

w2(z) = w2(0) + 2w(0)w′(0)z +
∞∑

ν=1

z2(3pν − 2z)

(z − pν)2p3
ν

= w2(0) + 2w(0)w′(0)z +
∞∑

ν=1

[
(z − pν)−2 − p−2

ν − 2zp−3
ν

]
,

which converges absolutely and locally uniformly.

Proof of Proposition 4.2. Again from the Residue Theorem follows

S(2)(z, r) =
w2(z) − w2(0)

z
+

∑

0<|pν |≤r

z − 2pν

p2
ν(pν − z)2

.

Since w2(ζ) = O(r) on Γr , we may, however, only conclude that S(2)(z, r) is
uniformly bounded, for |z| ≤ 1

2r , say, independent of r . For some appropriate

sequence rk → ∞ we thus have limk→∞ S(2)(z, rk) = b , locally uniformly in the
plane.

Theorem 4.3. In any case deg Qw ≤ max{0, h − 1} ≤ 2 and deg QU ≤ 2
hold.

Remark. If w(0) 6= ∞ and h ≥ 1, then Qw(z) = Th−1(z; w) is the Taylor
polynomial of w about z = 0, of degree h − 1. In case w(0) = ∞ we have
Qw(z) = 0 for 1 ≤ h ≤ 2, and Qw(z) = − 1

4
(α + ε0)z

2 for h = 3.

Things are different for QU . Writing bk =
∑∞

ν=1 p−k−1
ν (the series converges

absolutely for k ≥ h) we obtain QU (z) = 10ε0h0 − 1
2(1 + ε0α)z2 − ∑2

k=h bkzk if

z = 0 is a pole with residue ε0 , and QU (z) = T2(z; U)−∑2
k=h bkzk if w(0) 6= ∞ .

Proof. We assume w(0) 6= ∞ for simplicity. Then, on one hand, (15) gives

(18) w(z) = Qw(z) +

∞∑

ν=1

ενzh

(z − pν)ph
ν

,

while (16) continues to hold. From this we may conclude that deg Qw < max{h, 1} ,
and hence Qw(z) = Th−1(z; w) for h ≥ 1. If z = 0 is a pole of w with residue
ε0 , then we also have deg Qw < max{h, 1} , and from (3) follows Qw(z) = 0 for
1 ≤ h ≤ 2, and Qw(z) = − 1

4 (α + ε0)z
2 in case h = 3.

The representation of U easily follows from (17) and U ′ = w2 . Comparison
with the ordinary series expansion

U(z) = QU (z) − f ′(z)

f(z)
= QU (z) −

∞∑

ν=1

zh

(z − pν)ph
ν

yields deg QU ≤ 2, and QU (z) = T2(z, U) − ∑2
k=h bkzk , if w(0) 6= ∞ , and

QU (z) = 10ε0h0 − 1
2
(1 + ε0α)z2 − ∑2

k=h bkzk else.
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In [15] Shimomura has shown:

For 2α ∈ Z every transcendental solution of (II) has order of growth

% ≥ 3
2 .

More precisely, it was shown that T (r, w) ≥ Cεr
3/2−ε for every ε > 0 and any

transcendental solution of equation (II) with parameter α = 0. This result then
may be extended to any α with 2α ∈ Z by applying the Bäcklund transformation.

To prove Shimomura’s result, we have only to deal with the case where Qw

is constant, since %(w) ≥ h ≥ deg Qw + 1 ≥ 2 in all other cases, and thus may
write w = Φ′/Φ with %(Φ) = σ ≤ max{1, %(w)} (note that, in case h = 0,
Φ(z) = eczf(z) might contain an extra factor ecz to represent w ). For α = 0, a
simple computation gives

z =
w′′

w
− 2w2 =

Φ′′

Φ′

(
Φ′′′

Φ′′
− 3

Φ′

Φ

)
=

Φ′′

Φ′

Ψ′

Ψ

with Ψ = Φ′′/Φ3 . Since the order of Ψ is at most σ , we obtain from the lemma

on the logarithmic derivative, in the form due to Ngoan and Ostrovskii [8], that

log r = m(r, z) ≤ m(r, Φ′′/Φ′) + m(r, Ψ′/Ψ) ≤ 2
(
σ − 1 + o(1)

)+

log r,

and hence σ ≥ 3
2
, which implies % = σ ≥ 3

2
.

Remark. For arbitrary α the same proof shows that

2(% − 1)+ ≥ lim sup
r→∞

m(r, z + α/w)/ log r.

In most cases the order of growth of any solution w has turned out to satisfy
% ≥ 2, the only exemption occurring when Qw is constant. We will now prove
several lower estimates depending on deg QU .

Theorem 4.4. Let w be any transcendental solution of (II), with associated

polynomials Qw and QU . Then if % < 3 and deg QU = 2 , the following is true:

(a) % ≥ 3
2

and QU (z) = − 1
4
z2 + · · ·,

(b) w(z) ∼
√
−z/2 , U(z) ∼ −z2/4 and w′(z) = o(|z|) as z → ∞ on some set

D satisfying area(D ∩ {z : |z| ≤ r}) ∼ πr2 as r → ∞ .

Example. The solutions of w′ = z/2 + w2 have order of growth % = 3
2 and

solve equation (II) with parameter α = 1
2 . In this case U ′ = w2 = w′ − 1

2z and
Qw(z) = w(0), hence U(z) = w(z) − z2/4 + U(0) − w(0) and QU (z) = −z2/4 +
U(0). We note that w2(0) =

∑∞
ν=1 p−2

ν and w3(0) = w(0)w′(0) =
∑∞

ν=1 p−3
ν − 1

4 .
In case w(0) = ∞ we have QU (z) = −z2/4 + 10ε0h0 and

∑∞
ν=1 p−2

ν = 0.
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Proof of Theorem 4.4. We assume %(w) < 3 and set Qw(z) = az + a0

(note that deg Qw = 2 implies % = 3) and QU (z) = 1
2
bz2 + · · ·. Then from

Propositions 2.2 and 2.3 and U ′ = w2 follows

I(R, U − QU ) + IH(R, w2 − Q′
U ) + IH(R, w′ − Q′

w) = O(R4−2λ)

for some λ > 0. Let the set E ⊂ C consist of all points z , such that at least one
of the inequalities

∣∣U(z) − 1
2bz2

∣∣ > |z|2−λ, |w2(z) − bz| > |z|1−λ, |w′(z)| > |z|1−λ

holds, and set ER = E ∩
{
z : 1

2
R ≤ |z| ≤ R

}
. Then, having I(R, z) + IH(R, 1) =

O(R3) in mind,

CR4−2λ ≥
∫

ER

(∣∣U(z) − 1
2bz2

∣∣ + |z| |w2(z) − bz| + |z| |w′(z)|
)
d(x, y)

≥
(

1
2R

)2−λ
area(ER),

and hence area(ER) = O(R2−zλ) follows, this implying

area(DR) = area(D ∩ {z : |z| ≤ R}) = πR2 − o(R2)

for D = C \ E .
Re-scaling equation (2) on any sequence (zn) ⊂ D , with local unit of length

rn = z
−1/2
n , i.e., taking the limit n → ∞ for yn(z) = z

−1/2
n w(zn + z

−1/2
n z) then

yields

y′2 = y4 + y2 − 1
2b, y(0) =

√
b , y′(0) = 0,

for some choice of
√

b , from which b = − 1
2 and y(z) ≡

√
− 1

2 , and hence w(zn) ∼
√

− 1
2zn and U(zn) ∼ − 1

4z2
n follows. This proves w(z) ∼

√
− 1

2z and U(z) ∼
− 1

4z2 as z → ∞ on D .
Since % ≥ 2 for deg Qw ≥ 1, we have only to deal with the case a = 0. Then

%(w) ≥ 3
2 follows from

2πI(R, w) ≥
∫

DR

|w(z)| d(x, y) ≥ const · R5/2

and Proposition 2.2.

Theorem 4.5. Let w be any transcendental solution of (II), with associated

polynomials Qw and QU . Then deg QU = 1 implies % ≥ 2 .
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Proof. We assume QU (z) = bz+b0 and % < 2, hence Qw is a constant. Then
from Propositions 2.2 and 2.3 follows

IH(R, w2 − b) + IH(R, w′) = O(R3−2λ)

for some λ > 0, and as in the proof of Theorem 4.4 the set

E = {z : |w2(z) − b| > |z|−λ or |w′(z)| > |z|−λ}

satisfies area(E∩{z : |z| ≤ R}) = o(R2). Again we set D = C\E and DR = D∩
{z : |z| ≤ R} , and again area(DR) ∼ πR2 holds. From equation (1) then follows
|w′′(z)| ≥ |b|1/2|z|/2 for z ∈ D and |z| ≥ r0 , say. Together with |w′(z)| = o(1)
this implies (w′)#(z) ≥ |b|1/2|z|/4, and hence A(r, w′) ≥ c1r

4 for some c1 > 0,
this contradicting our assumption % < 2 (and even % ≤ 3).

Concluding remarks. Theorems 4.2, 4.3 and 4.4 together show that %(w) ≥
3
2 is true except when QU and Qw are constants. Thus the only case left is
w = a+ f ′/f and w2 = −(g′/g)′ with f = g1/g−1 and g = g1g−1 , where g±1 are
canonical products of genus ≤ 1. In the sequel we will discuss several ideas which
could or could not help to prove % ≥ 3

2
.

(a) It seems promising trying to prove

lim sup
r→∞

m(r, z + α/w)

log r
≥ 1.

This, however, is far beyond the scope of our method, since it requires analyzing
solutions on circles |z| = r . We note also that for α ∈ Z there exist rational solu-
tions with z+α/w(z) = O(|z|−1), and hence any proof had to distinguish between
different parameters, and also between rational and transcendental solutions. Also
this method would not work in case of equation (IV).

(b) It also seems hopeless trying to prove that deg Qw = 0 implies deg QU =
2, though several hints indicate that this might be true. It might, however, be
fruitful to consider the following problem: let g±1 denote the canonical products
with zeros at the non-zero poles of w with residues ±1, and assume Qw(z) = a
and QU (z) = b . Replacing g±1 by f±1 = e±az/2g±1 and writing g = f1f−1 and
f = f1/f−1 we obtain w = f ′/f and w2 = U ′ = −(g′/g)′ . Thus

−(f ′
1/f1)

′ − (f ′
−1/f−1)

′ = (f ′
1/f1 − f ′

−1/f−1)
2,

or, equivalently,
f−1f

′′
1 − 2f ′

−1f
′
1 + f ′′

−1f1 = 0

has to be disproved for (essentially) canonical products f±1 without common
zeros.
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(c) Our third proposal seems to be more promising, namely, to prove some
estimate |w(z)| ≥ c|z|1/2 outside small disks |z − cν | < δ|cν |−1/2 about the zeros
cν of w , and then apply Proposition 2.2. In contrast to equation (I), however, it
is not possible (although I believed in [17] it would be) to prove an asymptotic re-
lation like |w(z)| � |z|1/2 outside the set P(δ)∪C(δ), by using re-scaling methods
only. The reason for this is that (II) also has rational solutions (for parameters
α ∈ Z) satisfying w(z) ∼ −α/z as z → ∞ . It is a weakness of the re-scaling
method that it cannot distinguish between different parameters nor between ra-
tional and transcendental solutions. All results which may be obtained by this
method, must be true for all parameters and all solutions. A similar remark holds
for equation (IV). Thus, some additional argument has to be introduced, which
excludes rational solutions from consideration.

Nevertheless I believe that the following is true: Any transcendental solution

of (II) has order of growth either % = 3 or else % = 3
2 , this occurring exactly for

particular solutions, called Airy Solutions. These solutions are characterized by the
fact that they also solve first order algebraic differential equations P (z, w, w′) = 0,
and are obtained by successive application of the so-called Bäcklund transforma-
tion, starting from the solutions of the Riccati Equation u′ = ±(z/2 + u2). For
details the reader is referred to [3].

5. Value distribution of fourth transcendents

Equations (II) and (IV) are in many respects similar to each other. For certain
parameters they admit rational solutions, or solutions which solve also some first
order algebraic differential equations, and the residues εν alternate.

We use the same notation as was used in the previous section to represent
transcendental solutions w of (IV). Let g denote the canonical product, of genus
h , with simple zeros exactly at the non-zero poles of w . Then g = g1g−1 , where
g±1 has zeros exactly at poles with residue ±1. If w has a pole at z = 0 with
residue ε0 , we replace g and f = g1/g−1 by zg(z) and zε0f(z), respectively.
Then as in case (II) we have the representations (15).

From Section 3(b) we obtain the estimates w(z) = O(|z|) and U(z) = O(|z|3)
as z → ∞ outside P(δ) =

⋃
ν ∆δ(pν), with ∆δ(pν) = {z : |z− pν | < δ|pν |−1} . We

also construct the closed curve Γr as in the proof of Theorem 4.1; it contains in its
interior exactly those poles with |pν | ≤ r , while w satisfies |w(ζ)| = O(|ζ|) = O(r)
on Γr . Then the Residue Theorem applies to

Sm(z, r) =
1

2πi

∫

Γr

w(ζ)

ζm(ζ − z)
dζ, m = 1, 2,

with Sm(z, r) = O(r−m+1) as r → ∞ , locally uniformly with respect to z . Hence,
for w(0) 6= ∞ , we obtain

(19) w(z) = w(0) + w′(0)z +
∑

(pν )

? ενz2

(z − pν)p2
ν



88 Norbert Steinmetz

(principal value with exhaustion |pν | ≤ r → ∞) in case m = 2, and, for m = 1,

(20) w(z) = w(0) + bz +
∑

(pν)

?? ενz

(z − pν)pν

for some sequence rk → ∞ , where b = limk→∞ S1(z, rk) is constant; note that
b = w′(0) +

∑??
(pν) ενp−2

ν . Equations (19) and (20) have to be modified if z = 0 is

a pole with residue ε0 as follows: w(0) and w′(0)z have to be replaced by ε0/z
and 1

3(2ε0α + 4)z , respectively. Similarly, by considering

S̃m(z, r) =
1

2πi

∫

Γr

w2(ζ) + 2ζw(ζ)

ζm+1(ζ − z)
dζ

and noting that w2(ζ) + 2ζw(ζ) = O(|ζ|2) = O(r2) on Γr , we obtain

(21) w2(z) + 2zw(z) = T2(z) +
∑

(pν)

?[
(z − pν)−2 − p−2

ν − 2zp−3
ν

]

(principal value) and

(22) w2(z) + 2zw(z) = T1(z) + b̃z2 +
∑

(pν)

??[
(z − pν)−2 − p−2

ν

]

(principal value of the second kind, obtained by the exhaustion |pν | ≤ rk for some

sequence rk → ∞), with b̃ = limk→∞ S̃1(z, rk), locally uniformly, and Tm being
the Taylor polynomial of w2 + zw of degree m about z = 0.

Then (19), (20) have to be compared with the Mittag-Leffler series expansions

(23) w(z) = Qw(z) +

∞∑

ν=1

ενzh

(z − pν)ph
ν

, 0 ≤ h ≤ 4,

and, similarly, (21), (22) have to be compared with

(24) w2(z) + 2zw(z) = Q′
U (z) +

∞∑

ν=1

[
(z − pν)−2 − Kh(z, pν)

]
,

with Kh(z, p) =
∑h−2

k=0(k+1)zkp−k−2 for 0 ≤ h ≤ 4. The case w(0) = ∞ requires
obvious modifications, it does not make any sense to write this down. We thus
obtain, similarly to case (II):

Theorem 5.1. In any case deg Qw ≤ max{h − 1, 1} ≤ 3 and deg QU ≤ 3
hold.
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As in case (II) we next prove several lower estimates depending on deg QU ,
noting that % ≥ deg Qw + 1 for deg Qw ≥ 2 is already known.

Theorem 5.2. Let w be any transcendental solution of (IV), with associated

polynomials Qw and QU . If % < 4 and deg QU = 3 , then the following is true:

(a) QU (z) = − 8
27z3 + · · ·,

(b) w(z) ∼ − 2
3z , U(z) ∼ − 8

27z3 and w′(z) = o(|z|2) as z → ∞ on some set D
satisfying area(D ∩ {z : |z| ≤ r}) ∼ πr2 as r → ∞ ,

(c) % ≥ 2 , provided Qw(z) 6≡ − 2
3
z + a0 .

Remark. We note that certain equations (IV) have rational solutions with
principal part − 2

3z at infinity.

Proof. There is almost no difference to the proof of Theorem 4.4. We set
QU = 1

3bz3 + · · · and Qw(z) = 1
2az2 + · · · (note that deg Qw = 3 implies % = 4),

and assume %(w) < 4, hence

I(R, U − QU ) + IH(R, w2 + 2zw − Q′
U ) + IH(R, w′ − Q′

w) = O(R5−2λ),

for some λ > 0 (note that I(R, z2)+IH(R, z) = O(R4)). Consider the set E ⊂ C ,
such that for z ∈ E at least one of the inequalities
∣∣U(z)− 1

3bz3
∣∣ > |z|3−λ, |w2(z) + 2zw(z) − bz2| > |z|2−λ, |w′(z)− az| > |z|2−λ

holds, and set ER = E ∩
{
z : 1

2R ≤ |z| ≤ R
}

. Then as in Section 4 we conclude
that area(ER) = O(R2−λ), and hence area(DR) ∼ πR2 for DR = D∩{z : |z| ≤ R}
and D = C \ E .

Re-scaling the corresponding equation (2) on any sequence (zn) ⊂ D , zn →
∞ , with local unit of length rn = z−1

n then yields

y′2 = y4 + 4y3 + 4y2 − 4
3by, y(0)2 + 2y(0) = b, y′(0) = 0,

from which b = − 8
9 and y ≡ − 2

3 follows (any other constant solution is ruled out
by the assumption b 6= 0.) This proves w(z) ∼ − 2

3z , U(z) ∼ − 8
27z2 and w′(z) =

o(|z|2) as z → ∞ in D . For Qw(z) 6≡ − 2
3z + a0 we have |w(z) − Qw(z)| ≥ c|z|

for z ∈ D , |z| ≥ r0 and some c > 0, and thus % ≥ 2 follows from

2πI(r, w − Qw) ≥ 2π

∫

Dr

c|z| d(x, y) ≥ c1r
3

and Proposition 2.2.

Theorem 5.3. Let w be any transcendental solution of (IV), with associated

polynomials Qw and QU , and assume deg QU = 2 . Then either % ≥ 14
5 holds, or

else there exists some set D and some sequence rn → ∞ , such that area(D ∩ {z :
|z| ≤ rn}) ∼ πr2

n and w(z) ∼ −2z as z → ∞ on D . Moreover, Qw(z) 6≡ −2z +a0

implies % ≥ 2 .
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Remark. We note that certain equations (IV) have rational solutions satis-
fying w(z) ∼ −2z .

Proof. We write QU (z) = 1
2bz2 + · · ·, b 6= 0, and assume % < 3. Then

Qw(z) = az + a0 , and for some λ > 0, to be determined later, we have

IH(R, w2 + 2zw − bz) + IH(R, w′ − a) = O(R4−λ).

Thus, for every ε , 0 < ε < λ , the set

E(ε) =
{
z : |w2(z) + 2zw(z) − bz| > |z|1−λ+ε or |w′(z) − a| > |z|1−λ+ε

}

satisfies area
(
E(ε) ∩

{
z : 1

2r ≤ |z| ≤ R
})

= O(R2−ε). Thus, for D(ε) = C \ E(ε)
we have

area
(
D(ε) ∩ {z : |z| ≤ R}

)
∼ πR2,

while

|w2(z) + 2zw(z) − bz| < |z|1−λ+ε and |w′(z) − a| < |z|1−λ+ε

hold on D(ε).
Now w2 + 2zw − bz = o(|z|) has two solutions, w1 = b/2 + o(1) and w2 =

−2z − b/2 + o(1) as z → ∞ . We set

D1(ε) =
{
z ∈ D(ε) :

∣∣w(z) − 1
2
b
∣∣ < 1

4
|b|

}
and D2(ε) = D(ε) \ D1(ε).

If for some ε > 0 and some sequence rn → ∞
area

(
D1(ε) ∩ {z : |z| ≤ rn}

)
= o(r2

n)

holds, then Qw(z) 6≡ −2z+a0 implies |w(z)−Qw(z)| ≥ c1|z| on D2 , |z| sufficiently
large, and from

2πI(rn, w − aQw) ≥ 2π

∫

D2∩{|z|≤rn}

c1|z| d(x, y) ≥ cr3
n

and Proposition 2.2 then follows % ≥ 2.
We now assume that for every sufficiently small ε > 0 there exists c = c(ε) >

0, such that
area

(
D1(ε) ∩ {z : |z| ≤ r}

)
≥ cr2.

Then from the corresponding equation (1) follows |w′′(z)| ≥ c1|z|2 for some c1 > 0
and z ∈ D1(ε), |z| sufficiently large. Thus |w′(z) − a| < |z|1−λ+ε gives

(w′)#(z) ≥ c2|z|2λ−2ε

on D1(ε), this implying

A(r, w′) ≥ c3r
2+4λ−4ε and T (r, w) ≥ c4r

2+4λ−4ε,

and hence 3 − λ > % ≥ 2 + 4λ , since ε > 0 was arbitrary. The only restriction
on λ , however, is thus 0 < 5λ < 1, and hence the inequality % ≥ 14

5 follows by
letting λ tend to 1

5
.
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Theorem 5.4. Let w be any transcendental solution of (IV), with associated

polynomials Qw and QU (z) = bz + b0 , b 6= 0 . Then, either % ≥ 2 holds, or else

there exist some set D = D1 ∪ D2 satisfying area(D ∩ {z : |z| ≤ r}) ∼ πr2 and

such that one of the following assertions holds:

(a) area
(
D1 ∩ {z : |z| ≤ r}

)
∼ πr2 and w(z) ∼ b/2z on D1 ,

(b) area(D2 ∩ {z : |z| ≤ rn}) ≥ cr2
n for some c > 0 and some sequence rn → ∞ ,

and w(z) ∼ −2z on D2 .

Moreover, % ≥ 2 also holds in case (a) if either b2 + 2β 6= 0 or else Qw is non-

constant, and in case (b) if Qw(z) 6≡ −2z + a0 .

Proof. The arguments are easier than in the proof of Theorem 5.3. We assume
% < 2, hence Qw(z) = az + a0 . Then

IH(R, U ′ − b) + IH(R, w′ − a) = O(R3−2λ)

for some λ > 0, this again implying that

|w2(z) + 2zw(z) − b| < |z|−λ and |w′(z) − a| < |z|−λ

on some set D with area
(
D ∩ {z : |z| ≤ R}

)
∼ πR2 .

As before the equation w2 + 2zw − b = o(1) has two different solutions w1 ∼
b/2z and w2 ∼ −2z . According to these solutions we set

D1 = {z ∈ D : |w(z)| < 1} and D2 = D \ D1.

Then, if b2 + 2β 6= 0 and

area(D1 ∩ {z : |z| ≤ r}) ≥ cr2

for r ≥ r0 and some c > 0, we obtain from equation (1) w′′(z) ∼ (b + 2β/b)z .
Since w′ is bounded on D1 , this implies (w′)#(z) ≥ c1|z| on D1 , A(r, w′) ≥ c2r

4 ,
and hence % = 4 against our assumption.

Similarly, from a 6= 0, |w(z)| < 1 and w′(z) ∼ a on D1 follows w#(z) ∼ |a| ,
this implying A(r, w) ≥ c1r

2 and T (r, w) ≥ c2r
2 , without restriction on b2 + 2β .

We thus may assume that

area
(
D2 ∩ {z : |z| ≤ rn}

)
∼ πr2

n

on some sequence rn → ∞ , and w(z) ∼ −2z on D2 . Then, if Qw(z) 6≡ −2z + a0 ,
the inequality % ≥ 2 follows from |w(z) − Qw(z)| ≥ c1|z| on D2 and Proposi-
tion 2.2.
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Remark. We note that, for certain parameters α and β , equation (IV) has
particular solutions of order % = 2. These are also solutions of certain first order
algebraic differential equations P (z, w, w′) = 0, and are obtained by repeated
application of the Bäcklund transformation, starting with solutions of the Riccati
equations ±w′ = ∓2 − 2α + 2zw + w2 . For details the reader is referred to [3].
The Riccati equation w′ = −2 − 2α + 2zw + w2 also serves as an

Example for Theorem 5.4. Here U(z) = w(z) + (2 + 2α)z −w(0) + U(0),
and Qw and QU (z) = Qw(z) + (2 + 2α)z + U(0) − w(0) have degree ≤ 1.

The remarks at the end of Section 4 remain valid. Since for particular pa-
rameters α and β , equation (IV) has rational solutions w ∼ −2z , w ∼ − 2

3z
and w ∼ const/z as z → ∞ , it seems impossible to prove the desired estimate
|w(z)| � |z| , outside the neighbourhood C(δ) of zeros of w , by using only re-
scaling methods. This asymptotic result, of course, would be very helpful, but not
sufficient to prove % ≥ 2.

Nevertheless, it is quite natural to believe that the transcendental solutions

have order of growth % = 4 , except for those solutions satisfying also first order

algebraic differential equations, in which case % = 2 .

6. Distribution of poles with residues ±1

In [3, Theorem 18.1 and 18.2] it was shown that every transcendental solution
of (II) has infinitely many zeros with residue +1 and also infinitely many zeros
with residue −1, except when w = u is some particular solution of (II) with
parameter α = ± 1

2 , also solving the Riccati equation

(25) ±u′ = z/2 + u2.

It is, however, not hard to prove a sharp quantitative result.

Theorem 6.1. Let w be any transcendental solution of (II), but not a solu-

tion of (25). Then N+(r, w) ≤ 2N
−
(r, w) + O(log r) and conversely, N

−
(r, w) ≤

2N+(r, w) + O(log r) hold.

Proof. By our assumption the meromorphic function Φ(z) = w′(z)−w2(z)−
1
2z does not vanish identically. From (3) it is easily seen that Φ has a double
pole at any pole of w with residue +1, and has a zero at any pole of w with
residue −1. Hence, by Nevanlinna’s first fundamental theorem,

N
−
(r, w) ≤ N(r, 1/Φ) ≤ T (r, Φ) + O(1) = 2N+(r, w) + O(log r)

follows. Of course, + and − may be permuted.
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Remark. Any so-called Airy solution, already mentioned in Section 4, may
be represented in the form w(z) = R

(
z, u(z)

)
, where R is rational and has degree

2n + 1 with respect to the second variable, and u is a solution of (25). It is easily
seen that in this case either N

−
(r, w) = cnN+(r, w) + O(log r) or else N+(r, w) =

cnN
−
(r, w) + O(log r) holds with cn = 1 + 1/n . This example shows, by choosing

n = 1, that Theorem 6.1 is sharp.

In general we have

Theorem 6.2. For any transcendental solution w of (II)

|n+(r, w) − n
−
(r, w)| = O(r3/2)

holds.

Obviously, Theorem 6.2 says that for solutions of order % > 3
2 , the poles with

residue +1 and the poles with residue −1 are asymptotically equi-distributed.

Proof. Using the path of integration Γr constructed in Section 4 the Residue
Theorem gives

|n+(r, w) − n
−
(r, w)| =

∣∣∣∣
1

2πi

∫

Γr

w(z) dz

∣∣∣∣ = O(r3/2),

and hence the assertion.

Similar results, with the same proofs, are obtained for solutions of (IV). The
only difference is that one has to work with |w(z)| = O(|z|) rather than |w(z)| =
O(|z|1/2).

Theorem 6.3. Let w be any transcendental solution of (IV), but not a solu-

tion of equation (26) below. Then N+(r, w) ≤ 2N
−
(r, w)+O(log r) and conversely,

N
−
(r, w) ≤ 2N+(r, w) + O(log r) hold.

Theorem 6.4. For any transcendental solution w of (IV)

|n+(r, w) − n
−
(r, w)| = O(r2)

holds.

Equation (IV) has particular transcendental solutions u = w for parameters
β = −2(1 ± α)2 , α arbitrary. These solutions also solve the Riccati equation

(26) ±u′ = −2(α ± 1) + 2zu + u2.

By applying the Bäcklund transformation repeatedly to any solution u of (26), see
[3, Theorem 25.1], we obtain the so-called Weber–Hermite solutions, which take
the form w(z) = R

(
z, u(z)

)
. They are solutions of certain first order algebraic

differential equations P (z, w, w′) = 0, and have order of growth % = 2. The
substitution u = ∓v′/v , transforms (26) into the Weber–Hermite linear differential
equation

v′′ ∓ 2zv′ − 2(α ± 1)v = 0.

For more information the reader is again referred to [3].
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7. Value distribution of the first transcendents

In [15] Shimomura obtained the lower estimate n(r, w) ≥ const · r5/2/ log r
for any solution of Painlevé’s first equation. We will give a different proof of a
slightly weaker result, and then prove Theorem 7.3 below, which sharpens both
results considerably; in both cases f denotes the canonical product having simple
zeros exactly at the non-zero poles pν of w .

First of all we will give a new proof of

Theorem 7.1. Every solution w of (I) has the representation

w(z) = a0 + ε0z
−2 +

∞∑

ν=1

[
(z − pν)−2 − p−2

ν

]
,

and hence

U(z) = a0z + a1 − ε0z
−1 −

∞∑

ν=1

z2(z − pν)−1p−2
ν ,

where either ε0 = 0 and a0 = w(0) , or else ε0 = 1 and a0 = 0 , hold. The series∑∞
ν=1 |pν |−κ converges for κ > 5

2 , but diverges for κ = 5
2 .

Proof. The Residue Theorem applies to

S(z, r) =
1

2πi

∫

Γr

w(ζ)

ζ(ζ − z)
dζ;

the path of integration Γr is constructed in the same manner as in Section 4, such
that the following holds: the interior domain of Γr contains the same poles of w
as does the closed disk |ζ| ≤ r , the length of Γr is O(r), and w(ζ) = O(|ζ|1/2) =
O(r1/2) holds on Γr . Then

S(z, r) =
w(z) − w(0)

z
+

∑

|pν |≤r

z − 2pν

(z − pν)2
= O(r−1/2)

as r → ∞ , uniformly for |z| ≤ 1
2r , say (to be modified for w(0) = ∞ , replace w(0)

by 1/z ), which gives the desired result, since the Mittag-Leffler series converges
locally uniformly.

In the next step we prove a slightly weaker result than Shimomura’s.
Let (qν) denote the sequence of zeros of w , and set {cν} = {pν} ∪ {qν} with

counting function n(r) = n(r, w) + n(r, 1/w). Then Proposition 2.3 applies with
L′ = w and the set H(R) defined in (11) with κ = 1

4 . For δ > 0 fixed, and noting
that IH(R, 1) = O(R3), we obtain

IH(R, w) = O
(
R

[
T (2R, f) + n(2R) logR

])
.
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On the set H(R) we have |w(z)| ≥ K0|z|1/2 , and hence the left-hand side of the
above inequality is

IH(R, w) ≥ K1R
7/2 − K2

∑

|cν |≤2R

|cν |1/2(|cν |−1/4)2 = K1R
7/2 − K2n(2R).

This gives r5/2 ≤ O
(
T (r, f) + n(r) log r

)
as r → ∞ , and, in particular,

lim sup
r→∞

n(r, w)/(r5/2 log r) > 0.

The assumption n(r, w) = o(r5/2) has strong implications, one being that
U(z) = o(|z|3/2) as z → ∞ , outside a set E of planar density zero.

If only
lim inf
r→∞

[n(r, w) + T (r, f)]/r5/2 = 0

is assumed, then there exists some sequence Rn tending to infinity, such that

(
n(2Rn, w) + T (2Rn, f)

)
/R5/2

n ≤ ηn → 0

as n → ∞ . We may assume that (ηn) is decreasing, and define a continuous,
decreasing and piecewise linear function η: (0,∞) → (0,∞), which interpolates
ηn at Rn . Then

I(Rn, U) ≤ I(Rn, U − a0z − a1) + O(R3
n) ≤ CR7/2

n η(Rn)

holds for some constant C > 0. Defining the sets

E =
{
z : |U(z)| ≥ |z|3/2

√
η(|z|)

}
and En = E ∩

{
z : Rn/2 ≤ |z| ≤ Rn

}
,

we obtain from

CR7/2
n η(Rn) ≥

∫

|z|≤Rn

|U(z)| d(x, y) ≥
∫

En

|z|3/2
√

η(|z|) d(x, y)

≥
(

1
2
Rn

)3/2√
η(Rn) area(En)

that area(En) ≤ C1R
2
n

√
η(Rn) . Clearly w has no poles on D = C \ E . Let P

denote the set of poles of w , and assume that D contains some sequence (zn)
satisfying dist(zn, P) → ∞ , distance measured with respect to the metric ds =
|z|1/4 |dz| . Then from [17, Proposition 9] follows

z−1/2
n w(zn) → i

√
1/6 and z−3/2

n U(zn) → i
√

2/27
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as n → ∞ , for some suitably chosen branch of the square-root. This, however,
contradicts zn ∈ D , hence we have proved that there exists K > 0, such that
every disk {z : d(z, c) < K} , c ∈ D , contains some pole of w .

Again let (zn) denote any sequence in D , zn → ∞ . Re-scaling equation (2)

with local unit rn = z
−1/4
n (it does not matter that rn is complex), and noting

that U(zn)z
−3/2
n → 0 as n → ∞ , then leads to y′2 = 4y3 +2y . Since w has some

pole pn with d(pn, zn) < K , the limit function y is non-constant, and hence is a
Weierstrass ℘ -function with invariants g2 = −2 and g3 = 0, and period module
Λ = h(Z + iZ), h > 0, independent of the sequence (zn).

By [17, Proposition 8], the following local result holds:

Given R > 0 and σ > 0 , there exists r0 > 0 , such that for any z0 with

|z0| ≥ r0 there exists some lattice L , such that the Hausdorff distance with respect

to the metric d between the image of L ∩ {ζ : |ζ| < R} under the map φ(ζ) =(
z
5/4
0 + 5

4ζ
)4/5 ∼ z0 + z

−1/4
0 ζ and the set P ∩ {z : |z − z0| < R|z0|−1/4} is less

than σ .

In our case, however, this is a global result, since the lattice L = Λ is always
the same for any z0 ∈ D . From this it is not hard to conclude that the number
of poles of w in |z| ≤ r is at least cr1/2area

(
D ∩ {z : |z| ≤ r}

)
, c > 0 an

absolute constant. In particular we have n(2Rn, w) ≥ c1R
5/2
n , which contradicts

our assumption.

Remark. To derive this contradiction, it is actually not necessary to know
the true distribution of poles. The union of disks {z : d(z, pν) < K} covers D ,
and hence we have, for Dn = D ∩

{
z : 1

2Rn ≤ |z| ≤ Rn

}
,

area(Dn) ≤
∑

Rn/4≤|pν |≤2Rn

2K2π(|pν |−1/4)2 = O
(
n(Rn, w)R−1/2

n

)
,

which gives n(Rn, w) ≥ const · R5/2
n .

Anyway, we thus have proved

Theorem 7.2. Any solution w of (I) satisfies T (r, f) ≥ const · r5/2 , and, in

particular,

lim sup
r→∞

n(r, w)/r5/2 > 0.

Appendix: Radii of convergence

We deduce uniform lower bounds for the radii of convergence r(p, h) of the
series expansions about any pole p , |p| ≥ 1, of the Painlevé transcendents. In [17]
it was shown that r(p, h) ≥ K min{|p|−1/4, |h|−1/6} for the first transcendents,
K > 0 independent of p and h . In case (II) we leave it to the reader to prove
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that r(p, h) ≥ K min{|p|−1/2, |h|−1/4} , and focus on case (IV). From w′2 = w4 +
4zw3 + 4(z2 − α)w2 − 2β − 4wU and (IV) follows

(27) w′′ = 2w3 + 6zw2 + 4(z2 − α)w − 2U.

Consider w(z) =
∑∞

n=0 cn(z − p)n−1 , with c0 = ε = ±1. Then

U(z) =
∞∑

n=0

an(z − p)n−1

has coefficients a0 = −1, a1 = 2αp + 2h − 2εp (= local constant of integration)
and

(28) an−2 =
1

n − 3

∑

i+j=n−2

(cicj + 2pcn−3 + 2cn−4) for n ≥ 4.

Inserting the series expansions into (27) we obtain for n ≥ 4, by equating coeffi-
cients,

(29)

(n − 2)(n − 1)cn =
∑

i+j+k=n

2cicjck +
∑

i+j=n−1

6pcicj +
∑

i+j=n−2

6cicj

+ 4(p2 − α)cn−2 + 8pcn−3 + 4cn−4 − 2an−2.

Let 0 < θ < 1 be arbitrary and set M = K max{|p|, |h|1/3} , where K ≥ θ−1 is
chosen in such a way that |cn| ≤ θMn holds for 1 ≤ n ≤ 4; this is possible with
K only depending on θ , α and β . We just note that

45c4 = −32α + 20p2 + ε(26 + 14α2 + 9β − 4αp2 − p4 − 36ph).

We also assume |p| ≥ 1, and hence M−1 ≤ K−1 ≤ θ . Starting from |ck| ≤ θMk

for 0 < k < n and some integer n ≥ 4, we obtain from (28)

|an| ≤ K1θMn−2 ≤ K1θ
3Mn

for some absolute constant K1 > 0. Thus, noting that |p| ≤ θM and that the
term 2cn = 2c2

0cn appears three times in the first sum in (29), we may conclude
that

(n2 − 3n + 2 − 6)|cn| ≤ K2n
2θ2Mn

holds with some absolute constant K2 > 0. This proves |cn| ≤ θMn for all n ≥ 1,
provided θ is chosen sufficiently small, and hence the radius of convergence is

r(p, h) ≥ K−1 min{|p|−1, |h|−1/3}.
Acknowledgement. I would like to thank the referee for several valuable com-

ments and suggestions.

Remark added in proof. In the meanwhile it was proved independently by
S. Shimomura, by A. Hinkkanen and I. Laine, and also by the author, that the
non-rational solutions of (II) and (IV) have lower order of growth at least 3

2 and
2, respectively.
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