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Abstract. We study Haj lasz–Sobolev type spaces on metric spaces that depend on quasi-
distances; in particular, we may take the quasi-distance to be the power σ of the metric with
σ > 1 , if the metric space is highly irregular or porous. We take the Sierpinski gasket in R2 as an
example, and show that the Haj lasz–Sobolev type space is non-trivial for 1 < σ < βp/p with βp

characterizing the intrinsic property of the Sierpinski gasket. This work was strongly motivated
by [8], and generalizes the result in [9] to any 1 < p < ∞ .

1. Haj lasz–Sobolev type spaces

Let F be a non-empty set and d be a metric on F . Let q(x, y) be a quasi-

distance on F (cf. [14]), that is q: F × F → [0,∞] satisfies

(1) q(x, y) = 0 if and only if x = y ;
(2) q(x, y) = q(y, x) for all x, y ∈ F ;
(3) there exists a constant 1 ≤ c1 < ∞ such that, for all x, y, z ∈ F ,

q(x, y) ≤ c1

(
q(x, z) + q(z, y)

)
.

Let µ be a Borel measure on the metric space (F, d). Let 1 ≤ p ≤ ∞ .
We denote by Lp(µ) := Lp(F, µ) the usual space of all p -integrable real-valued
functions on F with respect to µ , with the norm

‖f‖p :=

(∫

F

|f(x)|p dµ(x)

)1/p

(with the obvious modification when p = +∞). Motivated by [5], we say that a
function f ∈ Lp(µ) belongs to a Haj lasz–Sobolev type space M p(µ), if there exists
a non-negative function g ∈ Lp(µ), termed an upper gradient of f , such that

(1.1) |f(x) − f(y)| ≤ q(x, y)
(
g(x) + g(y)

)
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for µ -almost all x, y ∈ F with 0 < q(x, y) < r0 and some r0 ∈ (0,∞] . The norm

of f ∈ Mp(µ) is defined by

‖f‖Mp(µ) := ‖f‖p + inf
g
‖g‖p,

where the infimum is taken for all g satisfying (1.1). It is not hard to see that
Mp(µ) is a Banach space for 1 ≤ p < ∞ (the proof is similar to that in [5] or [7]).
Observe that different values on r0 for (1.1) holding give equivalent spaces.

Note that q(x, y) = d(x, y)σ is a quasi-distance on F for any 0 < σ < ∞ .
The case σ = 1 was addressed in [5], and it was shown that M p(µ) is the usual
Sobolev space W 1,p(F ) if F is an open domain with Lipschitz boundary in Rn

and µ is the Lebesgue measure. In [9], it was extended to the case σ > 1 when
F is a fractal in the Euclidean setting, and was demonstrated that for p = 2,
Mp(µ) is non-trivial when 1 < σ < 1

2β and is trivial when σ > 1
2β , if F is

the Sierpinski gasket in Rn , where β = log(n + 3)/ log 2 is the walk dimension

of F (for Haj lasz–Sobolev spaces on fractals, see also [6], [16]). (We say that
Mp(µ) is trivial if Mp(µ) contains only constant functions. In this connection,
see [2], [3], [1]. Note that Mp(µ) is always trivial if F is an open set in Rn

and q(x, y) = |x − y|σ with σ > 1, and nothing needs to be discussed under
this circumstance. But if F is irregular (e.g. highly porous), the situation is
considerably different, and Mp(µ) may be non-trivial, see [9] and below.) Whilst
in this paper we will generalize the result in [9] to the non-Euclidean setting on one
hand, we mainly give an example, on the other hand, that M p(µ) is non-trivial
for any 1 < p < ∞ and q(x, y) = d(x, y)σ with σ > 1 in a certain range. We
take F to be the Sierpinski gasket in R2 . Our example is motivated by [8]. As a
by-product, we also answer the question raised in [8] of what is the domain of the
p-energy. We thank R. S. Strichartz for sending [8] to our attention.

If q(x, y) = d(x, y)σ (0 < σ < ∞) and µ is a doubling measure, that is µ
satisfies, for some c2 > 0,

(1.2) µ
(
B(x, 2r)

)
≤ c2 µ

(
B(x, r)

)

for all x ∈ F and all 0 < r < ∞ , where B(x, r) = {y ∈ F : d(y, x) < r} is a ball in
F, then Mp(µ) may be characterized as follows: for f ∈ Lp(µ) with 1 < p < ∞ ,
we have that f ∈ Mp(µ) if and only if f̃ ∈ Lp(µ), where

(1.3) f̃(x) := sup
0<r<r0

1

µ
(
B(x, r)

)
∫

B(x,r)

|f(x) − f(y)|
q(x, y)

dµ(y), x ∈ F,

see also [9] (we always assume that |f(x) − f(y)|/q(x, y) = 0 if x = y ). To see
this, let f ∈ Mp(µ). Then, we have from (1.1) that

f̃(x) ≤ sup
0<r<r0

1

µ
(
B(x, r)

)
∫

B(x,r)

(
g(x) + g(y)

)
dµ(y)

= g(x) + sup
0<r<r0

1

µ
(
B(x, r)

)
∫

B(x,r)

g(y) dµ(y) ∈ Lp(µ),
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since

(1.4) M(g)(x) := sup
0<r<r0

1

µ
(
B(x, r)

)
∫

B(x,r)

g(y) dµ(y) ∈ Lp(µ),

due to the doubling condition (1.2) (see for example [7]). Conversely, let f̃ ∈
Lp(µ). Fix x, y ∈ F such that 0 < r := d(x, y) < 1

2r0 . Then we see that, using
(1.2),

|f(x) − f(y)| ≤ 1

µ
(
B(x, r)

)
∫

B(x,r)

(
|f(x) − f(z)| + |f(z) − f(y)|

)
dµ(z)

≤ 1

µ
(
B(x, r)

)
∫

B(x,r)

rσ

d(z, x)σ
|f(x) − f(z)| dµ(z)

+
1

µ
(
B(x, r)

)
∫

B(y,2r)

(2r)σ

d(z, y)σ
|f(z) − f(y)| dµ(y)

≤ rσ

(
f̃(x) +

2σµ
(
B(y, 2r)

)

µ(B(x, r))
f̃(y)

)

≤ C rσ
(
f̃(x) + f̃(y)

)

= C q(x, y)
(
f̃(x) + f̃(y)

)
,

proving that f ∈ Mp(µ) if f̃ ∈ Lp(µ). Here and in the sequel, we denote by C
the general constant whose value may be different at a different occurrence. The
function f̃ defined as in (1.3) is the upper gradient of f (multiple a constant).
In what follows we will focus on a class of Haj lasz–Sobolev type spaces where
q(x, y) = d(x, y)σ and 1 < σ < ∞ , and we denote this space by M p

σ(µ).
For 1 ≤ p < ∞ and 0 < σ < ∞ , we say that f ∈ Lip(σ, p,∞)(µ) if f ∈ Lp(µ)

and

Wσ,p(f)p := sup
0<r<r0

r−σp

∫

F

{
1

µ
(
B(x, r)

)
∫

B(x,r)

|f(x) − f(y)|p dµ(y)

}
dµ(x)

< ∞.(1.5)

The norm of f ∈ Lip(σ, p,∞)(µ) is defined by

‖f‖Lip(σ,p,∞)(µ) = ‖f‖p + Wσ,p(f).

It is easy to see that Lip(σ, p,∞)(µ) is a Banach space for 1 ≤ p < ∞ and
0 < σ < ∞ (cf. [10], [11]). By (1.1), we see that

Mp
σ(µ) ⊂ Lip(σ, p,∞)(µ)
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if µ is a doubling measure. The converse is also true if F is a smooth domain
in Rn and µ is the Lebesgue measure, see [9]. However, if F is irregular, the
converse may not be true. But for an α-regular measure µ , the space M p

σ(µ) is
arbitrarily close to Lip(σ, p,∞)(µ). We say that a measure is α-regular if there
exists a constant c3 > 0 such that

(1.6) c−1
3 rα ≤ µ

(
B(x, r)

)
≤ c3 rα

for all x ∈ F and all 0 < r < r0 (some r0 > 0). It is not hard to see that if µ is
α -regular, then

(1.7) Wσ,p(f)p ' sup
m≥1

2m(α+σp)

∫

F

∫

B(x,c02−m)

|f(x) − f(y)|p dµ(y) dµ(x),

for any fixed c0 > 0.

Proposition 1.1 Let 1 < p < ∞ and 0 < σ < ∞ , and let 0 < α < ∞ .

Assume that µ is α -regular. Then

Lip(σ, p,∞)(µ) ⊂ Mp
σ−θ(µ)

for any 0 < θ < σ .

Proof. See [9].
Proposition 1.1 says that Mp

σ(µ) is slightly smaller than the Besov space

Lip(σ, p,∞)(µ) if µ is α -regular.

2. Examples

In this section we show that Mp
σ(µ) is non-trivial for any 1 < p < ∞ and

σ(> 1) in a certain range, if the underlying metric space is irregular. We take the
Sierpinski gasket in R2 for an example. The proof is quite technical.

q1
q1

q2 q3

V0

q2 q3

V1

q2

q1

q3

V2

Figure 1.
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Let F be the Sierpinski gasket in R2 , that is, F is the unique non-empty
compact subset of R2 determined by

F =
3⋃

i=1

φi(F ),

where φi(x) = 1
2 (qi + x), x ∈ R2 (1 ≤ i ≤ 3), and q1,q2,q3 are the three

vertices of an equilateral triangle in R2 . Alternatively, we may view the Sierpinski
gasket F as the closure of V∗ =

⋃∞
m=1 Vm under the Euclidean metric, where

Vm =
⋃3

i=1 φi(Vm−1), m ≥ 1, and V0 = {q1,q2,q3} , see Figure 1. For p = 2,
Kigami [12] constructed a local regular Dirichlet form on F by using the difference
scheme. Jonsson [10] identified the domain of this Dirichlet form with a Besov
space. Recently, Herman, Peirone and Strichartz [8] have extended Kigami’s result
to the case 1 < p < ∞ . Here we briefly describe the main result in [8] that will
lead to our example. For 1 < p < ∞ , let Ep: R3 →[0,∞] be given by

Ep(a1, a2, a3) = |a1 − a2|p + |a2 − a3|p + |a3 − a1|p, a1, a2, a3 ∈ R,

and define

(2.1) E(m)
p (f) :=

∑

|ω|=m

Ep

(
f
(
φω(q1)

)
, f

(
φω(q2)

)
, f

(
φω(q3)

))
, m ≥ 1,

for any f : F → R , where the summation is taken over all words ω of length m ,
and φω(q1) = φi1 ◦ φi2 ◦ · · · ◦ φim

(q1) for the word ω = i1i2 · · · im (ik ∈ {1, 2, 3}
for 1 ≤ k ≤ m). Let Ap: R3 →[0,∞] be a function satisfying (among other
properties)

(2.2) c−1
4 Ep(a) ≤ Ap(a) ≤ c4 Ep(a)

for some positive constant c4 and for all a := (a1, a2, a3) ∈ R3 ; in particular, Ap

solves the renormalization problem: Given a ∈ R3 and letting

(2.3)
A(2)

p (a, b) := Ap(a1, b2, b3) + Ap(b1, a2, b3) + Ap(b1, b2, a3)

for b = (b1, b2, b3) ∈ R3,

we have that there exists a number rp such that

(2.4) min
b∈R3

A(2)
p (a, b) = rpAp(a) for all a ∈ R3.

Such a function Ap was shown to exist in [8]. Moreover, the number rp is unique
(independent of the choice of Ap ) and satisfies

(2.5) 21−p ≤ rp ≤ 2p−1
(

1 +
√

1 + 23−1/(p−1)
)1−p

< 3 · 2−p,
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see Lemma 3.8 in [8]. We mention that rp = 3
5 for p = 2. The function Ap may or

may not be unique on F ; what is important is that the renormalization factor rp

is unique which reflects the intrinsic properties of the Sierpinski gasket F . Now,
for any f : F → R we define the p-energy E (f) of f on F as the limit of

(2.6) Em(f) = r−m
p

∑

|ω|=m

Ap

(
f
(
φω(q1)

)
, f

(
φω(q2)

)
, f

(
φω(q3)

))
, m ≥ 1,

that is,

(2.7) E (f) = lim
m→∞

Em(f).

Note that (2.7) makes sense since

{Em(f)}m

is increasing in m for any function f , due to the renormalization problem. Note
that

(2.8) c−1
5 Em(f) ≤ r−m

p E(m)
p ≤ c5 Em(f)

for all m ≥ 1 and all f : F → R , where c5 > 0. Let

(2.9) D(E ) = {f ∈ C(F ) : E (f) < ∞},

termed the domain of the p -energy, where C(F ) denotes the space of all con-
tinuous functions on F with the usual supremum norm. It was shown that
D(E ) is dense in C(F ), see [8]. The space D(E ) will provide a critical exponent

βp := log2(3r−1
p ) (some rp > 0) that determines whether or not a Haj lasz–Sobolev

type space Mp
σ(µ) (1 < p < ∞) is non-trivial. To see this, we first identify D(E )

with a Besov space.

Theorem 2.1. Let µ be the α := log2 3 -dimensional Hausdorff measure on

F . Then

(2.10) Wβp/p,p(f)p ' E (f)

for all f ∈ C(F ) , where Wβp/p,p(f) is defined as in (1.5) and βp = log2(3r−1
p ) .

Thus

(2.11) D(E ) = Lip(βp/p, p,∞)(µ),

where D(E ) is defined as in (2.9) .
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Remarks. 1. When p = 2, we have that rp = 3
5 and so βp = log2 5, the

walk dimension of the Sierpinski gasket.

2. If µ is α -regular and σ > α/p , then Lip(σ, p,∞)(µ) is embedded into the
Hölder space with exponent σ − α/p on F , that is,

(2.12) |f(x) − f(y)| ≤ C |x − y|σ−α/pWσ,p(f)

for all f ∈ Lip(σ, p,∞)(µ), where C is independent of x , y and f ; see for example
a direct proof in [4]. Thus

Lip(βp/p, p,∞)(µ) ⊂ C(F ),

since βp/p > α/p (due to rp < 1).

3. By Theorem 2.1, the domain of the p -energy coincides with Lip(βp/p, p,∞)(µ)
if µ is the Hausdorff measure. For other measures this may not be true.

Proof. The proof given here is motivated by [10] (see also [15], [17]) but with
some modifications. We first show that

(2.13) Wβp/p,p(f)p ≤ C E (f)

for all f ∈ D(E ). To see this, let f ∈ D(E ). Let
(2.14)

fk(x) =

{
1
3

[
f
(
φω(q1)

)
+ f

(
φω(q2)

)
+ f

(
φω(q3)

)]
, if x ∈ φω(F )\φω(V0),

f(x), if x ∈ φω(V0)

for |ω| = k (k ≥ 1). Since F is compact and f is continuous on F , the piecewise
constant function fk converges to f pointwise on F as k → ∞ . If we can show
that, for some c0 > 0 (e.g. c0 =

√
3/2 ),

(2.15) 2(α+βp)m

∫

F

∫

|y−x|<c02−m

|fm+k(y) − fm+k(x)|p dµ(y) dµ(x) ≤ C E (f)

for all integers m, k ≥ 1, where C is independent of f , then (2.13) follows by
letting k → ∞ in (2.15) and using Fatou’s lemma, and (1.7). It remains to
prove (2.15). For two words ω and τ with |τ | = |ω| = m , we denote by τ ∼

m
ω if
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φτ (F ) ∩ φω(F ) 6= ∅ (we allow that τ = ω ). Note that

(2.16)

Im+k(f) :=

∫

F

∫

|y−x|<c02−m

|fm+k(y) − fm+k(x)|p dµ(y) dµ(x)

≤
∑

|ω|=m

∑

τ∼
m

ω

∫

φω(F )

∫

φτ (F )

|fm+k(y) − fm+k(x)|p dµ(y) dµ(x)

≤
∑

|ω|=m

∑

τ∼
m

ω

∫

φω(F )

∫

φτ (F )

2p−1
(
|fm+k(y) − f(xω,τ)|p

+ |f(xω,τ) − fm+k(x)|p
)
dµ(y) dµ(x)

≤ 8 · 2p−1 · 3−m
∑

|ω|=m

∫

φω(F )

|fm+k(x) − f(xω,τ )|p dµ(x),

where we have used the fact that µ
(
φω(F )

)
= 3−m and #

{
τ : τ ∼

m
ω
}
≤ 4 for

|ω| = m , m ≥ 1, and where xω,τ is some point in φω(V0) (in fact xω,τ is the
unique intersection point of two sets φω(V0) and φτ (V0)). Noting that µ(x) = 0
for any single point x ∈ F , it follows from (2.14) that

∫

φω(F )

|fm+k(x) − f(xω,τ )|p dµ(x)

=
∑

|τ |=k

∫

φω·τ (F )

∣∣∣∣
1

3

3∑

j=1

f(φω·τ (qj)) − f(xω,τ)

∣∣∣∣
p

dµ(x)

= 3−(m+k)
∑

|τ |=k

∣∣∣∣
1

3

3∑

j=1

(
f(φω·τ (qj)

)
− f

(
xω,τ )

)∣∣∣∣
p

≤ 3−(m+k)−1
3∑

j=1

∑

|τ |=k

∣∣f
(
φω·τ (qj)

)
− f

(
xω,τ

)∣∣p

which combines with (2.16) to give that
(2.17)

Im+k(f) ≤ 2p+2 · 3−(2m+k)−1
3∑

j=1

∑

|ω|=m, xω,τ∈φω(V0)

∑

|τ |=k

∣∣f
(
φω·τ (qj)

)
− f(xω,τ)

∣∣p.

Let qj and τ := i1i2 · · · ik be fixed, and set xk = φω·τ (qj) and x0 := xω,τ = φω(q0)
for some q0 ∈ V0 . We let xl = φω·i1i2···il

(q0), 1 ≤ l ≤ k − 1, and obtain a
sequence of points {xl}k

l=0 (some of points may be the same). Repeatedly using the
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elementary inequality |a+b|p ≤ 2p−1(|a|p + |b|p) for any a, b ∈ R and 1 ≤ p < ∞ ,
we see that

∣∣f
(
φω·τ (qj)

)
− f(xω,τ)

∣∣p =
∣∣f(xk) − f(x0)

∣∣p

≤
k∑

l=1

2(p−1)l|f(xl) − f(xl−1)|p

≤
k∑

l=1

2(p−1)lÊ
(ω,p)
i1,...,il−1

(f),

where

Ê
(ω,p)
i1,...,il−1

(f) =
3∑

i=1

Ep

(
f◦φω·i1i2···il−1·i(q1), f◦φω·i1i2···il−1·i(q2), f◦φω·i1i2···il−1·i(q3)

)
.

Thus

∑

|τ |=k

∣∣f
(
φω·τ (qj)

)
− f(xω,τ)

∣∣p ≤
∑

i1,i2,...,ik

k∑

l=1

2(p−1)lÊ
(ω,p)
i1,...,il−1

(f)

=

k∑

l=1

2(p−1)l · 3k−(l−1)
∑

i1,...,il−1

Ê
(ω,p)
i1,...,il−1

(f).(2.18)

Observe that

∑

|ω|=m

∑

i1,...,il−1

Ê
(ω,p)
i1,...,il−1

(f) =
∑

|ω|=m+l

Ep

(
f(φω(q1)

)
, f

(
φω(q2)

)
, f

(
φω(q3)

))

= E(m+l)
p (f)(2.19)

≤ c5 rm+l
p Em+l(f)

≤ c5 rm+l
p E (f)

by using (2.8) and the monotonicity of Em(f) in m . Combining (2.17), (2.18) and
(2.19), we have that

Im+k(f) ≤ C 3−2m
k∑

l=1

2(p−1)l · 3−lrm+l
p E (f)

≤ Crm
p · 3−2m

E (f)

∞∑

l=1

2(p−1)l3−lrl
p

≤ Crm
p · 3−2m

E (f) = C 2−m(α+βp)
E (f),
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where we have used the fact that

∞∑

l=1

2(p−1)l3−lrl
p < ∞

since 2p−13−1rp < 1 by virtue of (2.5). Therefore, (2.15) follows.
We next show that

(2.20) E (f) ≤ CWβp/p,p(f)p

for all f ∈ Lip(βp/p, p,∞)(µ). By (2.8), it is sufficient to show that

(2.21) E
(m)
p (f) := r−m

p

∑

|ω|=m

∑

u,v∈φω(V0)

|f(u) − f(v)|p ≤ CWβp/p,p(f)p

for all f ∈ Lip(βp/p, p,∞)(µ) and all m ≥ 1. Let f ∈ Lip(βp/p, p,∞)(µ). By
Remark 2 above we see that f is continuous on F . Noting that

|f(u) − f(v)|p ≤ 2p−1
(
|f(u) − f(x)|p + |f(x) − f(v)|p

)
,

we have that

|f(u) − f(v)|p ≤ 2p−1

µ
(
φω(F )

)
∫

φω(F )

(
|f(u) − f(x)|p + |f(x) − f(v)|p

)
dµ(x).

It follows from (2.21) that
(2.22)

E
(m)
p (f) ≤ 6 · 2p−1 r−m

p

∑

|ω|=m

∑

u∈φω(V0)

1

µ(φω(F ))

∫

φω(F )

|f(u) − f(x)|p dµ(x).

Now let x ∈ φω(F ) and u ∈ φω(V0) be fixed. There exists a point p0 ∈ V0 such
that u = φω(p0). We take i0 such that φi0(p0) = p0 . Set

S0 = φω(F ), S1 = φω·i0 · i0 · · · · i0︸ ︷︷ ︸
k times

(F ), S2 = φω·i0 · i0 · · · · i0︸ ︷︷ ︸
2k times

(F ), . . . ,

where k is an integer to be determined below. It is easy to see that u ∈ Sj for
each j ≥ 0, and the sequence of the sets {Sj} shrinks to the single point u . For
each x := xω,τ ∈ S0 , xj ∈ Sj and each l ≥ 1,

|f(u) − f(x)|p ≤ 2p−1(|f(u) − f(xl)|p + |f(xl) − f(xω,τ )|p)

≤ 2p−1|f(u) − f(xl)|p +

l∑

j=1

2(p−1)(j+1)|f(xj) − f(xj−1)|p.
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Integrating the above inequality with respect to each xj ∈ Sj (0 ≤ j ≤ l ) and
then dividing by µ(S0)µ(S1) · · ·µ(Sl), we obtain that

(2.23)

1

µ
(
φω(F )

)
∫

φω(F )

|f(u) − f(x)|p dµ(x) ≤ 2p−1

µ(Sl)

∫

Sl

|f(u) − f(xl)|p dµ(xl)

+
l∑

j=1

2(p−1)(j+1) 1

µ(Sj−1)µ(Sj)

×
∫

Sj−1

∫

Sj

|f(xj) − f(xj−1)|p dµ(xj) dµ(xj−1).

Noting that µ(Sj) = 3−(m+kj) for each j ≥ 0 and∫

Sj−1

∫

Sj

|f(xj) − f(xj−1)|p dµ(xj) dµ(xj−1)

≤
∫

S0

∫

|ξ−η|≤2−(m+(j−1)k)

|f(ξ) − f(η)|p dµ(ξ) dµ(η),

we have from (2.22) and (2.23) that

(2.24)

E
(m)
p (f) ≤ 6 · 2p−1r−m

p

∑

|ω|=m

∑

u∈φω(V0)

{
2p−1

µ(Sl)

∫

Sl

|f(u) − f(xl)|p dµ(xl)

+

l∑

j=1

2(p−1)(j+1)3(2m+(2j−1)k)

×
∫

φω(F )

∫

|ξ−η|≤2−(m+(j−1)k)

|f(ξ) − f(η)|p dµ(ξ) dµ(η)

}
.

Letting l → ∞ , we have that the first term on the right-hand side in (2.24) tends
to zero since f is continuous and

1

µ(Sl)

∫

Sl

|f(u) − f(xl)|p dµ(xl) → 0 as l → ∞,

and the second term is less than

Cr−m
p

∞∑

j=1

2(p−1)(j+1)3(2m+(2j−1)k)

∫

F

∫

|ξ−η|≤c02−(m+jk)

|f(ξ)− f(η)|p dµ(ξ) dµ(η)

≤ C 32m r−m
p

∞∑

j=1

2(p−1)j32jk2−(m+jk)(α+βp)Wβp/p,p(f)p

= C 32mr−m
p Wβp/p,p(f)p

∞∑

j=1

2(p−1)j32jk (3−2rp)m+jk(2.25)

= CWβp/p,p(f)p
∞∑

j=1

2(p−1)jrjk
p ,
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since 2−(α+βp) = rp · 3−2 . Since rp < 1, we take k so large that rk
p < 2−(p−1) ,

and so
∞∑

j=1

2(p−1)jrjk
p < ∞.

Therefore,
E

(m)
p (f) ≤ CWβp/p,p(f)p

for all f ∈ Lip(βp/p, p,∞)(µ) and all m ≥ 1, proving (2.21). The other statement
is obvious.

Corollary 2.1. Let βp = log2(3r−1
p ) as above. Then the space Lip(β̄/p, p,∞)(µ)

defined on the Sierpinski gasket in R2 contains only constant functions if β̄ > βp .

Proof. By (2.24), (2.25), we see that

E
(m)
p (f) ≤ CWβ̄/p,p(f)p2−m(β̄−βp)

for all m ≥ 1 and all f ∈ Lip(β̄/p, p,∞)(µ). Thus we have that

E (f) = lim
m→∞

Em(f) ≤ C lim
m→∞

E
(m)
p (f) = 0,

giving that f =const.

Theorem 2.2. Let F be the Sierpinski gasket in R2 and µ be the α -

dimensional Hausdorff measure on F , where α = log2 3 . Let 1 < p < ∞ . Then

there exists some rp ∈ [21−p, 3 · 2−p) such that the Haj lasz–Sobolev space M p
σ(µ)

is dense in C(F ) for all σ < p−1 log2(3r−1
p ); in particular, the space Mp

σ(µ) is non-

trivial if 1 < σ < log4 5 when p = 2 . Moreover, Mp
σ(µ) is trivial if σ ≥ 1 + 1/p .

Proof. By Theorem 2.1, the space Lip(σ, p,∞)(µ) is dense in C(F ) if

0 < σ ≤ βp

p
= p−1 log2(3r−1

p ).

Since µ is α -regular, we see from Proposition 1.1 and (2.5) that there exists some
rp ∈ [21−p, 3 · 2−p) such that Mp

σ(µ) is dense in C(F ) if 0 < σ < p−1 log2(3r−1
p ).

By Corollary 2.1, the space Lip(σ, p,∞)(µ) is trivial if σ ≥ 1 + 1/p > βp/p (due
to rp ≥ 21−p ). Thus the fact that Mp

σ ⊂ Lip(σ, p,∞) implies that Mp
σ(µ) is also

trivial if σ ≥ 1 + 1/p .
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